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Abstract: Real-time and accurate background modeling is an important researching topic in the
fields of remote monitoring and video surveillance. Meanwhile, effective foreground detection
is a preliminary requirement and decision-making basis for sustainable energy management,
especially in smart meters. The environment monitoring results provide a decision-making basis for
energy-saving strategies. For real-time moving object detection in video, this paper applies a parallel
computing technology to develop a feedback foreground–background segmentation method and
a parallel connected component labeling (PCCL) algorithm. In the background modeling method,
pixel-wise color histograms in graphics processing unit (GPU) memory is generated from sequential
images. If a pixel color in the current image does not locate around the peaks of its histogram, it is
segmented as a foreground pixel. From the foreground segmentation results, a PCCL algorithm is
proposed to cluster the foreground pixels into several groups in order to distinguish separate blobs.
Because the noisy spot and sparkle in the foreground segmentation results always contain a small
quantity of pixels, the small blobs are removed as noise in order to refine the segmentation results.
The proposed GPU-based image processing algorithms are implemented using the compute unified
device architecture (CUDA) toolkit. The testing results show a significant enhancement in both speed
and accuracy.

Keywords: feedback background modeling; connected component labeling; parallel computation;
video surveillance; sustainable energy management

1. Introduction

In the sustainable energy-saving strategies, smart meters provide an effective power reduction
support by controlling electricity with intelligent functions [1]. Figure 1 shows the architecture
of a sustainable energy management system consisting of three modules, which are monitoring,
ubiquitous controlling, and power management. The monitoring module aims to sense the
environmental information, including temperature, humidity, foreground objects, and other datasets.
These sensing datasets are converted into several condition variables for evaluating an environment
situation, which are then transmitted to smart meters via a low-cost and wireless sensor network based
on ZigBee communication protocol [2]. Based on the received condition variables, the ubiquitous
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controlling module achieves an auto-controlling approach for energy management using smart meters.
Meanwhile, the smart meters enable remote operation of switching and setting values through cloud
computing and controlling. In the power management module, the power socket of an appliance is
linked with a smart meter, whose controlling signals are able to control the connected appliance,
such as changing temperature of air condition, turning on or turning off lights, heating water,
and other activities.

In such a sustainable energy management system, the real-time foreground objects detection
in the monitoring module is an important task for smart controlling [3]. For example, in a garage,
when a moving vehicle appears, the nearby lightings need to be turned on; if no foreground object
exists, the lightings should be turned off so as to save electricity. To provide an effective environment
monitoring approach, this paper aims to study a real-time and accurate foreground object detection
algorithm for sustainable energy management. Meanwhile, fast and accurate foreground segmentation
for video surveillance is a challenging task in image processing and computer vision [4]. This approach
is also necessary for many multimedia applications, such as virtual reality, human-machine interaction,
and mixed reality [5].
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Precise background subtraction is an important step for accurate foreground segmentation.
Traditionally, a background model is initialized from the sequential images captured by stationary
cameras [6]. The foreground pixels are subtracted with a pixel-wise difference detection method
between the current image and the generated background model. To improve the segmentation
accuracy, the adaptive background modeling methods are widely researched for situations where
illumination is gradually changing, such as the codebook model [7]. Because the image scanning
process causes huge computation, the traditional background model, such as codebook model,
is initialized in the training phase, but not updated with the segmentation process simultaneously.

Although simple spatiotemporal background modeling strategies enable foreground detection
without prior knowledgebase, noise and hole regions always exist in the segmentation results [8].
To enhance the foreground segmentation accuracy, some advanced technologies of background
modeling algorithms are studied, such as adaptive background learning, Gaussian mixture model
(GMM), self-organizing map, etc. [9]. However, it is difficult to segment foreground moving objects
without noise in unconstrained outdoor environments in rainy, cloudy, foggy, and windy situations.
Due to these weather issues, illumination variance of an air or object particle causes a short-term
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noisy spot. Using the traditional algorithms, it is hard to determine whether the noisy spot belongs to
background or foreground models.

