Supplementary Materials: Land Use Changes Induced County-Scale Carbon Consequences in Southeast China 1979–2020, Evidence from Fuyang, Zhejiang Province

Lefeng	Qiu,	Jinxia	Zhu,	Ke	Wang	and	Wei	Hu
--------	------	--------	------	----	------	-----	-----	----

Land Use Types	Vegetation Carbon Stock MgC ha ⁻¹	Description of How Values have Been Calculated	Location	References
Forest	12.06 - 50.18	The value was extracted from Table 3.6 which reported the storage of biomass carbon of plants in different kinds of forest.	Fuyang County	[1]
Forest	33.3	The value was extracted from Table 6 which estimated the forest tree carbon density for the early 1990s in China.	China	[2]
Forest	15.14 ± 2.29	The value was derived from Table 3 which calculated forest carbon storage and density in Xiamen in 2006.	Xiamen China	[3]
Orchard land	4.04 - 9.06	The value was extracted from Table 3.6 which reported the storage of biomass carbon of plants in tea plantation	Fuyang County	[1]
Orchard land	12.0	The value was derived from Table 1 which estimated the vegetation carbon density in different land use	China	[4]
Orchard land	48.93 ± 14.78	The value was derived from Table 3 which listed carbon density of biomass for tea plantations in eastern China	Eastern zone China	[5]
Vacant land	1.45	The value was derived from Table 1 which compared the vegetation carbon storage of vacant land from this study and other researches.	Huang-Huai-Hai Plain China	[6]
Vacant land	0.7 - 2.3	The value was derived from Table 1 which reviews natural vegetation carbon density of terrestrial ecosystem in China	China	[7]
Vacant land	0.00	The value was derived from Table 1 which estimated the vegetation carbon density in different land use types by CEVSA model	China	[4]
Cropland	1.29 - 2.19	The value was extracted from Table 3.6 which reported the storage of biomass carbon of plants in different kinds of cropland	Fuyang County	[1]
Cropland	3.82	The value was derived from Table 1 which compared the vegetation carbon storage of cropland from this study and other researches	Huang-Huai-Hai Plain China	[6]
Cropland	5.7	The value was derived from Table 1 which estimated the vegetation carbon density of different land use types by CEVSA model	China	[4]

Table S1. Details of Carbon Calculations for the C Stocks in Vegetation	
---	--

Land	Vegetation			
Use	Carbon Stock	Description of How Values have Been Calculated	Location	References
Types	MgC ha-1			
Forest 2		The value was derived from Table 4 which calculated surface soil	Fuyang	[0]
	25.25 - 50.6	organic carbon density of different land use types	County	[8]
F .	F0 0 + 11 7	The value was derived from Table 3 which lists carbon density of	Eastern	(=)
Forest	50.2 ± 11.7	0–20 cm soil for forests in Eastern China.	zone China	[5]
		The value was calculated by Equation: Doc = SOC \times r \times H \times 0.1 [9],		
		Doc (MgC ha-1) and SOC (g/kg) are the density and content of soil		
		organic carbon, respectively; H (20 cm) is the thickness ; r (g/cm ³)	F	
Forest	53.42 - 77.77	is the bulk density which was calculated by Equation: r =	Fuyang	[10]
		-0.220lnSOC + 1.780 [9]; SOC value (g/kg) was extracted from	County	
		Table 3 which calculated carbon contents of different soil layers in		
		forests.		
Orchard	22 (0	The value was derived from Table 4 which calculated surface soil	Fuyang	[0]
land	32.68	organic carbon density of different land use types	County	[8]
Orchard	rchard	The value was derived from Table 3 which lists carbon density of	Eastern zone China	[5]
land 46.2 ± 20.9	46.2 ± 20.9	0–20 cm soil for tea plantations in Eastern China.		
		The value was calculated by Equation: Doc = SOC \times r \times H \times 0.1 [9],		
		Doc (Mg C ha-1) and SOC (g/kg) are the density and content of soil		
Orchard		organic carbon, respectively; H (20 cm) is the thickness ; r (g/cm ³)	Hangzhou China	[11]
Orchard	33.58	is the bulk density which was calculated by Equation: r =		
land		-0.220lnSOC + 1.780 [9]; SOC value (g/kg) was extracted from		
		Figure 5.5 which calculated soil carbon contents (0–20 cm) in tea		
		plantations.		
		The value was calculated by Equation: $Doc = SOC \times r \times H \times 0.1$ [9],		
		Doc (Mg C ha ⁻¹) and SOC (g/kg) are the density and content of soil		
Vacant land		organic carbon, respectively; H (20 cm) is the thickness ; r (g/cm ³)	Jiangxi China	[12]
	4.75	is the bulk density which was calculated by Equation: r =		
		-0.220lnSOC + 1.780 [9]; SOC value (g/kg) was extracted from		
		Table 1 which calculated surface soil carbon contents (0-20 cm)		
		in vacant land.		
Vacant	146+25	The value was derived from Table 2 which calculated surface soil	Jiangxi	[12]
land	14.0 ± 2.5	organic carbon density of different land use types	China	[15]
		The value was calculated by Equation: $Doc = SOC \times r \times H \times 0.1$ [9],		
Vacant land		Doc (Mg C ha-1) and SOC (g/kg) are the density and content of soil		[14]
		organic carbon, respectively; H (20 cm) is the thickness ; r (g/cm ³)	Shanyi	
	27.78 ± 6.20	is the bulk density which was calculated by Equation: r =	China	
		-0.220lnSOC + 1.780 [9]; SOC value (g/kg) was extracted from	Cima	
		Table 3 which calculated surface soil carbon contents(0-20 cm)		
		in vacant land.		

