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Abstract: All relevant effects on water must be assessed in water footprinting for identifying hotspots
and managing the impacts of products, processes, and services throughout the life cycle. Although
several studies have focused on physical water scarcity and degradation of water quality, the relevance
of land use in water footprinting has not been widely addressed. Here, we aimed to verify the extent
of land-use effect in the context of water footprinting. Intensity factors of land use regarding the loss
of freshwater availability are modeled by calculating water balance at grid scale in Japan. A water
footprint inventory and impacts related to land use are assessed by applying the developed intensity
factors and comparing them with those related to water consumption and degradation. Artificial land
use such as urban area results in the loss of many parts of available freshwater input by precipitation.
When considering water footprint inventory, the dominance of land use is less than that of water
consumption. However, the effect of land use is relevant to the assessment of water footprint impact
by differentiating stress on water resources. The exclusion of land use effect underestimates the water
footprint of goods produced in Japan by an average of around 37%.

Keywords: land use; water footprint; land cover; groundwater recharge; surface flow; water footprint
inventory; water footprint impact

1. Introduction

Freshwater is a necessary resource for sustaining healthy human life and ecosystems. Although
water covers major parts of the globe, available freshwater resources are only limited to ~0.8% of total
water resources [1]. Population growth increases water demand and leads to competition for freshwater
use. Imbalance of demand and supply of freshwater has various environmental impacts owing to
freshwater use. In addition, both availability and demand of freshwater resources vary by region,
which means that the stress of freshwater scarcity is not geographically uniform. Recent globalized
supply chains of products and services increases the complexity and difficulties of identifying and
managing critical environmental impacts of water use in those chains. In this context, a special type of
Life Cycle Assessment (LCA) that focuses on the potential environmental impacts relevant to water
use has attracted attention as water footprinting. Water footprinting is a technique to assess and
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understand water related impacts of products, processes, and organizations through their life cycle on
the basis of LCA. Therefore, water footprinting can be a tool for tracing the environmental impacts of
water use through life cycle of products, processes and organizations and expected to contribute to
improved water management in terms of environmental impacts.

According to the ISO standard, water footprinting targets all kinds of relevant causes affecting
water availability [2]. Physical scarcity caused by water withdrawal and consumption is not the only
issue relevant to water availability. Water degradation caused by physical and chemical changes of
components also directly influences that availability. Land use indirectly impacts the availability of
water resources (surface and ground water) by altering the water cycle. In principle, these relevant
issues should be considered in water footprinting [2].

Methods for addressing the impacts of water use have been developed in the context of water
footprinting [3]. Regarding impacts related to physical scarcity by direct water use, there are many
methods already developed. A consensual method is now being developed by consensus of various
experts and stakeholders toward aggregating current knowledge and providing a single assessment
model that can be used widely in practice [4]. For water degradation, several methods have been
advanced as tools for assessing the impacts of water pollution, mainly by chemical substances [5].
Recently, the target emissions in the assessment of water degradation have been expanded to thermal
emissions and suspended solids [6–8]. One method expresses the effects of pollution on water
degradation by a proxy that is the assumed volume of water needed to dilute emissions to the
concentration in the natural environment [9]. There are also many methods that address the impacts
of land use in the context of life cycle assessment and footprinting [10]. However, the relationship
between land use and freshwater availability have been modeled and discussed in only limited frontier
studies [11–14]. Ridoutt et al. (2010) and Núñez et al. (2013) focused on green water flow change caused
by land use for crop production and evaluated the significance of land use effects on green water
availability in comparison with natural reference vegetation [11,12]. Quinteiro et al. (2015) proposed
the methods to assess the impacts of land use on not only green water flow but also surface runoff
flow and revealed the relative significance of surface runoff flow change associated with land use than
green water flow through a case study [13]. Milà i Canals et al. (2010) also suggested the importance
of infiltration to groundwater and surface runoff change arose from artificial land use in the context
of freshwater use impacts in LCA [14]. While generic data on the effects of land use on the loss of
precipitation was indicated [14], specific characterization factors for assessing the impacts of land use
on the availability of groundwater and surface water were not developed due to site specific conditions
of water flow.

The aim of our study was to verify the significance of land-use effects on freshwater availability
in the context of water footprinting. Site-specific water balance calculation which corresponded to
artificial land use was necessary to achieve this goal. Thus, the effects of freshwater resource availability
in Japan related to land-cover change caused by artificial land use were analyzed by calculating water
balance at grid scale for the whole Japanese land area. Based on the results, the significance of land use
in the context of water footprinting was verified by calculating the water footprint of goods produced
in Japan and comparing with two types of water footprint (consumption and pollution of freshwater).

