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Abstract: Swap is a financial contract between two counterparties who agree to exchange one cash
flow stream for another, according to some predetermined rules. When the cash flows are fixed rate
interest and floating rate interest, the swap is called an interest rate swap. This paper investigates
two valuation models of the interest rate swap contracts in the uncertain financial market. The new
models are based on belief degrees, and require relatively less historical data compared to the
traditional probability models. The first valuation model is designed for a mean-reversion term
structure, while the second is designed for a term structure with hump effect. Explicit solutions are
developed by using the Yao–Chen formula. Moreover, a numerical method is designed to calculate
the value of the interest rate swap alternatively. Finally, two examples are given to show their
applications and comparisons.
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1. Introduction

Interest rate swap is one of the most popular interest derivatives. The interest rate swap began
trading in 1981, and now owns a hundred billion dollar market. A swap is a contract in which
two counterparties exchange cash flows at prearranged date, where the cash flows’ values are derived
from some underlying assets, such as interest rate, equities, exchange rates, or commodities. When
the underlying asset is interest, the swaps are called interest rate swaps.

In order to value the interest rate swaps, Murphy [1] assumed that the floating interest rate
follows a static model, and gave the classical valuation model of the interest rate swaps. Smith [2]
gave a static valuation model using overnight indexed swap (OIS) rates. Mitra [3] extended the
static model by assuming that the variations of the interest rate followed a stochastic differential
equation. Yang [4] considered the bilateral default risk and gave another valuation model. Li [5] and
Balsam [6] focused on the corporate use of interest rate swaps. Since multi-factor interest models
fit the term structure better than one-factor models, Fanelli [7] and Ravi [8] discussed the interest
rate swaps under the assumption that the floating interest rate followed Heath-Jarrow-Morton and
Cox-Ingersoll-Ross models, respectively.

The traditional models of valuing interest rate swaps are mainly based on probability theory.
However, in a real financial market, the interest rate is affected by the timely policies and news
(e.g., If the central bank suddenly announces that the country will practice tight monetary policy,
then the interest rate will rise). These affections will lead the interest rate to deviate from the previous
tendencies. At this time, we need a new interest rate model to describe the new pattern. However,
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there is little information about the new pattern, so in this situation, we can only employ experts to
give the belief degrees of the interest rate.

In order to model belief degrees, uncertainty theory was founded by Liu [9] in 2007, and
refined by Liu [10] in 2010. Uncertainty theory is a branch of mathematics based on normality,
duality, subadditivity, and product axioms.To model the evolutionary uncertain phenomena, Liu [11]
proposed uncertain process in 2008. It can be seen as a sequence of uncertain variables indexed by
time. What is more, Liu [11] designed a special uncertain process called Liu process. Liu process
is a Lipschitz continuous uncertain process with stationary and independent increments, and after
that, he established uncertain calculus. Liu process and uncertain integral can be seen as uncertain
counterparts of Brownian motion and stochastic integral. Liu [11] initiated the study of uncertain
differential equations. Afterwards, Chen and Liu [12] proved the existence and uniqueness theorem
for uncertain differential equations. Some stability theorems were proved by Yao et al. [13]. Moreover,
Yao and Chen [14] found a relationship between an uncertain differential equation and a family
of ordinary differential equations. This result is called Yao–Chen formula. Chen [15] studied a
special type of multi-dimensional uncertain differential equation called a nested uncertain differential
equation. He extended the interest rate models to multi-factor term structure models.

As an application of uncertain differential equations, an uncertain stock model was proposed
by Liu [16], and various option pricing formulas were derived (e.g., European option [16], American
Option [17], and Asian option [18]). Chen and Gao [19] also presented three types of interest rate
models, which are the uncertain counterparts of Ho-Lee model, Vasicek model, and CIR Model.
In this paper, we mainly discuss the valuation model of the interest rate swaps under the assumption
that interest rate follows an uncertain differential equation. Firstly, we assume that the floating
interest rate follows a mean-reversion one-dimensional uncertain differential equation, and give
the explicit solution of the interest rate swap. Secondly, considering the hump effect of the term
structure, we assume that the floating interest rate follows a nested-uncertain differential equation,
and derive explicit solutions of interest rate swap. Since explicit solutions are difficult to calculate
in many situations, a numerical method was also designed. Lastly, two examples are presented for
illustrating purpose.

