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Abstract: This study assessed the water use vulnerability to include the uncertainty of the 

weighting values of evaluation criteria and the annual variations of performance values using 

fuzzy TOPSIS coupled with the Shannon entropy method. This procedure was applied to  

12 major basins covering about 88% territory of South Korea. Hydrological components 

were simulated using Soil and Water Assessment Tool (SWAT) of which parameters were 

optimally calibrated using SWAT-CUP model. The 15 indicators including hydrological and 

anthropogenic factors were selected, based on three aspects of climate exposure, sensitivity 

and adaptive capacity. Their weighting values were objectively quantified using the Entropy 

method. All performance values of 12 basins obtained from statistic Korea and SWAT 

simulation were normalized with the consideration of the annual variations from 1991 to 

2014 using triangular fuzzy numbers (TFNs). Then, Fuzzy Technique for Order of 

Preference by Similarity to Ideal Solution (TOPSIS) technique was used to quantify the 

water use vulnerability and rank 12 basins as follows: A12 (Hyeongsan River) > A6 

(Seomjin River) > A5 (Youngsan River) > A8 (Mangyung River) > A2 (Ansung River) > 

A9 (Dongjin River) > A10 (Nakdong River) > A3 (Geum River) > A4 (Sapgyo River) > A11 

(Taehwa River) > A7 (Tamjin River) > A1 (Han River). This framework can be used to 

determine the spatial priority for sustainable water resources plan and applied to derive the 

climate change vulnerability on sustainable water resources. 
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1. Introduction 

Ensuring sufficient water supply is essential for the survival and sustenance of human and  

ecosystems [1]. However, the recent climate variation has severely affected the hydrological cycle. The 

IPCC report concluded that it is highly likely that “the negative impacts of climate change on freshwater 

systems outweigh its benefits” with runoff declining in most streams and river [2]. Therefore, insufficient 

water availability for essential ecosystem functions and services can lead to ecosystem degradation with 

consequent impacts on overall water scarcity and human well-being [3]. 

Many hydrological models had been used to quantify the water scarcity amount for a long time. 

Recently, the rainfall runoff models coupled with GIS program were often developed and applied to 

sustainable water resources vulnerability. Among them, the SWAT (Soil and Water Assessment  

Tool) [4] has been frequently used to simulate the spatially coarse daily runoff by combining the high 

resolution Digital Elevation Model (DEM) with landuse and soil maps. SWAT is a physically based 

hydrologic model to predict the impact of land management practices on water, sediment, and 

agricultural chemical yields. Moreover, SWAT-CUP (Calibration and Uncertainty Procedures) was 

developed by [5] to optimally calibrate SWAT’s parameters and reduce the uncertainty of parameter 

selection. This provides a decision-making framework that incorporates a semi-automated approach 

(SUFI-2) which uses an automated optimization procedure capable of performing sensitivity, calibration, 

validation and uncertainty analysis with the improved model runtime efficiency [6,7]. 

However, these models to analyze the water cycle also have high uncertainty when the water use 

vulnerability for the real area is identified although they can provide all confidential water cycle data for 

the ungauged area and the missed time periods. In addition, water use vulnerability is closely related to 

anthropogenic factors such as water demand and loss as well as natural water of a river. What was worse, 

all values of water demand, loss and availability have high variations in all considered years. 

Vulnerability framework to solve high uncertainty and variation problems has been used. Thus, 

vulnerability in association with decision-making problems has been the focus of few studies [8–13]. 

