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Abstract: China has overtaken the United States as the world’s largest producer of carbon dioxide,
with industrial carbon emissions (ICE) accounting for approximately 65% of the country’s total
emissions. Understanding the ICE decoupling patterns and factors influencing the decoupling
status is a prerequisite for balancing economic growth and carbon emissions. This paper provides
an overview of ICE based on decoupling elasticity and the Tapio decoupling model. Furthermore,
the study identifies the factors contributing to ICE changes in China, using the Kaya identity and
Log Mean Divisia Index (LMDI) techniques. Based on the effects and contributions of ICE, we close
with a number of recommendations. The results revealed a significant upward trend of ICE during
the study period 1994 to 2013, with a total amount of 11,147 million tons. Analyzing the decoupling
relationship indicates that “weak decoupling” and “expansive decoupling” were the main states
during the study period. The decomposition analysis showed that per capita wealth associated with
industrial outputs and energy intensity are the main driving force of ICE, while energy intensity
of industrial output and energy structure are major determinants for ICE reduction. The largest
contributing cumulative effect to ICE is per capita wealth, at 1.23 in 2013. This factor is followed by
energy intensity, with a contributing cumulative effect of −0.32. The cumulative effects of energy
structure and population are relatively small, at 0.01 and 0.08, respectively.

Keywords: industrial carbon emissions (ICE); decomposition analysis; decoupling analysis;
LMDI (Log Mean Divisia Index)

1. Introduction

A continuous growth in energy consumption has increased atmospheric carbon greenhouse
gas emissions [1,2]. As a result, carbon currently contributes approximately 63% of the gaseous
radiative force contributing to climate change. Atmospheric carbon had increased to 390.5 ppm by
2011, according to the IPCC reports [3–5], thus exceeding pre-industrial levels by approximately
40% [6]. China has surpassed the United States as the world’s biggest carbon emitter. Industrial carbon
emissions (ICE) accounted for approximately 65% of total emissions [7–9]. The increased ICE from
China has received significant attention in light of global warming, and there is a global consensus
about the importance of reducing greenhouse gas emissions. Reducing ICE has become increasingly
important for the Chinese policymakers, partly because China committed itself to lower the carbon
intensity of GDP by 40% to 45% below 2005 levels by 2020. Based on the Copenhagen Climate Change
Conference in 2009 [10–14], China has realized the importance of reducing carbon emissions [15–18].
China also should pay significant attention to make emission reductions compatible with economic
growth, especially for industry.

Past studies used decomposition methodologies to quantitatively identify factors on changes
carbon emission, at country-, regional-, and global-level. These factors can in turn be applied in energy
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policymaking. For example, Shahbaz [19] and Leitão [20,21] discovered a relationship between the
economy and carbon emissions from the perspective of globalization. Sun [22], Ma [23], Liao [24],
Q. Wang [25], Paul [26], M. Shahbaz [27–30], and Lise [31] used a decomposition method to quantify
the influencing factors of carbon emissions in China, India, Malaysia, Indonesia, Portugal, Turkey,
and Brazil, respectively. Magazzino [18,32–35] used a time series approach to examine the relationship
between GDP, energy consumption and carbon emissions, and energy use in the Gulf Cooperation
Council countries, EMU countries, Israel, and ASEAN-6 countries.

Wang and Yang [36] used the Beijing–Tianjin–Hebei area as example to divide the literature
about the relationship between ICE and economic growth into three assessment categories: energy
efficiency, environment, and economic development. Using the DEA model, some studies measured
environmental and energy performance in China [37–40] and conducted a comparative analysis of
China’s regional energy and emission performance [41]. Chung et al. [42] used the LMDI technique to
evaluate the respective contributions of changes in residential energy use in Hong Kong. Leitão [43]
used panel-data analysis to analyze energy consumption and foreign direct investment of Portugal.
In general, researchers studying China have found that the decline in energy intensity has been the
main factor associated with emissions deceleration [23,44–46]. Fan [47] uncovered that the change in
primary energy-related carbon intensity and the material sectors’ final energy-related carbon intensity
mainly contributed to the decline in energy intensity.

In addition, other studies have compared energy-related carbon emissions between sectors, mostly
concentrating on the rural energy and transport sectors. Wang [48] studied carbon emission from
China’s transport sector. Scholl [49] examined the five influencing factors on carbon emissions from
passenger transport in nine OECD countries. Chipper [50] qualified the three key influencing factors
on changes in energy use and carbon emissions from freight transport in 10 industrialized countries.
Lakshmanan and Ha [51] reported that increased personal travel, population, and GDP contributed to
changes in carbon emission from transport sector in the U.S. from 1970 to 1991

As mentioned above, previous studies usually focused two issues: (1) investigated the decoupling
index of ICE and economic activities; and (2) assessed the status of decoupling. Few studies have
researched the inner mechanisms of the changes of each factor. Furthermore, no research has been
done on the decoupling and decomposition analysis of China’s ICE using the most recent data. As the
country with the most carbon emissions, China allows an effective case study for a decoupling, combine
with decomposition technique. This paper is aimed to clarify the relationship between carbon emission
and economic output in China’s industrial sector, and then to examine these influencing factors of
decoupling status. To achieve this, we developed a Tapio model based on extended Kaya identity to
analysis decoupling status, and developed decoupling index based on LMDI techniques to study the
contribution of different factors influencing industrial carbon emission in China from 1994–2013.