The noisy spot is a blob of a small quantity of pixels in the segmented binary foreground result.
Based on this definition, it is an effective solution to count pixels in each blob and remove the
small blobs as noise. The connectivity-based clustering methods are widely researched to group
the foreground pixels into several coherent blobs in spatial domain [10]. By labeling blobs with
distinguished labels, we produce distinct objects for further processing steps such as objects tracking
and analysis [11].

In the rough foreground segmentation process, the computation complexity of pixel-wise
difference detection is so easy that foreground pixels can be subtracted fast using CPU programming.
However, in the refinement process, the iterative scanning processes of the connected component
detection, labeling and noise removal cause huge computation consumption. It is difficult to utilize the
traditional CPU computation method for real-time connected component labeling (CCL). To further
improve the processing speed, this paper proposes to utilize a graphics processing unit (GPU)
programming method instead of CPU to speed up the feedback background modeling, foreground
segmentation, and CCL algorithms.

Using GPU programming, we create a thread for each grid in order to analyze its local dataset in
parallel [12]. In pixel-wise foreground segmentation algorithms, the image processing in each pixel is
independent from others so that the traditional CPU-based algorithm is easy to be implemented [13].
For each pixel, we create a color histogram to record its color-changing information, which combines
into a background model. If a pixel color in the current image does not locate around the peaks
of its histogram, it is segmented as a foreground pixel. Meanwhile, the current image updates the
background model synchronously.

In CCL algorithms, the image processing of a pixel is affected by its neighbor pixels [14]. When we
apply parallel computation to process such dependent situations, a thread event on the neighbor
grids keeps on being processed no matter that the processing results executed by the threads of the
neighboring pixels [15]. Because the GPU threads do not process at the same speed, the parallel
computing results are not certainly same for the dependent situations. For example, in CCL algorithm,
we need to label a clique with a minimum value among them, while all labels update based on their
neighboring labels simultaneously. If a thread of a neighbor pixel is faster than others, its label will be
updated earlier among its local clique so as to cause uncertain labeling results. If the pixel thread is
locked until its neighboring computations are finished, there is no difference between CPU and GPU
processing methods. For CCL acceleration, we develop a novel parallel connected component labeling
(PCCL) algorithm to speed up the image processing of the dependent situation. After the foreground
pixels are clustered into several blobs, the pixel count of each blob is computed. The noise blob is
assumed to have small quantity of pixels so as to be removed based on the PCCL results.

The main contributions of the proposed PCCL method consist of accurate foreground
segmentation and real-time component labeling. The GPU-based feedback background modeling
algorithm is able to update the background model of pixel-wise color histogram in real time. The PCCL
algorithm increases the labeling speed for component labeling in high-resolution videos. Our proposed
method is compatible with real-time remote monitoring, virtual-physical collaboration, sensor network,
and other multimedia applications.

The remainder of this paper is organized as follows. Section 2 provides an overview of related
work. Section 3 introduces the proposed feedback background modeling method and the PCCL
algorithm. Section 4 evaluates the performance of the proposed methods. Section 5 concludes
the paper.

2. Related Works

Currently, feedback background modeling algorithms are widely researched for detection of
moving objects. Cuevas et al. [16] presented a nonparametric background modeling strategy with
a particle filter for lightweight smart camera applications. In this strategy, the probability density
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functions based on Gaussian kernels were defined at each pixel to nonparametrically estimate whether
it belonged to the image background or moving foreground regions. Ramasamy et al. [17] and
Casares et al. [18] employed a temporal difference detection method to generate adaptive background
models in dynamic scenes for surveillance enhancement. By detecting the difference between the
consecutive frames, the foreground regions of interest were removed. The background model was
modeled by the segmented background image frames. Azmat at al. [19] proposed a low-cost adaptive
background modeling method by analyzing temporal scene events including observation frequency
and longevity. Using such pixel-wise threshold and frame difference methods, there were noise and
holes existing in the segmentation results of the complex scenes with cluttered objects.

Gallego et al. [20] proposed a foreground segmentation system with a tracking algorithm in
camera capture videos. In this system, pixel-wise difference detection between current image and
background model was implemented in the initialization phase. The background modeling method
modified the mean-shift algorithm with a feedback background model, which enhances the foreground
detection accuracy. Zamalieva et al. [21] introduced a background subtraction method in complicated
scenes captured at dynamic camera viewports. The background geometric structure was constructed
and the foreground pixels were detected from a series of one-direction conversion between the frames.
In these methods, the feedback background modeling phases causes huge computation consumption
for high-resolution video sequences.