Therefore, this study used the water use vulnerability framework to include the uncertainty of the 

weighting values to evaluation criteria and of annual variations of performance values using fuzzy 

TOPSIS coupled with the entropy method. This procedure was applied to 12 major basins covering 88% 

territory of South Korea. The 15 indicators including hydrological and anthropogenic factors were 

selected, based on three aspects of climate exposure, sensitivity and adaptive capacity. Their weighting 

values were objectively quantified using the entropy method. All performance values of 12 basins were 

normalized with the consideration of the annual variations from 1991 to 2014 using triangular fuzzy 

numbers (TFNs). Then, Fuzzy Technique for Order of Preference by Similarity to Ideal Solution 

(TOPSIS) technique was used to quantify the water use vulnerability. In the end, this result is compared 

to the rankings of several traditional water use availability approaches. 
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2. Methodology 

2.1. Procedure 

In general, vulnerability is the degree to which a system is susceptible to, or unable to cope with the 

adverse effects of environmental changes [14]. This study used the IPCC-based vulnerability framework 

among various conceptual frameworks and selected evaluation indicators to assess vulnerability 

according to adaptive capacity, sensitivity and climate exposure. The vulnerability of any system at any 

scale reflects the exposure and sensitivity of that system to hazardous conditions and the ability, capacity, 

or resilience of the system to cope, adapt, or recover from the effects of those conditions. Adaptive 

capacity is the ability of a system to evolve to accommodate environmental hazards or policy changes, 

and to expand the range of variability with which it can cope. Sensitivity is the degree to which a system 

is modified or affected by perturbations. Climate exposure refers to a vast variety of climate-related 

stimuli such as a rise in sea level, temperature changes, precipitation changes, heat waves, heavy 

rainstorms, and climatic droughts [15]. 

Using the IPCC vulnerability framework, the procedure used in this study consists of four steps as 

shown in Figure 1. The first step is to determine the evaluation criteria along with three aspects of climate 

exposure, sensitivity and adaptive capacity. The second step is to derive the objective weighting values 

using the Shannon entropy method. The third step is to collect fuzzy performance values obtained from 

Water Management Information System (WAMIS) and results of SWAT simulation. The final step is to 

quantify the water use vulnerability using Fuzzy TOPSIS coupled with entropy weights and rank all 

study basins. 

 

Figure 1. Procedure for water use vulnerability assessment used in this study. 

2.2. Hydrological Model 

The ArcView Interface of SWAT 2000 (AVSWAT2000) is a river basin model developed by the U.S. 

Department of Agriculture (USDA) Agricultural Research Service of Backland Research Center in 

Texas. SWAT can predict the impact of land management practices on water, sediment yield and  

Evaluation criteria selection based on various water use information Step 1 

Literatures & Statistics  

⇒ WAMIS 

(http://www.wamis.go.kr) 

Step 2 Objective weighting values determination of using entropy method 

Step 3 Collection of fuzzy performance values 

Step 4 Water use vulnerability quantification using Fuzzy TOPSIS 

SWAT simulation 
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non-point source pollution in large, complex watersheds [16]. The present study focuses solely on the 

hydrological component of the model. 

The SWAT model uses many physical algorithms to estimate runoff. Using data such as precipitation, 

soil properties, topography, and land cover, the model calculates the runoff using the SCS curve number 

method [6]. According to land use map and soil data, SWAT can divide the watershed into Hydrologic 

Response Units (HRUs). The entire basin is divided into many smaller sub-basins by selecting points on 

the stream network that act as each individual outlet. The response of each HRU in terms of water, 

sediment, nutrient, and pesticide transformations is determined individually, and then aggregated at the 

sub-basin level. The discharges are routed to the associated reach and to the catchment outlet through 

the channel network [7]. The hydrological component of SWAT is based on the following water balance 

equation [17]: 

= + ( − − − − ) (1)

where  is the final soil water content (mm),  is the initial soil water content on day i (mm), t is 
the time (days),  is the amount of precipitation on day i (mm),  is the amount of surface runoff 

on day i (mm),  is the amount of evapotranspiration on day i (mm),  is the amount of water 

entering the vadose zone from the soil profile on day i (mm), and  is the amount of return flow on 

day i (mm). 