2. Data and Methodology

2.1. Data Sources

Data for the period of 1994 to 2013 were collected from issues of the China Statistical
Yearbook [52–55]. The latest data are updated in the CSY-2015; industry has increased rapidly since
1994 and policy leaders have begun to pay greater attention to both energy efficiency and environmental
pressure caused by ICE. China has begun to vigorously develop clean energies, such as wind power,
photovoltaic, nuclear power, and shale gas [56–61] to reduce emissions. Despite this, however, 98% of
industrial energy is coal consumption, which has constantly generated carbon emissions.

The National Bureau of Statistics of the People’s Republic of China publishes the CSY yearly.
It is the only official agency to publish statistical data; the data are comprehensive and highly
reliability. In preparation for the decomposition analysis, data were specifically collected about
energy consumption by industrial sector, which mainly includes coal consumption, coke consumption,
crude oil consumption, gasoline consumption, kerosene consumption, diesel oil consumption, fuel oil
consumption, and natural gas consumption. Industrial output and population data were also collected.
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2.2. Logarithmic Mean Divisia Index (LMDI)

There are dozens of decomposition methods that enable analysts to identify the determinants
of emissions changes over intervals of time. In general, studies have found that the LMDI is
the most appropriate method to decompose energy consumption and emission changes [62–65].
Recently, the Logarithmic Mean Divisia Index (LMDI) approach to energy decomposition has emerged
as a preferred decoupling model [66]. LMDI is a calculation process proven to be a complete
decomposition method, without zero-value problems [67]. In this study, the decomposition technique
was combined with a decoupling analysis to analyze the relationship between industrial growth and
ICE. This allowed for the identification of factors that contribute to changes in China. The LMDI can be
expressed as an extended Kaya identity, which was first proposed by Yoichi Kaya [68]. The extended
Kaya identity is as follows:

Ct = ∑t
i C = ∑i

Cit
Eit
× Eit

Et
× Et

IOVt
× IOVt

Pt
× Pt

= ∑t
irit × nit × et × at × Pt.

(1)

In this expression, Ct represents the carbon emissions in the t year, the subscript i represents
energy type; the superscript t represents year. The Ct

i is the carbon emissions of the ith energy in the t
year; Et

i is the consumption of the ith energy in the t year; Et stands for total energy consumption in
the t year; IOVt denotes the industrial output values. Because the study’s target period was 1994 to
2013, a more recent price index was considered more appropriate. As such, we used industrial output
data adjusted to 1994 prices. Total energy consumption data were then converted into standard coal
consumption. Pt represents the population in the t year. The rit =

Cit
Eit

denotes the carbon coefficient of

ith energy, the nit =
Eit
Et

illustrates the energy structure. The et =
Et

IOVt
represents energy intensity, and

the at =
IOVt

Pt
is the per capita wealth, reflecting the industrial scale.

According to the LMDI method, the change of carbon consumption between a base year 0 and
a target year t, denoted by ∆C, is 0, because the carbon emission coefficients are basically unchanged
and there is no systematic monitoring of ICE in China. Thus, ∆C can be decomposed into the following
determinant factors:

∆C = ∆Cn + ∆Ce + ∆Ca + ∆Cp (2)

where ∆C refers to the total changes in carbon emissions, which can be further decomposed into
the following indictors: ∆Cn (the effect of energy structure), ∆Ce (the effect of energy intensity), ∆Ca

(the effect of per capita wealth), ∆Cp (the population effect). If we measure the effects of determinant
factors each year, we can generate figures for eight energy types. We can use the following formulae:

∆Cn =
8

∑
i=1

L
(

Ct−1
i , Ct

i

)
ln
[

ni (t)
ni (t− 1)

]
(3)
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8
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(
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i
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]
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To measure the effect of each factor’s contribution [11], we define them as follows:

Gn =
∆Cn

∆C
(8)

Ge =
∆Ce

∆C
(9)

Ga =
∆Ca

∆C
(10)

Gp =
∆Cp

∆C
(11)

where Gn, Ge, Ga and Gp indicate the effect of the contribution of energy structure, energy intensity,
per capita wealth effect, and population, respectively.