Currently, the traditional data analysis algorithms are enhanced using GPU technologies [22],
which enable parallel computation of large-scale datasets. The compute unified device architecture
(CUDA) from Nvidia (Nvidia, Santa Clara, CA, USA) provides GPU programming interfaces, which is
widely studied for pixel-wise background modeling and foreground segmentation [23]. To extend the
typical CPU-based GMM background modeling method [24], Pham et al. [25] and Boghdady et al. [26]
utilized CUDA libraries to implement the background modeling process in parallel. They created
a pixel-wise probability distribution of intensity, which was updated by each allocated pixel thread
in parallel. To remove shadow effect under intensity changes, Fukui et al. [27] recorded illumination
intensity and RGB (red, green, blue) color information into a histogram table as an adaptive background
model. The intensity and color threshold of each pixel were generated from their distribution stored in
the corresponding histogram. The histogram buffer was allocated and updated in GPU memory so as
to record each pixel’s information in parallel. Although the background modeling and foreground
segmenting processes were able to be implemented synchronously using these methods, noise and
holes existed in the foreground segmentation results.

To realize real-time and accurate foreground–background segmentation, Griesser et al. [28]
applied a pixel-shaders GPU programming technology to accelerate the iterative image scanning
speed. The noise was removed and holes were filled in the rough segmentation results using
an iterative Markov random field model. Cheng et al. [29] proposed an online learning framework
for foreground segmentation to adapt for spatio and temporal changes of the background scene.
For that their proposed algorithms were compatible with parallel computation formalism, they utilized
a GPU programming to facilitate real-time foreground segmentation from dynamic scenes over time.
These GPU-based foreground segmentation methods achieved real-time approaches, but the noise still
existed in difficult scenarios such as foggy and maritime environments.

Connectivity-based clustering methods are studied for distinguishing and tracking objects so as to
segment foreground without noisy speckle. Wang et al. [30] applied an adaptive connected component
analysis method to remove the small spots of incorrect foreground pixels from the segmentation
results of visual background extractor (ViBe). Using a single-chip Field Programmable Gate Array
(FPGA) for the segmentation of moving objects in a video, Appiah et al. [31] developed a novel
feedback background updating method with a CCL algorithm. The moving foreground segmentation
and labeling processes were implemented in parallel on the FPGA hardware platform. Using
a morphological opening method, the noise was removed and the holes were filled. Jiang et al. [32]
developed connectivity-based segmentation in 2D/3D sensor networks for geometric environment
understanding. Flooding from the boundary nodes, the whole geometric cells were scanned to
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construct a Reeb graph. If the neighbor cells were not mutex, they were merged into one component.
The iterative scanning for counting the blobs pixel by pixel causes huge computational consumption.
To speed up the connectivity detection in binary images, He et al. [33] enhanced the conventional
two-scan CCL algorithm. On the first scan, all labels of a connected component were assigned with
the same temporary equivalent integer. On the second scan, the corresponding labels in a connected
component were assigned their unique representative labels. For visual surveillance of moving objects,
Hu et al. [34,35] proposed a fast 4-connected component labeling algorithm to reduce the influence of
a dynamic environment, such as wave ripples. In each scan process of this algorithm, the adjacent pixels
of two rows were merged into an isolated block, which was labeled with the minimum label value in
the block. After the foreground pixels were roughly subtracted by an illumination difference detection
method, the noise assumed as small isolated block was removed. These CPU-based component
labeling algorithms were able to deal with the low-resolution video images, but hard to scan large
foreground blobs in real time.