2.3. Calibration and Uncertainty Analysis 

The objectives of SWAT-CUP are: (1) to integrate various calibration/uncertainty analysis procedures 

for SWAT in one user interface; (2) to make the calibrating procedure easy to use for students and 

professional users; (3) to make the learning of the programs easier for the beginners; (4) to provide  

a faster way to do the time consuming calibration operations and standardize calibration steps; and  

(5) to add extra functionalities to calibration operations such as creating graphs of calibrated results, data 

comparison, etc. The program is written in C# programming platform. The SWAT-CUP to calibrate 

parameters has 5 programs, consisting of Sequential Uncertainty Fitting ver. 2 (SUFI-2), Generalized 

Likelihood Uncertainty Estimation (GLUE), Parameter Solution (ParaSol), Particle Swarm Optimization 

(PSO), and Markov Chain Monte Carlo (MCMC). 

2.4. Fuzzy TOPSIS Coupled with Entropy 

This study used fuzzy TOPSIS technique to quantify vulnerability in South Korea. This method was 

extended from TOPSIS to solve decision-making problems with uncertain data [18,19]. A fuzzy set has 

been introduced by [20] for handling uncertainty inherent in decision-making process. Fuzzy TOPSIS 

uses linguistic variables and fuzzy numbers, as opposed to crisp, to aggregate the subjective assessment 

of decision maker about various problems and validity of alternative candidate versus selection 

evaluation criteria to obtain the final scores-fuzzy validity indices. In this sense fuzzy set theory is 

certainly one of the theories which can be used to model the specific types of uncertainty under specific 

types of circumstances. It might then compete with other theories, but it might also be the most 

appropriate way to describe this phenomenon for well-specified situations [21]. A fuzzy set is a general 
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form of a crisp set. A TFN belongs to the closed interval 0 and 1, which 1 addresses full membership 

and 0 expresses non-membership. It is often convenient to work with TFNs because they are relatively 

simple to compute and are useful in representing and processing information in a fuzzy  
environment [22]. A TFN, , can be defined by a triplet ( , , ). The membership function  is 

defined as: 

( ) =
0, ≤−− , ≤ ≤−− , ≤ ≤0, otherwise

 (2)

The TOPSIS method was initiated for solving a multiple attribute decision making problem with no 

articulation of preference information [23]. The TOPSIS is based on the concept that the positive ideal 

solution (PIS) has the best level for all attributes considered, whereas the negative ideal solution (NIS) 

is the one with all the worst attribute values. A TOPSIS solution is defined as the alternative which is 

simultaneously farthest from the negative ideal solution and closest to the positive ideal solution. 

Step 1. To consider fuzziness, as opposed to crisp data, values in D  (the performance matrix) and W

are presented as follow [24,25]: = , = [ ] (3)

where 
ijX

~  represents the fuzzy rating of basins jA  with respect to criterion 
iC , and iW

~  is the fuzzy weight 

for criterion 
iC . 

In the absence of a reliable probability distribution function, an intuitively easy, effective, and 

commonly used approach to account for the uncertainty of the value of an unknown parameter is a TFN, = ( , , ). Therefore, the fuzzy performance matrix is formed by arraying columns of basins with 

rows of criteria, as shown below. 

= ⋯⋮ ⋱ ⋮⋯  (4)

Step 2. The performance matrix should be normalized to convert the values into a common 
dimensionless unit for the comparison. The normalized performance  can be obtained using the 

following transformation formula. When the evaluation indicators are benefit criteria, normalization of 

the decision matrix can be expressed as Equation (5). Otherwise, the evaluation indicators are cost 

criteria, the calculations for normalization are as Equation (6):  ̃ = ( , , ) (5)

̃ = ( , , ) (6)

where ijji cc max=+ , ijji aa min=− , and ijr~  represents the normalized performance of jA  with respect to 

attribute jC . 

The matrix form of ijr~  is given as follows:  
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]~[~
ijrr =  (7)

Step 3. This method provides objective weights with which to solve the uncertainty because it uses 

only the objective information. 

To apply the entropy method suggested [26], this study constructed an original indicator value matrix:  = ( ) ×  (8)

where m and n represent the basins and the evaluating indicators, respectively. Because the evaluating 

indicators have different units, a normalization method is required to integrate the evaluation index. A 

standardized normalization matrix can be obtained as follows:  = ∑  (9)

where = 1,2, ⋯ , , = 1,2, ⋯ , . 