2.3. Decoupling Elasticity Model

The decoupling model proposed by the Tapio model has been developed based on the OECD
decoupling model, which has been widely used to analyze the relationship between economic growth
and ICE [69–72]. The Tapio decoupling model does not require a base year, which is more efficient
and appropriate than the OECD model [73], as it mitigates the problem of choosing a base period.
To probe the decoupling status in a convenient and intuitive way, a novel decoupling index is needed.
In this article, based on the additive decomposition results of energy-related CO2 emission changes,
the decoupling factor ε can be measured via the ratio defined by Tapio [74] as follows:

ε =
%C

%GDP
=

∆C/C
∆GDP/GDP

=

(
∆Cn + ∆Ce + ∆Ca + ∆Cp

)
/C

∆GDP/GDP
(12)

In this expression, ε is the decoupling factor, %C is the percent change in carbon emissions,
and %GDP is the percent change of GDP. Carbon is the ICE for the current year, ∆carbon is the
variation of ICE at the current time compared with the base period, GDP is the gross domestic
product of the current year, and ∆GDP is the variation of gross domestic product at the current time
compared with the base period. The results yielded eight logical possibilities, shown in Figure 1 [74].
These possibilities include weak decoupling, expansive decoupling, expansive negative decoupling,
strong negative decoupling, weak negative decoupling, recessive coupling, recessive decoupling,
and strong decoupling. These results are often named the environmental Kuznets curve (EKC)
hypothesis [75,76].

According to the IPCC method of greenhouse gas emission inventories [68], carbon emissions can
be estimated via the following formula:

C = ∑iEi × ri∑iEi × SCi ×Qi × Ki. (13)

In this formula, C represents carbon emissions, Ei is the ith energy consumption, and ri (kgCO2/kg
or kgCO2/m3) indicates the total energy consumption and the total CO2 emission coefficient of ith
energy. SCi (tC/TJ) and Oi refer to the default value of carbon content and carbon oxidation rate; Ki
(kJ/kg or kJ/m3) indicates the average lower heating value (molecular weight of CO2 divided by the
molecular weight of carbon). Table 1 shows the default value of carbon content, carbon oxidation rate,
average lower heating value, and carbon coefficient for different kinds of energy, based on the GHG
Protocol Tool for Energy Consumption in China [77].



Sustainability 2016, 8, 1059 5 of 17
Sustainability 2016, 8, 1059 5 of 17 

 
Figure 1. Decoupling between carbon emissions from industry and economic growth. 

Table 1. The carbon coefficients of different kinds of energy. 

Energy 
Default Value of 
Carbon Content 

Carbon 
Oxidation Rate 

Average Lower 
Heating Value 

Carbon Coefficient 

tC/TJ % kJ/kg or kJ/m3 kgCO2/kg or kgCO2/m3

Raw Coal 26.37 98% 20,908 1.981 
Washed coal 25.41 98% 26,344 2.405 

Other washed coal 25.41 98% 10,454 0.955 
Coal products 33.6 98% 17,793 2.148 

#: briquette 33.6 90% 17,584 1.950 
coal water slurry 33.6 98% 19,854 2.397 
Pulverized coal 33.6 98% 20,933 2.527 

Coke 29.5 93% 28,435 2.860 
Natural Gas 15.3 99% 389,310 21.622 

Liquefied natural gas 15.3 100% 51,498 2.889 
Crude Oil 20.1 98% 41,816 3.020 
Gasoline 18.9 98% 43,070 2.925 
Kerosene 19.6 98% 43,070 3.033 
Diesel Oil 20.2 98% 42,652 3.096 
Fuel Oil 21.1 98% 41,816 3.170 

Liquefied petroleum gas 17.2 98% 50,179 3.101 
Refinery Gas 18.2 98% 46,055 3.012 

Other petroleum products 20.0 98% 35,168 2.527 

3. Cointegration Test 

Prior to the decoupling analysis, we conducted a comprehensive analysis of the stationary data 
and analyzed the long-run equilibrium relationship between total carbon dioxide emissions and the 
effect of each factor. This involved a cointegration test [78,79], where every independent variable was 
assessed in a one-to-one correspondence relationship with each of the effects listed above in the LMDI 
decomposition. CO2 emissions was used as the dependent variable. We also conducted an 
Augmented Dickey–Fuller (ADF) Unite root test to assure the stationary property, subsequent to the 
Johansen System Cointegration Test.  
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Table 1. The carbon coefficients of different kinds of energy.

Energy
Default Value of
Carbon Content

Carbon
Oxidation Rate

Average Lower
Heating Value Carbon Coefficient

tC/TJ % kJ/kg or kJ/m3 kgCO2/kg or kgCO2/m3

Raw Coal 26.37 98% 20,908 1.981
Washed coal 25.41 98% 26,344 2.405

Other washed coal 25.41 98% 10,454 0.955
Coal products 33.6 98% 17,793 2.148

#: briquette 33.6 90% 17,584 1.950
coal water slurry 33.6 98% 19,854 2.397
Pulverized coal 33.6 98% 20,933 2.527

Coke 29.5 93% 28,435 2.860
Natural Gas 15.3 99% 389,310 21.622

Liquefied natural gas 15.3 100% 51,498 2.889
Crude Oil 20.1 98% 41,816 3.020
Gasoline 18.9 98% 43,070 2.925
Kerosene 19.6 98% 43,070 3.033
Diesel Oil 20.2 98% 42,652 3.096
Fuel Oil 21.1 98% 41,816 3.170