The organization of this paper is as follows. In section two, we gave the valuation model wherein
the floating interest rate follows a mean-reversion uncertain differential equation. In section three,
we gave the valuation model wherein the floating interest rate follows a nested uncertain differential
equation. In section four, we designed a numerical method to calculate the value of the interest rate
swap, and give two examples to show the applications.

2. The Valuation Model with Mean-Reversion Uncertain Differential Equation

An interest rate swap is a popular financial derivative instrument. It regulates a fixed interest
rate r. It allows the two parties to exchange interest rate cash flows, based on a specified notional
amount from a fixed rate r to a floating rate, or from one floating rate to another. So, the value
of the swap for the fixed rate payer (denoted by Vf ix) is the present value of the floating interest
minus the present value of the fixed interest, and the value of the swap for the floating rate
payer (denoted by Vf loat) is the present value of the fixed interest minus the present value of the
floating interest. If these two legs are equal to zero, then the regulated fixed interest rate r is fair
for the two parties.

Because the floating interest rate changes with time, we assume that the floating interest rate
follows an uncertain differential equation, as follows:

drt = (m− art)dt + σdCt, (1)

where m, a, and σ are constants, and σ > 0. This model can be seen as the counterpart of the
Vasicek model. The process for rt is a mean-reversion process. Ct is a Liu process. It is used for
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modeling unexpected market risk. σ determines the volatility of the interest rate. m/a is the long-run
equilibrium. a measures the speed of reversion.

Let Vf ix and Vf loat denote the fair value of the interest rate swap contract for the fixed interest
rate payer and the floating interest rate payer, respectively, and S0 is the nominal principle. At time
T, the fixed interest rate payer must pay the fixed rate interest and receive the floating rate interest.
So, the payoff of the fixed interest rate payer at time T is as follows:

S0

(
exp

(∫ T

0
rtdt

)
− exp (rT)

)
, (2)

Considering the time value of the money, the present value of the payoff is

S0

(
exp

(
−
∫ T

0
rtdt

)(
exp

(∫ T

0
rtdt

)
− exp (rT)

))
= S0

(
1− exp

(
−
∫ T

0
rtdt + rT

)) (3)

So, the net return of the fixed interest rate payer is

−Vf ix + S0

(
1− exp

(
−
∫ T

0
rtdt + rT

))
, (4)

On the other hand, the net return of the floating interest rate payer is

Vf ix − S0

(
1− exp

(
−
∫ T

0
rtdt + rT

))
, (5)

Therefore, the fair value of the interest rate swap for the fixed interest rate payer should make
the fixed interest rate payer and the floating interest rate payer have an identical expected return

−Vf ix + S0

(
1− E

[
exp

(
−
∫ T

0
rtdt + rT

)])
= Vf ix − S0

(
1− E

[
exp

(
−
∫ T

0
rtdt + rT

)])
, (6)

With the same analysis as the floating rate payer, the fair value of the interest rate swap for the
floating interest rate payer should follow the equation below:

−Vf loat + S0

(
E
[

exp
(
−
∫ T

0
rtdt + rT

)]
− 1
)
= Vf loat − S0

(
E
[

exp
(
−
∫ T

0
rtdt + rT

)]
− 1
)

, (7)

Definition 1. The interest rate swap contract regulates that the notional principal amount is S0, the fixed
interest rate is r, and the floating interest rate is rt, and rt is defined as Equation (1). The two counterparties
need to exchange their cash flows at time t = T. The fair values for the fixed interest rate payer and the floating
interest rate payer are as follows:

Vf ix = −Vf loat = S0

(
1− E

[
exp

(
−
∫ T

0
rtdt + rT

)])
, (8)