The uncertainty and entropy are smaller if a relatively large amount of information is available and 

vice versa [27]. The entropy is defined as follows: = ∑  (9)

= − log  (10)

where =  and = ∑  when = 0, = log = 0. 

Finally, the entropy weight of the i-th evaluating indicator is determined as = 1 −∑ (1 − ) (11)

where 0 ≤ ≤ 1, ∑ = 1. 
Step 4. By multiplying the performance matrix, ̃ , by its associated weights, , the weighted 

performance matrix, , is obtained as:  = ̃⨂  (12)

Step 5. Calculating the distances of alternative  to the ideal and anti-ideal alternatives, the fuzzy 

ideal weight distance is defined as follows: = [ ( ( ̃ , ̃ )) ]  (13)= [ ( ( ̃ , ̃ )) ]  (14)

where = [ ̃ ] is the weighted performance value of alternative  with regard to criterion . 

Step 6. The ref. [28] proposed a multi-objective fuzzy pattern recognition model to provide the global 

evaluation for every alternative with respect to all criteria. According to the maximum principle of 

membership degree, one can select the desired alternative from n available alternatives. Then, the 

optimum membership degree of each alternative is defined as: 



Sustainability 2015, 7 12058 

 

 

∗ = ( )( ) + ( )  (15)

3. Descriptions of Study Regions 

This study was applied to 12 major basins covering 88% territory of South Korea. They are all 

connected to three oceans adjacent to Korea peninsula. The study area and the characteristics of 12 basins 

are presented in Figure 2 and Table 1. 12 basins can be divided into two groups according to their areas, 

A1, A3, A5, A6, and A10 are five large river basins and the other seven (A2, A4, A7, A8, A9, A11, and 

A12) are medium-sized. 

South Korea has a population of almost 51 million. About 68% of total population in South Korea 

resides in the study region. Especially, about 36% and 12% reside in the Han River basin (A1) and the 

Nakdong River basin (A10) while the smallest people reside in A7. There are six basins (A1, A2, A3, 

A5, A8, and A10) over one million residents. 

Each basin contains a number of sub-basins as shown in the final column of Table 1. They were 

determined based on their DEMs and tributaries. This division was used to the SWAT formulation. 

 

Figure 2. Description of the study area. 
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Table 1. Basin information of the study basins. 

Name of Basin Symbol 
Basin Area 

(km2) 

Population  

(Persons) 

Population Density 

(Persons/km2) 

Number of 

Sub-Basins 

Han River A1 34,428.10 18,366,766 533.5 17 

Ansung River A2 1658.66 1,834,349 1105.9 18 

Geum River A3 9914.02 3,060,877 308.7 14 

Sapgyo River A4 1668.39 638,312 382.6 16 

Youngsan River A5 3469.58 1,725,070 497.2 8 

Seomjin River A6 4914.32 319,614 65.0 9 

Tamjin River A7 505.52 42,161 83.4 4 

Mangyung River A8 1405.60 1,105,822 786.7 13 

Dongjin River A9 1117.53 240,685 215.4 8 

Nakdong River A10 23,690.32 6,417,380 270.9 22 

Taehwa River A11 660.86 725,310 1097.5 6 

Hyeongsan River A12 1139.99 382,497 335.5 9 

Total 87,572.89 34,858,843 398.1 144 

4. Hydrological Analysis 

4.1. SWAT Formulation 

The required data to build SWAT model consists of spatial and meteorological data. The spatial data 

includes DEM, and land use and soil maps. The meteorological data contains daily precipitation (mm), 

maximum and minimum temperatures (°C), solar radiation (MJ/m3day), average wind speed (m/s) and 

relative humidity (%) at the station of each basin, in addition to discharges at the gauges to calibrate and 

validate. A 30 m × 30 m DEM and 1:25,000 land use and soil maps were obtained from National 

Geographic Information Institute (NGII) of Ministry of Land, Infrastructure, and Transport (MOLIT) 

and Ministry of Environment (ME) and meteorological data from 1991 to 2014 was acquired from Korea 

Meteorological Administration (KMA). 