Liquefied petroleum gas 17.2 98% 50,179 3.101
Refinery Gas 18.2 98% 46,055 3.012

Other petroleum products 20.0 98% 35,168 2.527

3. Cointegration Test

Prior to the decoupling analysis, we conducted a comprehensive analysis of the stationary data
and analyzed the long-run equilibrium relationship between total carbon dioxide emissions and the
effect of each factor. This involved a cointegration test [78,79], where every independent variable was
assessed in a one-to-one correspondence relationship with each of the effects listed above in the LMDI
decomposition. CO2 emissions was used as the dependent variable. We also conducted an Augmented
Dickey–Fuller (ADF) Unite root test to assure the stationary property, subsequent to the Johansen
System Cointegration Test.
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3.1. Augmented Dickey–Fuller Unite Root Test

We applied the ADF Unite root test to conduct a stationary analysis of all variable quantities before
the cointegration analysis. The variables (C, e, a, and p) were nondimensionalized before proceeding
with ADF testing. Because there are eight kinds of energy, there are eight variables ni (i = 1, . . . , 8);
these are percentages and not nondimensionalized. Following the calculation, we analyzed the ADF
test by comparing the calculated result and the hypothetical ADF value. If the critical value exceeded
the ADF test value, then the result was considered stationary; if not, the testing result was considered
nonstationary. Table 2 shows the ADF testing results; all the variables are stationary after logarithmic
function and first and second differencing, suggesting that all the variables are integrated.

Table 2. ADF Unite root test.

Item Test Value of ADF Critical Value Judging Conclusion

The logarithm

C 3.548228 −2.655194 Nonstationary
e −3.381739 −3.040391 ** Stationary
a −54.84574 −3.831511 *** Stationary
P 0.361199 −2.660551 Nonstationary
n1 −0.926663 −2.655194 Nonstationary
n2 −0.875207 −2.655194 Nonstationary
n3 −2.292157 −2.666593 Nonstationary
n4 −1.151329 −2.660551 Nonstationary
n5 −1.003078 −2.660551 Nonstationary
n6 −0.145338 −2.655194 Nonstationary
n7 −0.718707 −2.655194 Nonstationary
n8 1.657641 −2.655194 Nonstationary

First-order difference

C −0.328314 −2.666593 Nonstationary
P −2.734556 −2.660551 * Stationary
n1 −2.335950 −2.660551 Nonstationary
n2 −3.367909 −3.040391 ** Stationary
n3 −2.330250 −2.660551 Nonstationary
n4 −3.946359 −3.857386 *** Stationary
n5 −2.656369 −2.660551 Nonstationary
n6 −4.781514 −3.857386 *** Stationary
n7 −3.861933 −3.857386 *** Stationary
n8 −3.124053 −3.040391 ** Stationary

Second-order difference

C −4.264208 −3.886751 *** Stationary
n1 −4.958637 −3.886751 *** Stationary
n3 −5.720148 −3.886751 *** Stationary
n5 −5.429637 −3.886751 *** Stationary

*, **, and *** indicate the effect is significant at the 10%, 5%, and 1% level.

3.2. Johansen System Cointegration Test

Based on unit root tests, the integrated data for the variables can be further tested for cointegration
(Table 3). Table 3 shows the three cointegration relationships among the variables at the 1% level.
In summary, the calculated results demonstrate that at least three cointegrating relationships exist
between carbon dioxide emissions and energy intensity, per capita wealth, and population.
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Table 3. The results of cointegration testing.

Hypothesized No. of CE(s) Eigen Value Trace Statistic 0.05 Critical Value Prob. **

None * 0.957631 117.6483 47.85613 0.0000
At most 1 * 0.798904 60.74429 29.79707 0.0000
At most 2 * 0.745667 31.87281 15.49471 0.0001
At most 3 * 0.330752 7.228821 3.841466 0.0072

Trace test indicates at least three cointegrating equations at the 0.01 level; * denotes rejection of the hypothesis at
the 0.01 level; ** MacKinnon, Haug, and Michelis (1999) p-values.

3.3. Descriptive Statistics and Correlation Analysis

Descriptive statistics are used to describe the basic features of the data in a study. Descriptive
statistics usually include the measures of central tendency statistics, distributions of discrete variables
statistics, and the degree of dispersion statistics. We use a data file containing data of 12 variables
including C (total carbon emissions), P (the population), a (per capita wealth), e (energy intensity), and
ni (the percentage of consumption of the ith energy on the total energy consumption; there are eight
kinds of energy, i = 1, 2, 3, . . . , 8) to conduct the descriptive statistics using SPSS version 2.0. The data
are all metric data and time series data. The results of the descriptive statistics are presented below
(Table 4). In the results of descriptive statistics, we use the index mean to measure the central tendency
of variables, use the indexes Kurtosis and Skewness of variables to reflect the distributions of discrete
variables, and use the indexes Standard deviation, Variance, Minimum, and Maximum to reflect the
degree of dispersion.

Correlation analysis is useful for determining the direction and strength of a relationship between
two variables. In the study, we also use a data file containing data on 12 variables including C,
P (the population), a, e, and ni (i = 1, 2, 3, . . . , 8) to conduct the descriptive statistics using SPSS
version 2.0. The results of the correlation analysis are presented below (Table 5). The results of
correlation analysis between different variables are shown in Table 5.
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Table 4. Descriptive statistics on the variables.