Theorem 1. Assume rt follows an uncertain differential Equation (1), and the interest rate swap contract is
described in Definition 1. The fair value for the fixed interest rate payer and the floating interest rate payer are
as follows:

Vf ix = −Vf loat = S0

(
1−

∫ 1

0
exp

(
−
∫ T

0
Ψ−1

t (1− α) dt + rT

)
dα

)
, (9)
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where

Ψ−1
t (1− α) =

1
a

(
m +

σ
√

3
π

ln
α

1− α

)
(1− exp(−at)) + exp (−at) r0, (10)

Proof of Theorem 1. Solving the ordinary equation

drα
t = (m− arα

t )dt + σΦ−1(α)dt, (11)

where 0 < α < 1 and Φ−1(α) is the inverse standard normal uncertainty distribution, we have

rα
t =

1
a

(
m +

σ
√

3
π

ln
α

1− α

)
(1− exp(−at)) + exp(−at)r0, (12)

This means that the uncertain differential equation

drt = (m− art)dt + σdCt, (13)

has an α-path

rα
t =

1
a

(
m +

σ
√

3
π

ln
α

1− α

)
(1− exp(−at)) + exp(−at)r0, (14)

It follows Yao–Chen formula that rt has an inverse uncertainty distribution

Ψ−1
t (α) = rα

t =
1
a

(
m +

σ
√

3
π

ln
α

1− α

)
(1− exp(−at)) + exp(−at)r0, (15)

Since exp
(
−
∫ T

0
rtdt + rT

)
is a decreasing function for rt, it has an inverse

uncertainty distribution

Υ−1(α) = exp

(
−
∫ T

0
Ψ−1

t (1− α)dt + rT

)
, (16)

Thus,

E
[

exp
(
−
∫ T

0
rtdt + rT

)]
=

∫ 1

0
Υ−1(α)dα

=
∫ 1

0
exp

(
−
∫ T

0
Ψ−1

t (1− α)dt + rT
)

dα

, (17)

where

Ψ−1
t (1− α) =

1
a

(
m +

σ
√

3
π

ln
1− α

α

)
(1− exp(−at)) + exp(−at)r0, (18)

3. The Valuation Model with Nested Uncertain Differential Equation

In the real capital market, the drift of interest rate may display a hump. However, the
single-factor interest rate models are not rich enough to describe this phenomenon. Therefore, we
added an uncertain reversion process into the drift term. Then, the previous uncertain differential
equation evolved into a nested uncertain differential equation. Chen [15] showed that this model
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guarantees a better fitting for the hump in the drift structure. So, in this part, we assume that the the
interest rate follows a nested uncertain differential equation, as follows:

drt = k(a + ut − rt)dt + σ1dC1t, (19)

where ut follows an uncertain differential equation

dut = −butdt + σ2dC2t, u0 = 0, (20)

The uncertain process ut reverses to 0 at rate b. C1t and C2t are two independent Liu processes.

Theorem 2. Assume rt follows a nested uncertain differential Equation (19), and the interest rate swap
contract is described in Definition 1. The fair value for the fixed interest rate payer and the floating interest rate
payer are as follows:

Vf ix = −Vf loat = S0

(
1−

∫ 1

0
exp

(
−
∫ T

0
Ψ−1

t (1− α) dt + rT

)
dα

)
, (21)

where Ψ−1
t (1− α) = rα

t , and rα
t is the solution for the following ordinary differential equation:

drα
t = k(a + uα

t − rα
t )dt + σ1Φ−1(α)dt, (22)

uα
t is the solution for the following from the ordinary differential equation

duα
t = −buα

t dt + σ2Φ−1(α)dt, (23)

Proof of Theorem 2. According to Theorem A2, the nested uncertain differential equation

drt = k(a + ut − rt)dt + σ1dC1t, (24)

has an α-path
drα

t = k(a + uα
t − rα

t )dt + σ1Φ−1(α)dt, (25)

uα
t is solving from

duα
t = −buα

t dt + σ2Φ−1(α)dt, (26)