Table S2. Details of Carbon Calculations for the C Stocks in Soil

References

- 1. Li, Z.C. The Effects of Land-Use Change on the Soil Organic Carbon. Ph.D. Thesis, Chinese Academy of Forestry, Beijing, China, 2006. (In Chinese)
- Pan, Y.D.; Luo, T.X.; Birdsey, R.; Hom, J.; Melillo, J. New estimates of carbon storage and sequestration in China's forests: Effects of age-class and method on inventory-based carbon estimation. *Clim. Chang.* 2004, 67, 211–236.
- 3. Ren, Y.; Wei, X.; Wei, X.; Pan, J.; Xie, P.; Song, X.; Peng, D.; Zhao, J. Relationship between vegetation carbon storage and urbanization: A case study of xiamen, China. *For. Ecol. Manag.* **2011**, *261*, 1214–1223.
- 4. Li, K.R.; Wang, S.Q.; Cai, M.K. Vegetation and soil carbon storage in China. *Sci. China Ser. D* 2003, 33, 72–80. (In Chinese)
- 5. Li, S.; Wu, X.; Xue, H.; Gu, B.; Cheng, H.; Zeng, J.; Peng, C.; Ge, Y.; Chang, J. Quantifying carbon storage for tea plantations in China. *Agric. Ecosyst. Environ.* **2011**, *141*, 390–398.
- 6. Jiang, Q.O.; Deng, X.Z.; Zhang, J.Y.; Liu, X.Q. Impacts of cultivated land conversion on the vegetation carbon storage in the huang-huai-hai plain. *Geogr. Res.* **2008**, *27*, 839–846. (In Chinese)
- 7. Wang, S.Q.; Zhou, C.H.; Luo, C.W. Studying carbon storage spatial distribution of terrestrial natural vegetation in China. *Prog. Geogr.* **1999**, *18*, 238–244. (In Chinese)

- 8. Li, Z.C.; Xu, D.Y.; Fu, M.Y.; Sun, X.Z.; Xi, J.R. Effects of land-use change on vertical distribution and storage of soil organic carbon in north subtropical areas. *For. Res.* **2007**, *20*, 744–749. (In Chinese)
- 9. Gao, J.; Pan, G.; Jiang, X.; Pan, J.; Zhuang, D. Land-use induced changes in topsoil organic carbon stock of paddy fields using modis and tm/etm analysis: A case study of wujiang county, China. *J. Environ. Sci.* **2008**, 20, 852–858.
- 10. Gao, Z.Q.; Fu, M.Y. Characteristics of seasonal changes in soil carbon and nitrogen nutrients of different phyllostachys pubescens stands. *J. Zhejiang For. Coll.* **2006**, *23*, 248–254. (In Chinese)
- 11. Li, S.Y. Carbon Balance of Tea Plantation Ecosystem in China. Ph.D. Thesis, Zhejiang University, Hangzhou, China, 2010. (In Chinese)
- 12. Peng, X.H.; Zhang, B.; Zhao, Q.G. Effect of soil organic carbon on aggregates stability after vegetative restoration on severely eroded red soil. *Acta Ecol. Sin.* **2003**, *23*, 2176–2183. (In Chinese)
- 13. Li, Z.P. Density of soil organic carbon pool and its variation in hilly red soil region. *Soils* **2004**, *36*, 292–297. (In Chinese)
- 14. Liu, S.Z.; Guo, S.L.; Wang, X.L.; Xue, B.M. Effect of vegetation on soil organic carbon of slope land in gully region of loess plateau. *J. Natl. Resour.* **2005**, *20*, 529–536. (In Chinese)

© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).