Mean Standard Deviation Variance Kurtosis Skewness Minimum Maximum Confidence (95%)

C 563,331.074840 257,289.677671 66,197,978,236.160500 −0.785434 0.701214 300,319.042650 1,114,708.900140 120,415.275773
P 129,022.900000 4909.380483 24,102,016.726316 −0.951182 −0.357183 119,850.000000 136,072.000000 2297.660793
a 4749.559542 2662.863925 7,090,844.283580 −0.830278 0.673245 1621.293283 9971.630243 1246.258679
e 0.000381 0.000089 0.000000 0.832222 1.358377 0.000288 0.000591 0.000042

n1 0.653498 0.019937 0.000397 −0.212380 −0.776701 0.613648 0.682283 0.009331
n2 0.090363 0.013167 0.000173 −1.881357 0.245945 0.074478 0.109783 0.006163
n3 0.192158 0.020063 0.000403 −0.483370 0.716242 0.164170 0.231855 0.009390
n4 0.005366 0.002760 0.000008 −1.396561 0.382409 0.001825 0.010065 0.001292
n5 0.000472 0.000298 0.000000 −1.194223 0.470102 0.000096 0.000957 0.000140
n6 0.013423 0.003917 0.000015 −0.718475 −0.478773 0.005786 0.019091 0.001833
n7 0.023779 0.012010 0.000144 −1.675945 −0.129722 0.007278 0.041438 0.005621
n8 0.020943 0.005354 0.000029 0.119194 0.972847 0.014576 0.032483 0.002506

Table 5. Correlation analysis between different variables.

P a e n1 n2 n3 n4 n5 n6 n7 n8

CO2 0.904 ** 0.99 ** −0.666 ** 0.505 * 0.901 ** −0.464 * −0.876 ** −0.817 ** −0.914 ** −0.949 ** 0.941 **
P 0.935 ** −0.909 ** 0.142 0.858 ** −0.088 −0.968 ** −0.573 ** −0.716 ** −0.955 ** 0.890 **
a −0.743 ** 0.397 0.876 ** −0.355 −0.886 ** −0.745 ** −0.880 ** −0.951 ** 0.970 **
e 0.260 −0.628 ** −0.309 0.843 ** 0.194 0.410 0.773 ** −0.744 **

n1 0.465 * −0.982 ** −0.180 −0.838 ** −0.649 ** −0.380 0.280
n2 −0.469 ** −0.879 ** −0.808 ** −0.857 ** −0.935 ** 0.789 **
n3 0.129 0.810 ** 0.645 ** 0.328 −0.256
n4 0.622 ** 0.708 ** 0.935 ** −0.816 **
n5 0.869 ** 0.753 ** −0.629 **
n6 0.806 ** −0.844 **
n7 −0.870 **

** Significant correlation at the 0.01 level (two-tailed); * Significant correlation at the 0.05 level (two-tailed).
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4. Analysis Results and Discussion

4.1. An Overview of Industrial Carbon Emissions

According to Equation (2), we first calculated carbon emissions from different energy types;
we then calculated the industrial carbon emissions every year, shown in Table 6.

Table 6. The carbon emissions from different kinds of energy in the industrial sector in China.

Year
The Carbon Emissions from Different Kinds of Energy Total

Raw Coal Coke Crude Oil Gasoline Kerosene Diesel Oil Fuel Oil Natural Gas 10 Thousand Tons

1994 213,492 25,174 42,180 2193 87 3404 10,556 3233 300,319
1995 232,908 29,778 44,443 2376 136 3684 10,798 3338 327,461
1996 245,418 30,005 47,386 2620 131 4202 10,165 3399 343,324
1997 241,030 30,271 51,937 2115 141 5357 10,217 3653 344,721
1998 227,721 30,632 52,012 1982 189 4167 10,199 3708 330,609
1999 223,372 28,861 56,701 1891 238 4665 9661 3896 329,285
2000 221,337 28,830 63,577 1761 255 4943 9431 4368 334,502
2001 225,057 30,426 63,928 1808 261 5070 9874 4709 341,134
2002 246,031 34,257 67,520 1849 265 5363 9354 4920 369,558
2003 298,276 40,469 74,801 1807 266 5667 10,261 5791 437,337
2004 356,848 48,566 86,449 1484 185 6207 11,318 6349 517,406
2005 401,042 62,808 90,477 1351 174 6475 9589 7650 579,565
2006 446,793 78,160 96,886 1370 146 6073 9624 8951 648,004
2007 485,885 86,035 102,281 1680 137 5334 8350 11,020 700,723
2008 526,102 85,104 106,704 1714 149 7793 6465 11,494 745,526
2009 554,459 90,786 114,685 1963 97 7272 4823 12,495 786,581
2010 586,439 96,049 129,004 2017 122 6699 7536 14,860 842,726
2011 646,262 108,829 132,459 1769 104 5648 7165 18,161 920,396
2012 665,051 112,291 140,610 1700 97 5411 7106 20,471 952,736
2013 798,654 130,685 146,480 1531 83 5189 7675 24,413 1,114,709