In contrast to these state-of-the-art sequential CCL methods, parallelism and multithreading
strategies accelerated the labeling speed in high-resolution videos. Typically, there were two
propagation methods implemented in the CCL kernel, including directional pass and multi-way
pass. Using CUDA, Kalentev et al. [36] and Hashmi et al. [37] implemented iterative row–column
scanning on 2D binary grids. After initializing all non-zero element labels with their corresponding
index, this algorithm propagated the lowest label value along the rows and the columns to label
all non-zero neighbors with this lowest value. Hawick et al. [38] imaplemented and analyzed the
performance of two-pass, one-pass, and multi-pass CCL algorithms for speeding up graph component
labeling. They allocated a thread for each pixel, which propagated its adjacent pixel list and labeled
them with the minimum label value of them. The propagation iterations were stopped and the
labeling process was finished until all labels were not changed. In the directional propagation labeling
algorithms, such as one-pass, two-pass, and row–column scanning, a GPU thread scanned a row and
a column at least twice. The first scanning was to search minimum label, and the second scanning was
to label all grids in the row and column with the minimum label. This scanning method was effective
for low-resolution images. In contrast to CPU thread, the processing speed of GPU thread was reduced
when the computation complexity became high. Thus, the row–column scanning algorithm of CCL
caused computational overload for high-resolution situations. From their experiments, the multi-pass
algorithms provided the best performance. In description of their multi-pass algorithms, each thread
searched and labeled the corresponding local and neighbor pixels synchronously. Figure 2 shows
an example of two iterations of their method. To keep synchronous reading and updating labels, a GPU
thread executed its function and held on until every thread finished searching the minimum label.
Also, a GPU thread only labeled the local pixel with the minimum label, instead of propagating the
minimum label to its neighbor pixels. Although this method kept the consistency of the CCL results,
a large number of iterations were required for large-scale datasets due to the low bandwidth of the
labeling process.
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Using the threads synchronization function, the parallel computation speed was reduced, because
the threads had to wait for all threads to finish. Meanwhile, the labeling process became slow without
propagating the minimum label to neighbor pixels. If the GPU threads processed the neighbor
propagation without synchronization, the data-dependent issue in Figure 3 would arise, because the
GPU threads executed with different speeds. Taking the first four pixels as an example, the labeling
process in thread 4 was slower than thread 2, so that the labeling result “1112” was covered by “1133”.
This asynchronous characteristic of GPU threads caused uncertain iteration times.
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The GPU-based CCL algorithms should address the data-dependent issues. Cabaret et al. [39]
benchmarked the existing GPU-based CCL algorithms and concluded they were all multi-pass
data-independent approaches, which were not suitable for GPU acceleration. Instead of GPU
programming technology, they utilized OpenMP to program a parallel version of CCL on multi-core
processors. However, such multithread architecture of CCL was still inefficient to deal with
data-dependent scanning process in parallel. To realize the neighbor propagation in parallel, this paper
presents a novel PCCL algorithm to increase the labeling speed for the data-dependent situations.

3. GPU-Accelerated Foreground Segmentation and Labeling

This section describes the GPU-accelerated foreground segmentation and labeling methods using
a GPU programming technology. We propose a feedback background modeling method for foreground
segmentation from video sequences. From foreground pixels, a PCCL algorithm is developed to cluster
and label them into several distinguish blobs.

3.1. The GPU-Accelerated Framework

In contrast to CPU-based image processing methods, a GPU-accelerated framework for
foreground CCL in video images is proposed as in Figure 4. The framework contains two modules,
including foreground segmentation and labeling. Using CUDA software development kits (SDKs),
we allocate (W × H − 1)/T + 1 blocks and T threads in each block in order to create W × H threads to
compute the proposed image processing algorithms on each pixel in parallel. Here, W and H are the
width and height of the video image separately.
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In the foreground segmentation module, we allocate the video image and the background model
buffers in GPU memory. In the background model, pixel-wise RGB histograms are created for recording
the color changing distribution. The background model keeps updating based on new registered video
images. Meanwhile, the foreground pixels are segmented, if their colors do not locate around the
peaks of their corresponding histograms.

In the CCL module, the labels of the segmented foreground pixels are initialized with their
corresponding indices. After a GPU thread searches the minimum label among a pixel and its
neighboring pixels, these pixels are assigned with the minimum label. This propagation process is
implemented iteractively until there is no changing in all labels. This way, the segmented foreground
pixels are clustered into several distinguished blobs.