So, rt has an inverse uncertainty distribution

Ψ−1
t (α) = rα

t , (27)

Since exp
(
−
∫ T

0
rtdt + rT

)
is a decreasing function for rt, it has an inverse

uncertainty distribution

Υ−1(α) = exp

(
−
∫ T

0
Ψ−1

t (1− α)dt + rT

)
, (28)

Thus,

E
[

exp
(
−
∫ T

0
rtdt + rT

)]
=

∫ 1

0
Υ−1(α)dα

=
∫ 1

0
exp

(
−
∫ T

0
Ψ−1

t (1− α)dt + rT
)

dα.

, (29)
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4. Numerical Examples

Based on Theorem A2, we find that there are explicit solutions for the fair values of the interest
rate swaps. However, it is sometimes difficult to calculate. So, in this section, we first give a
99-method for solving the fair values of the interest rate swaps.

Step 0: Set i = 1, j = 1, si = 0, αj = 0, n = 100, step length = T/n.
Step 1: Set αj = αj + 0.01, si = si + T/n.
Step 2: Solving the corresponding ordinary differential equations

dr
1−αj
t = k(a + u

αj
t − r

1−αj
t )dt + σ1Φ−1(1− αj)dt,

and

du
αj
t = −bu

αj
t dt + σ2Φ−1(αj)dt,

respectively. Then we obtain r
1−αj
si and u

αj
si . It is suggested to employ a numerical method to

solve the equation when an analytic solution is unavailable.
Step 3: Repeat Step 1 and Step 2 99 times.
Step 4: The solution rsi has a 99-table,

αj 0.01 0.02 · · · 0.99

r
1−αj
si r0.99

si
r0.98

si
· · · r0.01

si

This table gives an approximate uncertainty distribution of rsi ; i.e, for any α = i/100,
i = 1, 2, · · · , 99.

Step 5: Set i = i + 1, j = j + 1, αj = 0, and repeat Step 1 to Step 4 n times.
Step 6: Calculate

Vf ix = −Vf loat = S0

(
1−

100

∑
j=1

(
exp

(
−

n

∑
i=1

((
r

1−αj
si + rT

)
× T

n

))
× 1

100

))
,

Example 1. Consider that there are two firms, owning the same floating interest rate bond. S0 denotes the
face value of the bond, and S0 is 1 million. The bond will expire the next year. Both of the firms think that
they face the interest rate risk. In order to hedge this kind of risk, they decide to sign an interest rate swap
contract. The one year floating-for-fixed interest rate swap contract regulated that the fixed interest rate is 0.07.
These two companies want to know whether the regulated fixed rate is reasonable. Firm 1 thinks that the drift
of the interest rate will not display a hump. So, it models the floating interest rate by the model proposed in
Section 2. That is,

drt = (m− art)dt + σdCt, r0 = 0.06, (30)

where a = 0.4, m/a = 0.07, and σ = 0.0025.
After calculation, the fair value for the fixed interest rate payer is Vf ix = 0.1366, and the fair value for the

floating interest rate payer is Vf loat = −0.1366.
Firm 2, on the contrary, thinks that the drift of the interest rate will display a hump. So, it models the

floating interest rate by the model proposed in Section 3. That is,

drt = k(a + ut − rt)dt + σ1dC1t, r0 = 0.06 , (31)

and ut follows
dut = −butdt + σ2dC2t, u0 = 0.02 ,

where a = 0.07, k = 0.4, b = 0.01, σ1 = σ2 = 0.0025.
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After calculation, the fair value for the fixed interest rate payer is Vf ix = 0.01, and the fair value for the
floating interest rate payer is Vf loat = −0.01.

Through the comparison, we can find that the hump effect of the interest rate drift will definitely influence
the interest rate. Whether the floating interest rate consists dump effect is judged by the experiences of the
decision-maker. No matter what his judgement it is, however, this paper provides him with powerful tools.