In addition, we used the carbon emission coefficients of different energy types based on the
GHG Protocol Tool for Energy Consumption in China [77]. Figure 2 shows that the carbon emissions
intensity could be analyzed in three stages: 1994–1997, 1998–1999, and 2000–2013. The ICE from
industrial sectors experienced a significant upward trend during this period, reaching a total amount
of 11,147 million tons in 2013. The ICE continuously increased, with the exception of 1998 and
1999. From 1994 to 1997, the ICE continued to steadily grow, with a rapid increase after 2000.
The average annual growth rates of 1994–1997, 1998–1999, and 2000–2013 were 4.76%, −2.25%,
and 9.23%, respectively. Due to the rapid economic growth, the ICE increased to 11,147 million
tons by 2013, almost 3.7 times the 3003.19 million tons in 1994. In 1998–1999, the ICE decreased, falling
across both years. This decline was mainly due to the Asian financial crisis in 1997, which affected
China’s economy. The slow industrial growth rate led to stable, low ICE in China.
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4.2. Decoupling Analysis

To explore the relationship between carbon emissions and economic growth, we used Equation (1)
to calculate the decoupling elasticity using the IOV (Industrial Output Values) to replace economic
growth. Table 1 shows the results; Figure 3 shows trends during the study period, comparing the
environmental pressures posed by the industrial output values from 1995 to 2013. The specific values
and status judgments related to decoupling elasticity are based on Figure 2 and the calculation process
is shown in Table 1. Table 3 shows that the decoupling elasticity of the overall industrial sector can be
divided into four states: weak decoupling, strong decoupling, expansive decoupling, and expansive
negative decoupling. These coincide with Figure 3; for example, the values from 2003, 2004, and 2013
are higher in Figure 3. This indicates that the speed of ICE growth exceeded the speed of industrial
output growth.

As Figure 3 and Table 6 show, the decoupling elasticity increased from 0.65 to 2.24, indicating that
huge environmental pressure accompanied industrial growth. The trends associated with decoupling
elasticity are different. The years 2003–2004 and 2013 were the most notable, as these years demonstrate
a state of expansive negative decoupling. The decoupling elasticity values fluctuated between −0.05
and 1.6 except for 2013; the values reached their lowest points at −0.45999 and −0.0471 between
1998 and 1999. These reflect the best conditions and exert the least pressure on the environment with
a minimal elasticity value, while maintaining an upward trend after 1999. Based on the decoupling
analysis, the overall effect on industrial decoupling was still weak. Further, the decoupling relationship
indicates that “weak decoupling” and “expansive decoupling” were the main states during the
study period.
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4.3. Decomposition Analysis

As discussed above, the decoupling analysis reflects the levels of environmental burden caused
by the industrial sector. We use the decomposition technology proposed by the evaluation criterion to
assesses industrial progress and identify the driving forces behind the increasing ICE [80,81]. Using
LMDI, the ICE were decomposed into four effects (energy structure, energy intensity, per capita
wealth effect, and population) to investigate the decoupling path of industry in China. The effects and
cumulative effects indicate each factor’s weight and the degree to which emission reduction efforts
outweigh and define the contribution of industrial output. Tables 6 and 7 and Figure 4 present the
results of the analysis. Table 2 shows the effects of different factors of ICE year by year from 1995 to
2013. In addition, we calculated the cumulative effects of different factors of ICE and the contributions
of different factors, selecting 1984 as the base year. These are shown in Table 7 and Figure 4.
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Table 7. The values of decoupling elasticity.

Year ∆Carbon/Carbon ∆IOV/IOV ε Status

1995 0.0904 0.1400 0.6456 weak decoupling
1996 0.0484 0.1250 0.3875 weak decoupling
1997 0.0041 0.1130 0.0360 weak decoupling
1998 −0.0409 0.0890 −0.4600 strong decoupling
1999 −0.0040 0.0850 −0.0471 strong decoupling
2000 0.0158 0.0980 0.1617 weak decoupling
2001 0.0198 0.0870 0.2279 weak decoupling
2002 0.0833 0.1000 0.8332 expansive decoupling
2003 0.1834 0.1280 1.4329 expansive negative decoupling
2004 0.1831 0.1150 1.5920 expansive negative decoupling
2005 0.1201 0.1160 1.0357 expansive decoupling
2006 0.1181 0.1290 0.9154 expansive decoupling
2007 0.0814 0.1490 0.5460 weak decoupling
2008 0.0639 0.0990 0.6458 weak decoupling
2009 0.0551 0.0880 0.6258 weak decoupling
2010 0.0714 0.1260 0.5665 weak decoupling
2011 0.0922 0.1080 0.8534 expansive decoupling
2012 0.0351 0.0790 0.4448 weak decoupling
2013 0.1700 0.0760 2.2369 expansive negative decoupling