2. Methods of Analysis

2.1. Water Balance Model for Assessing Availability of Freshwater Resources

The primary source of freshwater for human society and ecosystems is precipitation. Some
portion of precipitation evaporates into the atmosphere and the rest infiltrates the ground or floods
the ground as surface flow. Artificial land use changes the condition of the ground surface cover and
varies the amount of infiltration to groundwater and surface flow. The availability of groundwater and
surface water is affected by artificial land use. Changes of groundwater recharge and surface water
flow by volume were analyzed by calculating water balance at grid scale (Figure 1).
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Figure 1. Schematic diagram of water balance model and calculation on grid. 
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Figure 1. Schematic diagram of water balance model and calculation on grid.

The analysis was done for all land area in Japan on a cell with resolution 1 kmˆ 1 km. The amount
of precipitation was from meteorological data [15]. Potential evapotranspiration was estimated via
the Thornthwaite equation [16], using meteorological data of average daily temperature and average
length of day [15]. The difference between precipitation and evapotranspiration infiltrates the ground
and recharges groundwater. However, if that difference exceeds the maximum infiltration capacity of
the ground, a surplus water volume floods the ground as surface flow. That capacity is determined
in the next Section 2.2 and depends on land use type. Volumes of groundwater recharge and surface
flow were calculated on each cell (1 km ˆ 1 km) for whole Japan (377,972 km2) based on daily
meteorological data (precipitation, temperature, and length of day) and aggregated as annual water
amounts (m3/year).

2.2. Classification of Land-Use Type

Six land-use types were defined (natural forest, uncultivated field, planted forest, paddy
field, arable land, urban area), corresponding to the land-use classification in Japanese digital map
information; areas of each land use at a cell refer to the database with that information [15]. Although
there is no robust information on the original state of “natural land”, natural forest and uncultivated
fields can be defined as such land, which is unaffected by any artificial land use. Therefore, it was
assumed that the proportion of natural forest and uncultivated fields was unchanged from the original
situation (Figure 2). The rest of the land-use types (planted forest, paddy field, arable land, urban
area) according to the classification of Japanese digital map information were defined as “artificial
land” in this study. Based on this premise, changes of groundwater recharge and surface flow were
calculated by comparison with the original situation. In the database of digital map information,
natural forest and planted forest are not distinguished. Prefectural data of average proportion of
planted forest area was used to differentiate the areas of natural and planted forest [17]. The infiltration
capacity and maximum evapotranspiration ratio for each land-use type were determined according to
representative data based on measurement [18], as shown in Table 1.
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Figure 2. Conceptual example of the assumption for the original state of natural land on each cell.

Table 1. Infiltration capacity and maximum evapotranspiration ratio for each land-use type.

Land Use Type Infiltration Capacity
(mm/h)

Maximum Evapotranspiration Ratio
(Dimensionless)

Natural forest 266 1.2
Uncultivated land 102 1

Planted forest 266 1.2

Paddy field 89.3 * (except June through August)
10.167 (June through August)

Arable land 89.3 1
Urban area 15.3 ** 0.9

* The same infiltration capacity as arable land was used, except for irrigation period; ** Uncovered area by
artificial objects (means grass land and bare land) was assumed to be 15% of urban area. For uncovered area,
the same infiltration capacity as uncultivated land was used.

2.3. Availability Assessment of Groundwater Recharge and Surface Flow

The amount of groundwater recharge is stored in the ground and remains for a long period,
because of a residence time around 100–10,000 years [19]. Surface flow on the ground discharges into
rivers and lakes/reservoirs. The average residence time in rivers is shorter (~2–6 months) than in lakes
(~50–100 years) [19]. Considering the above, the availability of groundwater recharge and surface
flow is obviously different. Even though the range of residence time in groundwater and lakes is
wide because of site specific conditions, the results of previous studies support that residence time
in groundwater and lakes is generally longer than one year in Japan [20–22]. Given the temporal
resolution of the present study (one year), freshwater in groundwater and surface flow discharge
into lakes has sufficiently long residence times for availability within one year. However, the average
residence time of surface flow discharge into rivers is ~4 months (2–6 months), which suggests an
availability of 1/3 for one year. The proportion of withdrawal from rivers to total withdrawal from
surface water has been calculated around 0.79, according to Japanese statistics [23–25]. The amount of
available water in surface flow and groundwater recharge is calculated by the following equations.