Sustainability 2016, 8, 916  7 of 20 

In the foreground segmentation module, we allocate the video image and the background model 
buffers in GPU memory. In the background model, pixel-wise RGB histograms are created for 
recording the color changing distribution. The background model keeps updating based on new 
registered video images. Meanwhile, the foreground pixels are segmented, if their colors do not locate 
around the peaks of their corresponding histograms. 

In the CCL module, the labels of the segmented foreground pixels are initialized with their 
corresponding indices. After a GPU thread searches the minimum label among a pixel and its 
neighboring pixels, these pixels are assigned with the minimum label. This propagation process is 
implemented iteractively until there is no changing in all labels. This way, the segmented foreground 
pixels are clustered into several distinguished blobs. 

 
Figure 4. The GPU-accelerated framework for foreground segmentation and labeling. 

3.2. Foreground Segmentation by a Feedback Background Modeling Method 

This section proposes a feedback background model using GPU programming technology for 
foreground segmentation. As shown in Figure 5, this model implements the background modeling 
and segmentation processes synchronously. 

 
Figure 5. The dataflow of the feedback background modeling and foreground segmentation. 

As shown in Figure 6, in GPU memory, we allocate pixel-wise RGB color histograms and 
background colors of the histograms for each pixel. To record the color changing history of red, green, 
and blue channels, H × W × 3 histograms are updating with the new registered color at the 
corresponding pixels. Each histogram contains 256 integer buckets to record the color appearance 
counts. When a color (r, g, b) at a pixel (x, y) is registered to the background model, the corresponding 
histogram Mi at the bucket i is updated as follows: 

Figure 4. The GPU-accelerated framework for foreground segmentation and labeling.

3.2. Foreground Segmentation by a Feedback Background Modeling Method

This section proposes a feedback background model using GPU programming technology for
foreground segmentation. As shown in Figure 5, this model implements the background modeling
and segmentation processes synchronously.
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As shown in Figure 6, in GPU memory, we allocate pixel-wise RGB color histograms and
background colors of the histograms for each pixel. To record the color changing history of red,
green, and blue channels, H × W × 3 histograms are updating with the new registered color at the
corresponding pixels. Each histogram contains 256 integer buckets to record the color appearance
counts. When a color (r, g, b) at a pixel (x, y) is registered to the background model, the corresponding
histogram Mi at the bucket i is updated as follows:
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MWy+x+HWr = MWy+x+HWr + 1
MWy+x+HWg+257HW = MWy+x+HWg+257HW + 1
MWy+x+HWb+2×257HW = MWy+x+HWb+2×257HW + 1

(1)

A pixel is classified to background class by determining whether its color is repeatedly appearing.
During the training stage, the background colors are registered around the peaks in the pixel-wise
histograms. From the histograms, the background colors corresponding to the peaks are stored in
the 256th buffer blocks. During the testing stage, if a pixel color in a new registered image locates
around the peaks of its RGB histograms, it is determined as a background pixel. Otherwise, this pixel
is segmented as a foreground pixel. Using GPU programming, the background training and testing
stages are implemented in parallel so as to realize a synchronization approach.
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3.3. PCCL Algorithm

This section proposes a PCCL algorithm to cluster the segmented foreground pixels into several
separate blobs using GPU programming. To realize a parallel computation approach, a GPU thread is
created to process the labeling and propagation processes for each foreground pixel, as shown as the
red color regions in Figure 7a. A thread has an ID equal to its processed pixel index.

A label map L in Figure 7b is initialized from the foreground segmentation result. If a pixel i
is classified as a foreground pixel, the label at i is specified as L(i) = i; otherwise L(i) = null. In the
connectivity detection stage, each foreground pixel propagates to its adjacent foreground pixels which
are labeled with the minimum label value among them. In the typically CCL algorithm, a pixel (x, y)
propagates its right and bottom pixels, as shown in Figure 8a. In our proposed PCCL, we enlarge the
propagation range for accelerating the convergence of the iterative scanning. As shown in Figure 8b,c,
a neighboring clique for a pixel (x, y) is defined as the adjacent and local pixels to the pixel with
a distance of d (d ≥ 1).