A positive value indicates a positive influence on ICE increases; a negative value indicates
a negative influence on ICE increases. As shown in Tables 6 and 7, different factors had different effects.
Among the four factors, per capita wealth and energy intensity are the major factors influencing carbon
emissions. Per capita wealth and population move in a consistent direction, and are always positive
driving forces. Energy structure and energy intensity are mostly negative forces. Energy structure and
population play a relatively unimportant role. To improve the accuracy of the results, we combined
multiplicative decomposition with the calculation of effect contributions. The effects of different factors
on ICE varied in China year by year are shown in Table 8.The results above suggest that both per capita
wealth and population play a role in increasing carbon dioxide emissions. In contrast, the energy
intensity varied from year to year, contributing to a decrease in carbon emissions. From the effect-level
perspective, population effect and intensity effect contribute more to ICE, whereas energy structure
and population are relatively weak. This is consistent with Figure 4. In terms of the contributions
of different effects, the largest cumulative effect contribution of ICE is per capita wealth, which was
1.23 in 2013. This is followed by energy intensity, with a cumulative effect contribution of −0.32.
The cumulative effect contribution of energy structure and population are relatively small, at 0.01 and
0.08, respectively.

The energy structure is the weakest factor contributing to ICE and fluctuates greatly from year
to year. The effects of energy structure are negative from 1996 to 2000, and in 2009, 2010, and 2012;
this indicates that the energy structure contributes to a decreased ICE. In other years, the effects caused
by energy structure are positive; despite some fluctuations, energy structure effects generally rise,
although they fluctuate. This caused the ICE to increase by 24.95 million tons in 2011 and 53.33 million
tons in 2013. This relates to the increasing consumption ratio of energy emissions from carbon sources
such as coal. Reducing the consumption of carbon-emitting energies such as coal is conducive to
curbing ICE. In terms of effect contributions, the energy structure is the lowest factor. This finding
confirms that China should further optimize its energy consumption structure to disincentive rapid
ICE growth.

Energy intensity plays a negative role with respect to ICE. In other words, energy intensity helped
decrease the ICE except in years 2003, 2004, and 2013. The cumulative effects caused by the energy
intensity of industrial output rose from 1995 to 2012, causing the ICE to decline by 3369.08 million tons.
When considering the effects caused by energy type, ICE increases in stage 1, decreases in stage 2,
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and then increases again. Despite the fluctuations, ICE rose overall, to an amount of 2299.52 million
tons. We can see that the effects of energy intensity on the ICE steadily increased from 1995 to 1998
and from 2004 to 2007, and declined during 1998–2004. The level fluctuated between 2007 and 2013.

Table 8. The effects of different factors on ICE varied in China year by year.

Year ∆Cn ∆Ce ∆Ca ∆Cp ∆C

1995 816.7404 −14,773.8911 37,790.6448 3308.9264 27,142.4205
1996 −111.6941 −23,519.3564 36,001.9293 3492.0859 15,862.9648
1997 −1538.3893 −33,887.4333 33,363.8140 3458.8655 1396.8570
1998 −492.9173 −42,401.3066 25,696.4680 3085.1055 −14,112.6504
1999 −1647.0613 −26,588.8563 24,213.0779 2699.1920 −1323.6478
2000 −1876.3224 −23,928.6216 28,506.9082 2514.9781 5216.9423
2001 113.2695 −21,661.2785 25,832.0187 2347.8982 6631.9079
2002 1024.6759 −6448.5367 31,556.6245 2290.9983 28,423.7621
2003 1885.9979 17,421.3899 46,054.8216 2417.6521 67,779.8615
2004 1405.2259 26,825.5620 49,041.3097 2796.1024 80,068.2000
2005 2894.1806 −844.2010 56,883.0005 3226.3559 62,159.3360
2006 2048.6282 −7,990.7085 71,145.3674 3235.8213 68,439.1083
2007 859.7207 −41,745.6533 90,122.1957 3482.4987 52,718.7618
2008 379.9409 −23,801.8453 64,553.6203 3671.8475 44,803.5634
2009 −46.8693 −23,487.1678 60,860.5609 3727.5735 41,054.0972
2010 −2770.9293 −37,706.3690 92,720.8006 3901.4788 56,144.9810
2011 2495.6581 −15,163.4641 86,117.7331 4220.3934 77,670.3205
2012 −1655.7798 −37,206.5149 66,564.2360 4638.2381 32,340.1793
2013 5333.7840 81,090.8460 70,472.6315 5075.6306 161,972.8921

Accumulated effects of different factors on ICE from industry varied in China are shown in
Table 9.The cumulative effects of per capita wealth and population are positive values and contribute
to the increase of ICE every year. Per capita wealth is rising by year, and the contribution of this factor
is also the largest. This indicates that the increase in per capita wealth is the most important factor
driving ICE increase. From 1995 to 2014, the effects of per capita wealth vary every year. In the first
phase, from 1995 to 1999, the effects of per capita wealth declined steadily, dropping to the lowest point
of 24,213 million tons in 1999. The Asian financial crisis in 1997 led to a decline in industrial output,
leading to the low contribution of ICE in China. In the second phase, from 2000 to 2011, the overall
trend was stable within a specific range of fluctuations. In the third phase, there was a rapid increase
during the investigated period, with the contribution reaching the highest point of 901.22 million
tons in 2007. In the fourth phase, from 2008 to 2013, the carbon emissions fluctuated, but rose overall,
maintaining a high contribution level. The average contribution is up to 735.48 million tons.