4.2. Parameter Optimization Using SWAT-CUP 

This study used the SUFI-2 algorithm in order to optimize parameters related to runoff. The 18 model 

parameters having their own physical and conceptual meanings were considered to the calibration as 

listed in Table 2. The SWAT hydrological parameters which are critical for the model performance are 

CN2, ALPHA_BF, GW_DELAY, GWQMN, GW_REVAP, REVAPMN, RCHRG_DP, ESCO, OV_N, 

SLSUBBSN, SOL_K, SOL_AWC, CH_N2, CH_K2, ALHPA_BNK, SMFMX, SMTMP and SFTMP. 

The ranges for parameter optimization used maximum and minimum values suggested by 

Absolute_SWAT_Values in SWAT-CUP model. 
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Table 1. Descriptions of selected parameters for SWAT calibration and validation [6]. 

Name of Parameter Definition 
Parameter Range 

Min Max 
r_CN2.mgt SCS runoff curve number f 0 98 

v_ALPHA_BF.gw Baseflow alpha factor (days) 0 1 
v_GW_DELAY.gw Groundwater delay (days) 0 500 

v_GWQMN.gw 
Threshold depth of water in the shallow aquifer  

required for return flow to occur (mm) 
0 5000 

v_GW_REVAP.gw Groundwater “revap” coefficient 0.02 0.2 

v_REVAPMN.gw 
Threshold depth of water in the shallow aquifer for  

“revap” to occur (mm) 
0 500 

v_RCHRG_DP.gw Deep aquifer percolation fraction 0 1 
v_ESCO.hru Soil evaporation compensation factor 0 1 
v_OV_N.hru Manning’s “n” value for overland flow 0.01 30 

v_SLSUBBSN.hru Average slope length (m) 10 150 
r_SOL_K.sol Saturated hydraulic conductivity (mm/hr) 0 2000 

r_SOL_AWC.sol Available water capacity of the soil layer 0 1 
v_CH_N2.rte Manning’s “n” value for the main channel −0.01 0.3 

v_CH_K2.rte 
Effective hydraulic conductivity in  

main channel alluvium (mm/hr) 
−0.01 500 

v_ALHPA_BNK.rte Baseflow alpha factor for bank storage 0 1 

v_SMFMX.bsn 
Maximum melt rate for snow during year  
(occurs on summer solstice) (mm/day-°C) 

0 20 

v_SMTMP.bsn Snow melt base temperature (°C) −20 20 
v_SFTMP.bsn Snowfall temperature (°C) −20 20 

SWAT-CUP model includes sensitivity analysis of selected parameters for the calibration. The 

different results of the sensitivity analysis indicated that ALPHA_BNK was the most sensitive parameter 

for runoff in Ansung River, Geum River, Sapgyo River, Youngsan River, Seomjin River, Tamjin River, 

Mangyung River and Hyeongsan River. SLSUBBSN has been found to be the most sensitive parameter 

in Nakdong River and Dongjin River. CN2 and OV_N were sensitive for runoff in Han River and 

Taehwa River. 

This study used two performance measures in order to evaluate how well data of optimized parameters 

fit: NSE and R2 which is explained as follows: 

The Nash-Sutcliffe coefficient (NSE) developed by [29] was used for the objective function and 

calculated as: NSE = 1 − ∑ , − ,∑ , −  (16)

where ,  and ,  are the observed and the simulated discharge, respectively, at time t, and  is 

the averaged observed discharge. 

The R2 is the coefficient of determination and can be calculated using the Equation (15). = [∑ , − )( , − ]∑ , − ∑ , −  (17)

where ,  and ,  are the observed and the simulated discharge, respectively, at time t, and  

and  are the averages. 
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The NSE and R2 can range from 0 to 1, where 0 indicates no correspondence and 1 correspond to a 

perfect match between the simulations and the observations. The ref. [30] suggested that model 

performance can be evaluated as “satisfactory” if NSE > 0.50. This study showed that the performance 

values are presented in Table 3. NSE values for the calibration and validation ranged from 0.51 to 0.92 

and R2 values ranged from 0.61 to 0.97. Discharge data is not enough to calibrate in the remaining basins. 