Example 2. On 2 November 1953, The Procter & Gamble company (P&G) signed an interest swap contract
with Bankers Trust New York Corporation (BT). The contract regulated that the nominal principle is 2 hundred
millions. This contract would last for 5 years. The two companies would exchange the interest semiannually.
The BT is the fixed interest rate payer, who promised to pay at 5.3%, while P&G is the floating interest rate
payer, who promised to pay at 1 month average interest rate of commercial bills minus 75 bp. However, on 17
May 1954, the Federal Reserve System decided to raise its interest rate; this would directly raise the interest
rate of the commercial bills. For this new interest rate pattern, we had not enough samples, so we can only use
belief degrees to model it. If we thought that there is no hump effect of the interest rate drift, we could assume
that the interest rate followed the mean-reversion uncertain differential equation.

drt = (m− art)dt + σdCt, r0 = 0.06, (32)

where a = 0.4, m/a = 5.55%, and σ = 0.0025. Then, we can estimate that

Vf loat = S0

((
−1 + exp

(
−
∫ T

0
rtdt + rT

)))
= −23.26 million ,

This meant that P&G might face a loss in the future. However, the management of P&G did not pay
enough attention to the potential loss, and this led the company to lose about 157 million in April 1994.

5. Conclusions

This paper mainly studied interest swap contracts in an uncertain financial market. Two
valuation models are provided in this paper. These two models do well in the circumstance wherein
there is not sufficient information. Explicit solutions are proved in this paper. In addition, the numeric
method is designed for complicated cases. Moreover, the model proposed in Section 3 can be used
to describe the interest rate with a dump drift. Two examples are given to show the applications and
comparisons of these models. As we know, the company always faces interest rate risk for several
future periods. In order to hedge this kind of risk, the company will assign an interest rate swap
contract that exchanges interest flows in several future periods. The valuation models of this kind of
contract can not be done under uncertainty theory due to some theoretical limitations. In the future,
other kinds of swaps can be studied based on uncertainty theory, such as currency swap, volatility
swap and correlation swap.
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Appendix A

Appendix A.1. Uncertain Variable

Uncertain theory—founded by Liu [20] and refined by Liu [11]—is a branch of axiomatic
mathematics for modeling human uncertainty. Let Γ be a nonempty set, L a σ-algebra over Γ, and
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each element Λ in L is called an event. An uncertain measure is defined as a function from L to [0,1].
In detail, Liu [20] gave the concept of uncertain measure as follows:

Definition A1. (Liu [20]) The set function M is called an uncertain measure if it satisfies:

Axiom 1. M{Γ} = 1 for the universal set Γ;
Axiom 2. M{Λ}+M{Λc} = 1 for any event Λ;
Axiom 3. For any countable sequence of events Λ1, Λ2, · · · , we have the following inequality:

M

{
∞⋃

i=1

Λi

}
≤

∞

∑
i=1

M {Λi} , (A1)

Besides, in order to provide the operational law, Liu [11] defined the product uncertain measure on the
product σ-algebra L as follows.

Axiom 4. Let (Γk,Lk,Mk) be uncertainty spaces for k=1,2,· · · The product uncertain measure M is
an uncertain measure satisfying

M

{
∞

∏
k=1

Λk

}
=

∞∧
k=1

Mk {Λk} , (A2)

where Λk are arbitrarily chosen events from Lk for k=1,2· · · , respectively. Based on the concept of uncertain
measure, we can define an uncertain variable.

Definition A2. (Liu [20]) An uncertain variable is a function ξ from an uncertainty space (Γ,L,M) to the
set of real numbers such that {ξ ∈ B} is an event for any Borel set B of real numbers.

Definition A3. (Liu [20]) The uncertain distribution Φ of an uncertain variable ξ is defined by

Φ(x) = M{ξ ≤ x} , (A3)

for any real number x.

Definition A4. (Liu [16]) Let ξ be an uncertain variable with regular uncertainty distribution Φ(x). Then the
inverse function Φ−1(α) is called the inverse uncertainty distribution of ξ.