ASWi,j “ SFi,jˆ 0.79ˆ 1{3 ` SFi,jˆp1´ 0.79q (1)

AGWi,j “ GWRi,j (2)
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where i is the cell identifier; j is the land-use type identifier; ASWi,j is the amount of available water in
surface flow for land-use type j on cell i (m3/m2); SFi,j is the amount of surface flow for land-use type j
on cell i (m3/m2); AGWi,j is the amount of available water in groundwater recharge for land-use type j
on cell i (m3/m2); GWRi,j is the amount of groundwater recharge for land-use type j on cell i (m3/m2).

2.4. Intensity Factors of Availability Loss of Freshwater Caused by Land Use

Intensity factors of availability loss of freshwater caused by land use were calculated for each
type of land use. Differences of available water amount between the original situation and each land
use type were determined as those intensity factors. As mentioned in Section 2.2, all area in each cell
is occupied by natural forest and uncultivated land in the original situation, and the ratio of areas of
both land-use types was unchanged for the current situation. Thus, the amount of available water in
the original situation can be estimated by the following equations.

ASWi,org “ ASWi,NF ˆAi,NF { pAi,NF ` Ai,ULq ` ASWi,ULˆAi,UL { pAi,NF ` Ai,ULq (3)

AGWi,org “ AGWi,NF ˆAi,NF { pAi,NF ` Ai,ULq ` AGWi,ULˆAi,UL { pAi,NF ` Ai,ULq (4)

where ASWi,org is the amount of available water in surface flow in the original situation on cell i
(m3/m2); ASWi,NF is the amount of available water in surface flow for natural forest on cell i (m3/m2);
ASWi,UL is the amount of available water in surface flow for uncultivated land on cell i (m3/m2);
Ai,NF is the area of natural forest on cell i (m2); Ai,UL is the area of uncultivated land on cell i (m2);
AGWi,org is the amount of available water in groundwater recharge in the original situation on cell i
(m3/m2); AGWi,NF is the amount of available water in groundwater recharge for natural forest on cell
i (m3/m2); AGWi,UL is the amount of available water in groundwater recharge for uncultivated land
on cell i (m3/m2).

The lost quantity of freshwater and the intensity factors of availability loss of freshwater
corresponding to each type of land use are calculated by the following.

IFLU
SW

i,j “ ASWi,j´ASWi,org (5)

IFLU
GW

i,j “ AGWi,j´AGWi,org (6)

where IFLU
SW

i,j is the amount of lost surface water with land-use type j on cell i (m3/m2); IFLU
GW

i,j is
the amount of lost groundwater with land-use type j on cell i (m3/m2).

2.5. Calculation of Water Footprint of Goods Produced in Japan

The significance of land use in the context of water footprinting was verified by calculating and
comparing water footprints of goods produced in Japan, for three different causes. Those were water
consumption from withdrawal, water degradation by pollution, and land use. Information on the
volume of water consumption, amount of emissions to water, and land area occupied for production
through the supply chain of goods is necessary for comparison of water footprints. Input-output
analysis based databases of water consumption [26], water pollution [27], and land use [28] are used as
inventories for calculating water footprints related to water consumption, degradation, and land use.
These databases apply input-output analysis in the calculation of inventories of all goods produced
in Japan. The volume of water consumed related to goods production is accounted for as the water
footprint inventory from water consumption [26]. For water degradation, the volume of water for
diluting emissions to the level of concentration required by Japanese environmental regulation is
used as a proxy of water availability loss caused by pollution [25]. Thus, the water footprint of water
degradation is expressed in volumetric figures. The inventory of land area for various types of land
use [28] is converted to the volume of lost available water by applying the intensity factors for each
type of land use. Those factors are calculated on each cell by Equations (5) and (6), but the inventory of
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land area use is average data for the entire area of Japan. Therefore, the average intensity factor of all
cells is used for the conversion of land area to volume of lost available water attributed to land use.

Although both surface and groundwater are freshwater resources, their scarcity is not identical
because of different demands and available water. For impact assessment, these differences of scarcity
are considered by applying the ratio of demand to available water as a simple index for assessing the
stress of water scarcity. The amounts of withdrawal from surface and groundwater were determined
as 73 and 16 billion m3, whereas the amounts of available water in surface and ground water were
estimated at 420 and 27 billion m3, respectively [29]. Thus, water scarcity indices of 0.17 for surface
water and 0.70 for groundwater were used for assessing the water footprint by multiplying with
water volumes in each water footprint inventory. The inventory of water consumption was already
differentiated between surface and ground water [26]. The availability loss of freshwater from land
use was also different between surface and ground water. However, volumes of dilution water in
water degradation do not specify the water sources. Therefore, the ratios of withdrawals from surface
and ground water to the total withdrawal were used to differentiate the sources of dilution water in
water degradation between surface and ground water.