Therefore, based on sensitivity analysis, paramters of Ansung River and Sapgyo River used those of 

Tamjin River. Parameters of Youngsan River were applied in Geum River and Seomjin River. 

Table 2. SWAT model performances in calibration and validation. 

Watershed 
Calibration Validation 

Event Event 
NSE R2 NSE R2 

Han River 
1 2009/01/01~2009/12/31 2014/01/01~2014/12/31 

0.81 0.85 0.51 0.62 

Youngsan River 
2008/01/01~2010/12/31 2013/01/01~2014/12/31 
0.83 0.91 0.81 0.90 

Tamjin River 
2009/01~2011/12 2012/01~2012/12 

0.64 0.78 0.53 0.78 

Mangyung River 
2010/01~2010/12 2014/01~2014/12 

0.79 0.88 0.76 0.79 

Dongjin River 
2008/01~2008/12 2011/01~2011/12 

0.55 0.61 0.51 0.63 

Nakdong River 
2011/01/01~2011/12/31 2014/01/01~2014/12/31 
0.81 0.89 0.53 0.87 

Taehwa River 
2012/01~2012/12 2014/01~2014/12 

0.51 0.76 0.89 0.91 

Hyeongsan River 
2009/01~2009/12 2014/01~2014/12 

0.88 0.93 0.92 0.97 

4.3. Runoff Simulation 

Runoffs for 12 basins were simulated using the optimized parameters. This study derived total runoffs 

and runoff depths of 12 study basins as shown in Figure 3. The values were averaged from 1991 to 2014. 

The annual average runoffs of 12 basins could be arranged according to the amount as follows: A1 

(229.36 m3/s), A10 (210.32 m3/s), A3 (91.11 m3/s), A6 (56.19 m3/s), A5 (47.18 m3/s), A12 (13.17 m3/s), 

A2 (12.05 m3/s), A8 (11.90 m3/s), A4 (9.78 m3/s), A9 (5.94 m3/s), A7 (4.39 m3/s), and A11 (3.90 m3/s). 

In case of runoff, A1 was the maximum whereas A11 was the minimum among 12 basins. 

Additionally, annual runoff depths were calculated because total runoffs are highly influenced by 

basin area. The ranking was determined as follows: A6 (1188.32 mm), A7 (1131.14 mm), A11 (1084.85 mm), 

A10 (1040.58 mm), A2 (1030.48 mm), A5 (1015.35 mm), A3 (1004.41 mm), A8 (991.54 mm), A9 

(940.62 mm), A4 (930.43 mm), A12 (926.84 mm), and A1 (675.78 mm). A6 was the maximum due to 

large precipitation and high runoff ratios. For runoff depth, the amount order is totally different from 

that of total runoffs. 

To find the variations of total runoffs and runoff depth, the Box-plot was drawn using 24-year data 

as shown in Figure 4. Total runoffs of large basins such as A1 and A10 have high variations. Runoff 

depths of A1 showed the smallest minimum runoffs while A6 and A7 showed the highest mean. A1, A5, 

and A12 showed the smallest minimum while A2, A6, A10 and A11 showed the highest maximum. 
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(a) (b) 

Figure 3. Simulated total runoff and runoff depth of the study regions. (a) Runoff (m3/s);  

(b) Runoff depth (mm). 
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Figure 4. Box-Plots of total runoffs and runoff depths (1991-2014). (a) Runoff (cms);  

(b) Runoff depth (mm). 

5. Results 

5.1. Determination of Indicators and Derivation of Their Objective Weighting Values 

Water use vulnerability can be assessed in various ways including social, economic, and hydrological 

factors from 1991 to 2014. Therefore, it can be also approached by anthropogenic factors such as water 

demand as well as natural water availability of a river and water loss of a watershed. Three experts 
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consisting two civil servants and a professor selected 15 evaluation criteria to account for climate 

exposure, sensitivity and adaptive capacity as shown in Table 4. 

Table 4. Evaluation sub-indices and indicators for water use vulnerability and their TFNs of 

weighting values. 