Definition A5. (Liu [20]) Let ξ be an uncertain variable. The expected value of ξ is defined by

E[ξ] =
∫ +∞

0
M{ξ ≥ x}dx−

∫ 0

−∞
M{ξ ≤ x}dx , (A4)

provided that at least one of the above two integrals is finite.
Based on the definition of inverse uncertainty distribution, we can get the theorem below, which is

convenient to calculate the expected value of an uncertain variable.

Theorem A1. (Liu [16]) Let ξ be an uncertain variable with regular uncertainty distribution Φ. If the expected
value exists, then

E[ξ] =
∫ 1

0
Φ−1(α)dα , (A5)

Appendix A.2. Uncertain Process

Definition A6. (Liu [9]) Let (Γ,L,M) be an uncertain space, and let T be a totally ordered set (e.g., time).
An uncertain process is a function Xt(γ) from T × (Γ,L,M) to the set of real numbers, such that {Xt ∈ B}
is any event for a Borel set B at each time t.
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Definition A7. (Liu [10]) Uncertain processes X1t, X2,t, · · · , Xnt are said to be independent if for any positive
integer k and any times t1, t2, · · · , tk, to be uncertain vectors

ξi =
(
Xit1 , Xit2 , · · · , Xitk

)
, i = 1, 2, · · · , n (A6)

are independent; i.e., for any Borel sets B1, B2, · · · , Bn of k-dimensional real vectors, we have

M

{
n⋂

i=1

(ξi ∈ Bi)

}
=

n∧
i=1

M {ξi ∈ Bi} , (A7)

Definition A8. (Liu [11]) An uncertain process Ct is said to be a canonical Liu process if

(i) C0 = 0 and almost all sample paths are Lipschitz continuous,
(ii) Ct has stationary and independent increments,
(iii) every increment Cs+t − Cs is a normal uncertain variable with expected value 0 and variance t2.

Definition A9. (Liu [11]) Let Xt be an uncertain process, and let Ct be a canonical Liu process. For any
partition of closed interval [a, b] with a = t1 < t2 < · · · < tk+1 = b, the mesh is written as

∆ = max
1≤i≤k

|ti+1 − ti| ,

Then Liu integral of Xt with respect to Ct is defined as∫ b

a
XtdCt = lim

∆→0

k

∑
i=1

Xti

(
Cti+1 − Cti

)
, (A8)

provided that the limit almost surely exists and is finite. In this case, the uncertain process Xt is said to
be integrable.

Appendix A.3. Uncertain Differential Equation

Definition A10. (Chen and Ralescu [21]) Let Ct be a canonical Liu process, and let Zt be an uncertain process.
If there exist uncertain processes µt and σt such that

Zt = Z0 +
∫ t

0
µsds +

∫ t

0
σsdCs , (A9)

for any t ≥ 0, then Zt is called a Liu process with drift µt and diffusion σt.
Furthermore, Zt has an uncertain differential

dZt = µtdt + σtdCt , (A10)

Definition A11. (Yao and Chen [18]) Let α be a number with 0 < α < 1. An uncertain differential equation

dXt = f (t, Xt)dt + g(t, Xt)dCt , (A11)

is said to have an α-path Xα
t if it solves the corresponding ordinary differential equation

dXα
t = f (t, Xα

t )dt + |g(t, Xα
t )|Φ−1(α)dt , (A12)

where Φ−1(α) is the inverse standard normal uncertainty distribution; i.e.,

Φ−1(α) =

√
3

π
ln

α

1− α
, (A13)
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Theorem A2. (Yao and Chen [18]) Let Xα
t and Xα

t be the solution and the α-path of the uncertain
differential equation

dXt = f (t, Xt)dt + g(t, Xt)dCt , (A14)

respectively. Then
M{Xt ≤ Xα

t , ∀t} = α , (A15)

M{Xt > Xα
t , ∀t} = 1− α . (A16)
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