3. Results and Discussion

3.1. Intensity Factors of Availability Loss of Freshwater Attributed to Land Use

Table 2 shows average intensity factors of availability loss of freshwater by land use for all cells.
Negative values in the table mean that the availability of freshwater increases with land-use change.
Regarding paddy field and urban area, surplus flood flow on the ground owing to change of land cover
recharges surface water to some extent, whereas a decrease of infiltration causes the loss of available
groundwater. However, the net value of availability loss of water becomes positive. Both planted forest
and arable land show no loss of available water in surface flow, because of high infiltration capacity
(Table 1). The availability loss of freshwater in groundwater recharge shows a different tendency.
For planted forest, the amount of evapotranspiration is greater than that of natural land, because the
latter includes uncultivated land with a relatively small evapotranspiration ratio. This results in the
small amount of availability loss in groundwater with planted forest. For arable land, the amount of
evapotranspiration is lower than natural forest and the same as uncultivated land, which produced
the negative value of availability loss in groundwater.

Table 2. Intensity factors of availability loss of freshwater attributable to land use.

Land Use Type Intensity Factors of Availability Loss (m3/m2)

Surface Flow Groundwater Recharge

Planted forest 0 3.87 ˆ 10´4

Paddy field ´0.295 0.614
Arable land 0 ´6.08 ˆ 10´3

Urban area ´0.582 1.21

Urban area had the maximum net loss of freshwater availability caused by land use. The net
intensity factor value for urban area was 0.629 m3/m2, representing ~37% of annual precipitation in
Japan. This indicates that substantial freshwater input is lost by land-use change to urban area. The
strength of land-use effects on freshwater availability presented spatial differences. Intensity factors for
urban area aggregated into prefectural scale are depicted in Figure 3. Differences of intensity factors
reached ~3.8 times, because of the disparity of precipitation and evapotranspiration. In addition to the
regional differences of precipitation, evapotranspiration is determined by average daily temperature
and average length of day that are also region-specific climate parameters. Depending on the balance
of these three parameters, calculated intensity factors showed such differences. The lost amount of
freshwater ranged from 6% to 117% of annual precipitation.
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3.2. Water Footprint Inventory of Goods Produced in Japan

The total amount of water footprint inventory of all goods produced annually in Japan was
calculated for water consumption, water degradation, and land use (Figure 4). The water footprint
inventory of goods are aggregated in this figure into several sector categories that include similar
goods. The largest water footprint inventory was from water consumption and was estimated at
~163 billion m3. The inventory related to water degradation was about half that of consumption
(83 billion m3). Major categories with a large water footprint inventory showed some similarity in
both cases. The total water footprint inventory related to land use was relatively small (~16 billion m3);
around 10% of that was related to water consumption and 19% to water degradation. Unlike the
cases of water consumption and degradation, secondary and tertiary sectors had a substantial water
footprint inventory related to land use. Those two sectors generally occupy land as urban area with a
greater intensity factor of freshwater availability loss as compared with planted forest, paddy fields,
and arable land.

From a sectoral standpoint, the water footprint inventory for the three causes (water consumption,
water degradation, and land use) was summarized, and proportions of each inventory to the summed
inventory are shown in Figure 5. Although the absolute value of the inventory related to water
consumption was the largest, the importance of each cause in the context of the inventory was
sector-dependent. The categories “Agriculture, forestry, fishery” and “Infrastructure, electricity, gas,
water, waste” show a dominance of water consumption and degradation in the water footprint
inventory, because of heavy consumption by the agriculture and water supply sectors and strong
emissions from the agriculture and water treatment sectors [26,27]. The same tendency was found
for the categories “Food and beverage” and “Textile, pulp, paper, wooden production”, because
agricultural products are used in those sectors. However, ~18% of the water footprint inventory on
average (range 7%–51%) is attributed to land use in other sectors. This indicates that the effects of land
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Figure 5. Breakdown of total water footprint inventory for water consumption, water degradation,
and land use for each sector category.