We illustrate the propagation in Figure 7c with d = 1. In the CPU-based sequential computing
methods, the propagation process is implemented pixel by pixel. In contrast to them, we process
all foreground pixels individually in parallel by H × W threads. Because a foreground pixel and its
neighboring foreground pixels propagate to their neighboring cliques synchronously, the computation
of local and the neighboring labels are not certainly finished. Thus, the labeling result is not always the
same. When this parallel propagation process is executed iteratively until all label values no longer
change, the connected pixels are labeled with the lowest label value among them after several iteration
operations, as shown in Figure 7d.
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Figure 7. A processing example of the proposed parallel connected component labeling (PCCL)
algorithm. (a) The segmented foreground pixels; (b) the initialized label map; (c) the propagation
process from any foreground pixel to its neighboring clique; (d) the labeling result.
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3.4. Components Extraction

In object tracking applications, distinguished components need to be extracted respectively from
the labeling result. Also using GPU programming, we propose a parallel components extraction
method as shown in Figure 9.

A component label cl is defined as the value of its pixel labels, which is the minimum index among
them. By traversing all labels using H × W threads, a cl is selected and valued as any label equal to the
label index. Then, we extract the component pixels in the component cl, and label their labels as null.
This process is implemented iteratively until any component label does not change in the label map.

Besides objects tracking applications, this method provides a clue to remove noise from the
foreground segmentation. The noise is always formed as a blob containing a small quantity of pixels.
If the extracted pixel of a component is small, we determine that this component is noise and it is
removed from the segmentation results.
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4. Experiments and Analysis

In this section, we analyze the performance of the proposed GPU-accelerated foreground
segmentation and labeling method. The experiments were implemented on a 3.20 GHz Intel® Core™
(Intel, Santa Clara, CA, USA) Quad CPU computer with a GeForce GT 770 graphics card (Nvidia,
Santa Clara, CA, USA), 4 GB RAM. The GPU-based parallel computation was implemented using the
CUDA toolkit V5.5 (Nvidia, Santa Clara, CA, USA).
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4.1. Foreground Segmentation Performance Analysis

Figure 10 shows the experimental results of the proposed methods, which were executed on
several typical and challenging scenarios from a crowd dataset (PETS2009) [40], vehicle dataset
(AVSS2007, London, UK) [41], jug dataset (ICCV2003, Nice, France) [42], and WaveTree dataset
(Microsoft Research, Redmond, WA, USA) [43], from left to right. In these datasets, the camera
viewports were stationary. The crowd dataset contained a 768 × 576 AVI video for the evaluation of
moving pedestrian detection. The vehicle dataset had 720 × 576 video sequences for the evaluation
of vehicles segmentation, which contained parked vehicles. The jug dataset contained a set of
320 × 240 sequential images for evaluating the moving semitransparent jug segmentation from
maritime environments where wave ripples existed. The WaveTree was a low-resolution dataset
of 160 × 120 sequential images, which had a waving tree as a background object. The available
buffer size of the applied NVIDIA hardware was 5622 megabytes, which satisfied the GPU memory
requirement of the background modeling for our experiments.

After several frames of background model updating, the background images in Figure 10b were
generated from the color values located in the peaks of the color histograms. Then, we implemented
the proposed PCCL algorithm in the foreground pixels segmented using the generated background
model. The connected components were rendered with distinguished colors in the labeling results,
shown in Figure 10c. After the components containing small quantity of pixels were removed as noise,
the foreground segmentation results were refined and the foreground objects as large components
were extracted, shown in Figure 10d. Finally, the foreground component pixels were extracted in
Figure 10e by masking the binary map in Figure 10d to the original images.
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and GMM description in [24,44], we programmed the codebook and GMM using the OpenCV library 
(Itseez, San Francisco, CA, USA). 

Figures 11 and 12 illustrate the qualitative comparison results of these foreground segmentation 
methods on the 768 × 576 crowd dataset and 640 × 480 campus dataset, respectively. Figures 11a and 
12a have several sampling frames of the original videos. The foreground segmentation results using 
the codebook model are shown in Figures 11b and 12b, which contained the noise caused by 
illumination changes and small waving objects. Although the GMM model removed the noisy spot 
caused by varying illumination, the spattered noise of waving objects still existed in the segmentation 
results, as shown in Figures 11c and 12c. Using the PCCL algorithm, our proposed method removed 
both spot and spattered noise of a small quantity of pixels and provided accurate foreground 
detection results in Figures 11d and 12d. 
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Figure 10. The experimental results of proposed foreground segmentation method using the PCCL
algorithm. (a) The original video images; (b) background image generated from the histogram peaks
in the background model; (c) the labeling results; (d) the foreground component extraction without
noise; (e) the foreground pixel extraction results.