Criteria 
Evaluation  

Sub-Index 

TFNs of Weighting Value 

Evaluation Indicator 

TFNs of Weighting VALUE

Lower 

Bound 

A model 

(Typical) 

Value 

Upper 

Bound

Lower 

Bound 

A Model 

(Typical) 

Value 

Upper 

Bound 

Adaptive  

capacity 
Social/Economic 0.055 0.088 0.316 

Water supply distribution ratio (%) 0.004 0.029 0.044 

Groundwater development density 

(Number of groundwater 

development/km2) 

0.197 0.257 0.388 

Number of civil servants related to 

sewage treatment (persons) 
0.145 0.173 0.230 

Reservoir capacity of dam (km3) 0.185 0.324 0.328 

Number of dams in basin  

(Number of dams/km2) 
0.153 0.269 0.272 

Sensitivity 
Water  

availability 
0.294 0.477 0.530 

Population density (people/km2) 0.088 0.097 0.117 

Household water consumption per 

watershed area (103 m3/s/km2) 
0.078 0.080 0.083 

Industrial water usage per 

watershed area (103 m3/s/km2) 
0.198 0.338 0.368 

Agriculture water usage  

per watershed area (103 m3/s/km2) 
0.031 0.032 0.043 

Water supply per capita 

(m3/day/people) 
0.002 0.003 0.003 

Climate 

exposure 

Hydrology  

(loss) 
0.084 0.108 0.150 

Evapotranspiration (mm) 0.754 0.764 0.794 

Percolation (mm) 0.206 0.236 0.246 

Hydrology  

(supply) 
0.240 0.327 0.330 

Runoff per area (m3/s/km2) 0.045 0.071 0.078 

Runoff per capita (m3/s/people) 0.915 0.922 0.941 

Water yield (mm) 0.007 0.007 0.014 

Water supply distribution ratio, groundwater development density, number of civil servants, reservoir 

capacity of dam and dam density affecting the positive impacts on adaptive capacity were selected and 

checked their data availability. In addition, population density, household water consumption, industrial 

and agriculture water usages per unit area and water supply capita were chosen to the evaluation criteria 

for sensitivity. Climate exposure criteria can be determined from the results of SWAT simulation such 

as evapotranspiration and percolation as water loss and runoff depth, runoff per capita and water yield 

as water supply. 
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The relative importance on each indicator can be diversely derived depending on decision makers. 

Therefore, Shannon’s entropy method was used to determine the objective weighing values. Then, this 

study derived the fuzzified-entropy weights as shown in Table 4. The lower bounds of entropy-based 

weights for water availability were considerably higher than the others. In the weights of model values 

and upper bounds, indicators for water availability had also higher weights than the others. The 

indicators, such as industrial water usage per area, evapotranspiration, and runoff per capita have the 

highest weights in all TFNs. Their indicators were the most influential to the each index. Especially, 

runoff per capita is the highest weights in all bounds. 

5.2. Fuzzification of Input Data 

Datasets of social/economic and water availability were obtained from WAMIS [31] operated by 

MLTMA and the hydrology data were acquired from SWAT simulation. Because all data of 12 basins 

have 24 annual values from 1991 to 2014, this study used TFNs to reduce the uncertainty on the  

annual variations. 

As stated section 2.4, the normalized performance matrix was constructed to convert the values into 

the dimensionless form for the calculation. This study used two normalization methods of “benefit-type” 

and “cost-type” according to the data characteristics. As shown Figure 5, the normalized decision matrix 

is fuzzified using TFNs. Figure 6 showed the influence of each sub-index was calculated. It presents the 

influential degrees for social/economic, water availability, water loss and water supply, respectively. As 

a result, water loss has less influential than the others. Especially, A6 and A11 and A12 were largely 

impacted in evaluation indicators belonging to water supply and availability indicators. Then the 

normalized fuzzy decision matrix was combined with the entropy weights using Equation (11). 
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Figure 5. Cont. 
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Figure 5. TFNs of performance values of 12 basins for four evaluation sub-indices.  