However, population did not significantly impact carbon dioxide emissions, even though it
did contribute to increased emissions. The cumulative contribution of the population effect is very
small, indicating that increased population affected ICE only weakly. The cumulative contribution
of population to ICE changed only slightly, with an initial increase of 33.08 million tons in 1995.
Throughout the study period, the carbon dioxide emissions decreased by 635.91 million tons in 2013.

Figure 4 shows the factors’ contributions and effects more intuitively. The trends are consistent
with Tables 6 and 7. The largest contributing cumulative effect on ICE is per capita wealth, which was
1.23 in 2013. This was followed by energy intensity, with a cumulative effect contribution of −0.32.
The cumulative effect contribution of energy structure and population are relatively small, at 0.01
and 0.08, respectively. Industrial output was the main driving force behind ICE. This factor and the
relatively high energy intensity caused the increase during this period.
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Table 9. Accumulated effects of different factors on ICE varied in China.

Year ∆Cn ∆Ce ∆Ca ∆Cp ∆C

1995 816.7404 −14,773.9 37,790.64 3308.926 27,142.42
1996 705.0464 −38,293.2 73,792.57 6801.012 43,005.39
1997 −833.343 −72,180.7 107,156.4 10,259.88 44,402.24
1998 −1326.26 −114,582 132,852.9 13,344.98 30,289.59
1999 −2973.32 −141,171 157,065.9 16,044.18 28,965.94
2000 −4849.64 −165,099 185,572.8 18,559.15 34,182.89
2001 −4736.37 −186,761 211,404.9 20,907.05 40,814.79
2002 −3711.7 −193,209 242,961.5 23,198.05 69,238.56
2003 −1825.7 −175,788 289,016.3 25,615.7 137,018.4
2004 −420.475 −148,962 338,057.6 28,411.8 217,086.6
2005 2473.706 −149,807 394,940.6 31,638.16 279,246
2006 4522.334 −157,797 466,086 34,873.98 347,685.1
2007 5382.055 −199,543 556,208.2 38,356.48 400,403.8
2008 5761.996 −223,345 620,761.8 42,028.33 445,207.4
2009 5715.126 −246,832 681,622.4 45,755.9 486,261.5
2010 2944.197 −284,538 774,343.2 49,657.38 542,406.5
2011 5439.855 −299,702 860,460.9 53,877.77 620,076.8
2012 3784.075 −336,908 927,025.1 58,516.01 652,417
2013 9117.859 −255,817 997,497.8 63,591.64 814,389.9
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5. Conclusions

This study analyzed data from 1994 to 2013 to provide an overview of industrial carbon emissions,
based on decoupling elasticity and using a Tapio decoupling model. The Kaya identity and LMDI
(Log Mean Divisia Index) methods were used to identify the factors contributing to changes in China’s
industrial carbon emissions. We also evaluated the accumulated effects and the contributions on
ICE. Conclusions were developed based on the decoupling analysis and decomposition analysis.
Proposals are made to curb the growth of carbon emissions and to balance economic development and
environmental protection.

ICE from industrial sectors revealed a significant upward trend during the study period, reaching
an amount of 11,147 million tons in 2013. The average annual growth rates for 1994–1997, 1998–1999,
and 2000–2013 were 4.76%, −2.25%, and 9.23%, respectively. The stable low level of ICE in China
can be mainly explained by the Asian financial crisis in 1997, which impacted China’s economy and
resulted in a slow industrial growth rate in China.

When considering the decoupling relationship, “weak decoupling” and “expansive decoupling”
were the main states during the studied period. The decoupling elasticity experienced an increasing
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trend from 0.65 to 2.24. This indicates that industrial growth was accompanied by significant pressure
on the environment. Based on the decoupling analysis, the overall effect on industrial decoupling was
still weak.

The per capita wealth of industrial output and energy intensity are major factors that influence
carbon emissions. The per capita wealth of industrial output and population move in a consistent
direction, and are always positive driving forces. By contrast, energy structure and energy intensity are
mostly negative forces. Energy structure and population play a relatively unimportant role. In terms
of contribution effects, the largest cumulative effect on ICE is per capita wealth, which was 1.23 in 2013.
This factor is followed by energy intensity, with a cumulative contribution of −0.32. The cumulative
contributions of energy structure and population are relatively small, at 0.01 and 0.08, respectively.

In conclusion, some critical approaches to reducing carbon emissions are to further expand
industrial scales and improve industrial output. In addition, vigorously promoting optimization,
upgrading traditionally high energy consuming enterprises, and cluster development may help inhibit
carbon emissions growth. The energy intensity factor has been diminishing, resulting in a relative
slow-down in the decrease of emissions. When compared with some developed countries, China’s
energy intensity with respect to industrial output remains high. New strategies and increased efforts
are needed to improve management and technological practices that will reduce energy intensity.
Other approaches, such as further improving thermal power technologies and clean electricity, may
also reduce carbon emission coefficients. The fastest way to significantly reduce carbon emissions in
the short term is to adjust energy structures and optimize a sustainable energy consumption structure.
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