In order to analyze the performance of our proposed foreground segmentation and PCCL methods,
we conducted the same experiments using a self-adaptive codebook model proposed by Shah et al. [44]
and the typical GMM proposed by Stauffer and Grimson [24]. Following the codebook and GMM
description in [24,44], we programmed the codebook and GMM using the OpenCV library (Itseez,
San Francisco, CA, USA).

Figures 11 and 12 illustrate the qualitative comparison results of these foreground segmentation
methods on the 768 × 576 crowd dataset and 640 × 480 campus dataset, respectively. Figures 11a
and 12a have several sampling frames of the original videos. The foreground segmentation results
using the codebook model are shown in Figures 11b and 12b, which contained the noise caused by
illumination changes and small waving objects. Although the GMM model removed the noisy spot
caused by varying illumination, the spattered noise of waving objects still existed in the segmentation
results, as shown in Figures 11c and 12c. Using the PCCL algorithm, our proposed method removed
both spot and spattered noise of a small quantity of pixels and provided accurate foreground detection
results in Figures 11d and 12d.
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Figure 13 shows the speed performance of the foreground segmentation and labeling methods
compared with the self-adaptive codebook model, the GMM, and the GPU GMM proposed by
Pham et al. [25]. We implemented the training and testing stages synchronously. The average
processing speeds of the foreground segmentation in the 640 × 480 resolution dataset were
39.3867 frames per second (fps), 6.8981 fps, 29.1489 fps, and 56.3287 fps by using the codebook model,
the GMM, the GPU GMM, and the proposed feedback model with the PCCL, respectively. For the
768 × 576 resolution dataset, the processing speed reduced to 15.8867 fps, 4.6507 fps, 20.6014 fps,
and 34.1488 fps. The results reflect that when the video resolution became high, the foreground
segmentation using codebook and GMM models were not able to implement in real time. The GPU
thread is fit for computing simple programs in parallel, but becomes slow when processing complex
algorithms. The Gaussian probability density function computation was so complex that the GPU
computation speed of GMM was not fast enough for real-time computation in high-resolution videos.
Although the processing speed of our method was reduced in the high-resolution situation, it was
more than 30 fps and satisfied the requirement of real-time monitoring.
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Figure 13. The foreground segmentation speed performances of the proposed feedback model with the
PCCL, compared with the codebook, the GMM, and GPU GMM. (a) The dataset of 640 × 480 resolution;
(b) the dataset of 768 × 576 resolution.
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4.2. PCCL Performance Analysis

The existing CPU-based directional pass and multi-way pass CCL methods utilized a single thread
to propagate the minimum label to the local and neighboring dataset pixel by pixel. Their principles
were similar such as descriptions by He et al. [33] and Hu et al. [34]. The different performances of
iteration and processing speeds were caused by the different label array range and testing different
resolution. If the label array range was enlarged, the minimum label of the large range was quickly
searched propagated to the large range by an execution. However, the processing speed became slower
due to the more computation consumption required in the larger labeling range.

To compare the performances of the PCCL and the typical CCL methods, we programmed the
CPU-based CCL proposed by Hu et al. [34] and GPU-based multi-pass CCL methods proposed by
Hawick et al. [38], which were implemented in the 768 × 576 resolution dataset. In these methods,
the label array of a labeling execution was selected based on the propagating neighboring clique
definition in Figure 8b. Figure 14 shows the relation between processing speeds and iteration times of
these methods.

Because the CPU thread scanned the video images pixel by pixel during each iteration, many
labeling iterations were required so that the labeling speed was slow when the foreground pixels
occupied large regions in high-resolution images. As shown in Figure 14a, the speed of the CPU-based
CCL decreased faster when more propagating iterations were executed. The average labeling speed
performance of the CPU-based method was 41.31 fps with 14.40 iterations. Approximately, if more
than 29 iterations were executed, the labeling speed would be reduced to below 20 fps, which does not
satisfy the real-time requirement.