3.3. Water Footprint Impact of Goods Produced in Japan

Based on the calculated water footprint inventory and determined water scarcity index for surface
water and groundwater (Section 2.5), the water footprint impact was assessed for the three causes
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in Figure 6. The relationship between water consumption and water degradation was not different
from the water footprint inventory. However, the index value of water footprint impact for land use
represents 37% of that for water consumption and 73% of that for water degradation. The importance
of land use in the context of water footprint increases by considering the scarcity of various water
resources. The dominance of land use in the water footprint impact was also stronger in many sectors
than that in the water footprint inventory (Figure 7). If the effect of land use on freshwater availability
was disregarded, there was an average underestimation of ~37% (range 0%–82%) in the water footprint
impact assessment of goods produced in Japan.
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3.4. Sensitivity Analysis

The loss of freshwater availability due to land use was calculated as the difference of available
freshwater amount in each land use type and natural land. For the definition of natural land, we
assumed no change of the proportion of natural forest and uncultivated fields from the original
situation as described in Section 2.2. Meanwhile, the balance of natural forest and uncultivated fields
in each cell showed distribution (Figure 8). While there is no robust evidence of the original situation,
this variance may affect the results of intensity factor calculation of freshwater availability loss caused
by land use. Sensitivity of intensity factor with the variance of the ratio of natural forest area to total
natural land (natural forest + uncultivated fields) was analyzed. According to the 90% confidential
interval, the threshold values of the ratio of natural forest area to total natural land were determined
as 0.113 for the lower 5% and 1 for the higher 5% and used as the edges for sensitivity analysis.
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Regarding paddy field and urban area, the coefficient of variation (CV) resulted in around
0.282–0.348 for both of surface flow and groundwater recharge (Table 3). This meant that intensity
factors of availability loss ranged within ˘28.2%–34.8% from average values in most cases (statistically
about 68.3%). On the other hand, CVs in the case of planted forest and arable land were calculated
for groundwater recharge as 1.21 (planted forest) and 1.02 (arable land), respectively (Table 3). This
indicated that variation of intensity factors of availability loss changed around ˘102%–121% from
average values in most cases of planted forest and arable land. As shown in Table 1, planted forest and
arable land have high infiltration capacity similarly to natural land (natural forest and uncultivated
land). Meanwhile, natural forest and planted forest have higher evapotranspiration ratios than
uncultivated land and arable land. This resulted in the net increase of groundwater recharge in arable
land use and the net decrease of that in planted forest even though arable land had relatively lower
infiltration capacity than natural and planted forest (Table 2). Therefore, the ratio of natural forest
affects the amount of groundwater recharge in natural land as a result of high evapotranspiration
capacity. This caused high sensitivity of intensity factors of availability loss in groundwater recharge,
especially in the case of planted forest and arable land that have relatively higher groundwater recharge
ability. Infiltration capacity of paddy field and urban area is rather lower than arable land (Table 1),
which results in relatively large intensity factor of availability loss in ground water recharge (Table 2).
Thus, the effect of natural forest ratio in natural land caused lower sensitivity in paddy field and
urban area.
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Table 3. Results of sensitivity analysis: average values calculated based on current situation and
coefficient of variation based on variant natural forest ratio in natural land.

Land Use Type

Intensity Factors of Availability Loss (m3/m2)

Surface Flow Groundwater Recharge

Average Coefficient of Variation Average Coefficient of Variation

Planted forest 0 ´ 3.87 ˆ 10´4 1.21
Paddy field ´0.295 0.347 0.614 0.348
Arable land 0 ´ ´6.08 ˆ 10´3 1.02
Urban area ´0.582 0.282 1.21 0.284

4. Conclusions

The nexus between water availability and land use has not been analyzed and discussed in detail
within prior studies of water footprinting. Water balance model calculation quantitatively reveals
that land cover change attributed to artificial land use may cause loss of freshwater availability in
surface and groundwater by affecting surface flow and groundwater recharge. The net loss of available
freshwater is ~37% of annual water input by precipitation, with wide variation due to local climate
conditions. Thus, the effect of artificial land use related to production activities must be considered in
the assessment of the water footprint of goods.

From the viewpoint of water footprint inventory, water consumption is responsible for a large
part of the total water footprint inventory related to water consumption, water degradation, and
land use. However, the water footprint effect of goods considering scarcity of various freshwater
sources emphasizes the significance of land use in the context of assessing all effects relevant to water.
Meanwhile, intensity factor of availability loss may change ˘28.2%–121% from average in most cases
(around 68.3%) depending on the definition of natural land as a base line.

Although spatial differences of land use effects were found by water balance analysis at grid scale,
the inventory of water consumption, pollution emission, and land area used in our study does not
specify location. Identification of spatial information on water consumption, water degradation, and
land use is not easy because enormous time and effort is required. However, improvement of spatial
resolution in the water footprint assessment would describe the importance of the nexus between
water and land use more precisely. The temporal resolution in the present study was one year. It is
obvious that freshwater demand is not constant with time but seasonal, especially for agricultural
users. The importance of temporal variation has been pointed out [30]. Spatial and temporal resolution
must be improved in future studies.
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