Different from CPU programming, the GPU-based labeling methods processed all pixels in parallel
so that the labeling speeds did not decrease a lot even for the iteration increment. The GPU-based
multi-pass CCL method could be implemented in real time for low-resolution images. However,
this method required a large number of iterations for the propagation for high-resolution images,
because a GPU thread only updated the center pixel in a clique with the minimum label. Thus, labeling
convergence became slow due to the ineffective propagation process. As shown in Figure 14b,
121.98 iterations were executed using the GPU CCL in our experiment, and the labeling speed was
reduced to 27.57 fps on average. In our CCL implementation, the local and neighboring labels
were updated with the minimum label, instead of only one local label updated by the GPU CCL.
Although the ranges of the label array in the GPU CCL and the CPU CCL were same, in the GPU CCL,
the propagation bandwidth was smaller so that more iterations were required.

Also, in our PCCL implementation, a GPU thread labeled its corresponding local and neighbor
pixels with the minimum label among its clique. In the PCCL and GPU CCL, the label array ranges
were same. We updated five labels by a GPU thread, more than only one label updated by the GPU
CCL, so that the labeling convergence was accelerated. This way, the iteration times were reduced
and the labeling speed increased. As shown in Figure 14c, 64.32 iterations were executed using the
PCCL, and the labeling speed was 71.35 fps on average. Although our proposed PCCL executed more
interactions than the CPU CCL, the parallel computing mechanism accelerated the labeling speed.
Thus, the PCCL was able to provide the best performance for high-resolution images.
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4.3. Sustainable Energy Management Application

Figure 15 illustrates a video surveillance application for a sustainable energy management system
using the proposed GPU-accelerated foreground segmentation and labeling algorithms. In this project,
a smart meter developed by Beijing Innolinks Technology Co. Ltd. (Beijing, China) [45], was utilized
for ubiquitous controlling of the appliances, including air conditioning, water heater, and light.
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In the monitoring module, the environment information was recorded by multiple sensors and
reported to the smart meter via the ZigBee communication. In our application, the ambient temperature
was sensed by the thermometer mounted at the smart meter, and the foreground objects were detected
by our proposed method. Based on these sensed datasets, the smart meter controlled the appliances for
electricity saving by changing operation parameters or switching power supply. Meanwhile, the smart
meter enabled the remote operation by smart phones through Cloud services for ubiquitous controlling.

In this project, our contribution was to develop a real-time foreground objects detection method
for providing the smart meter with a decision-making basis. When the number of people in a workplace
decreased, the smart meter turned up the temperature of the air condition. When a vehicle moved
in a dark garage, the lightings around the car were turned on. When a person came into a room,
the appliances connected with the smart meters were turned on. Using such smart energy management,
the appliances were able to save around 20%–50% energy.

5. Conclusions

Recently, video surveillance systems, such as traffic analysis, indoor and outdoor security, people
detection and tracking, and remote controlling, have been widely studied in intelligent monitoring
as an important issue of future sustainable computing. This paper developed real-time foreground
detection and labeling methods to segment the foreground pixels in video sequences. In the foreground
detection process, we created a background model of pixel-wise color histograms in GPU memory
to record color changes of all pixels. The background model was updating with the new registered
frames, while the foreground pixels were detected if the pixels’ color did not locate around the peaks of
the corresponding histograms. To refine the segmentation results, we developed a PCCL algorithm to
cluster the rough segmented foreground pixels into several distinguish connected blobs. A GPU thread
labeled a foreground pixel and its neighboring foreground pixels with the minimum label among
them. This propagation process was implemented iteratively until all label values were not changed.
The noise blobs containing a small quantity of pixels were removed for increasing the foreground
segmentation accuracy. The experimental results confirmed that the proposed method was able to
deal with data-dependent situations in parallel and achieved real-time approach. The real-time and
accurate foreground objects detection enhanced the auto-controlling efficiency of the smart meter for
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realizing sustainable energy management. Using our proposed method, the connected components
were clustered, but it was hard to distinguish two objects connecting with each other. In future, we will
study an object tracking method for distinguishing the objects in the crossing situation.
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