(a) Social/economic index; (b) Water availability index; (c) Hydrology (loss) index;  

(d) Hydrology (supply) index. 
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Figure 6. TFNs of performance values of 12 basins. 

5.3. Water Use Vulnerability Assessment of South Korea 

To apply the fuzzy TOPSIS method, fuzzy positive ideal solution (FPIS) and fuzzy negative ideal 

solution (FNIS) of all study basins were calculated as shown in Table 5. All relative closeness as shown 

in Table 6, were derived by combining FPIS and FNIS with all performance TFNs as presented in 

equation. (13). As a result, the ranking of water use vulnerability is as follows: A12 (Hyeongsan  

River) > A6 (Seomjin River) > A5 (Youngsan River) > A8 (Mangyung River) > A2 (Ansung River) > 

A9 (Dongjin River) > A10 (Nakdong River) > A3 (Geum River) > A4 (Sapgyo River) > A11 (Taehwa 

River) > A7 (Tamjin River) > A1 (Han River). They are summarized in a graphical form as shown in 

Figure 7. A12 was the most vulnerable and A6 and A5 were the next most vulnerable among 12 basins 

whereas A1 is the most anti-vulnerable (or stable). 
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Table 5. Values of FPIS and FNIS in this study. 

FPIS/FNIS Social/Economics Water Availability Hydrology (Loss) Hydrology (Supply) 

A* 0.0016 0.0553 0.0016 0.0004 
A− 0.3159 0.5305 0.1502 0.3298 

Table 6. Relative closeness and rankings of 12 basins. 

Symbol d+ d− C* Ranking 

A1 0.51 0.90 0.36 12 
A2 0.62 0.86 0.42 5 
A3 0.58 0.84 0.41 8 
A4 0.58 0.86 0.40 9 
A5 0.64 0.81 0.44 3 
A6 0.65 0.78 0.45 2 
A7 0.53 0.88 0.37 11 
A8 0.62 0.84 0.42 4 
A9 0.60 0.84 0.42 6 

A10 0.58 0.83 0.41 7 
A11 0.58 0.89 0.39 10 
A12 0.67 0.79 0.46 1 

 

Figure 7. Summary of water use vulnerability ranking. 

5.4. Comparative Analysis of Water Use Vulnerability 

This study compared the water use vulnerability ranking (V4) to those from total runoff (V1), runoff 

depth (V2) and runoff per capita (V3) as shown in Figure 8. As a result, four rankings are clearly 
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different. It is concluded that A1 is not vulnerable in total runoff while runoff depth and runoff per capita 

of A1 are very low. Also, A6 is not vulnerable in runoff depth and per capita whereas this is vulnerable 

in the water use vulnerability assessment. In other words, A1 and A7 show the opposite trend of high 

vulnerability. In terms of runoff, A4, A8 and A11 are relatively vulnerable than other basins. On the 

other hand, those three basins showed low vulnerability in water use vulnerability. Also, A6 and A5 

showed very high vulnerability but are anti-vulnerable in terms of V1, V2 and V3. 
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Figure 8. Comparison of water use vulnerability rankings. 

To find the quantitative associations between rankings, the Spearman rank correlation coefficients 

were calculated in this study as shown in Table 7. The value of R always lies between −1 and +1, with 

these two extremes indicating a perfect association between the parameters. Here, the plus sign indicates 

identical rankings and the minus sign indicates reverse rankings. R= −1 represents perfect disagreement 

between the ranks. When R is close to zero, there is no association between the rankings of the 

alternatives [32]. As described in the above, the correlations are very low. Therefore, it can be certainly 

stated that any single-indicator values cannot determine the water use vulnerability of large areas. 

Furthermore, it should be required to consider the annual variations using TFNs. It can reduce the 

uncertainty inherent in quantifying water use vulnerability. 

Table 7. Spearman ranking correlations among results of four methods. 

 Runoff Runoff Depth Runoff per Capita 
Vulnerability Using 

Fuzzy Topsis 

Runoff 1 −0.203 0.112 −0.147 
Runoff depth - 1 0.287 −0.035 

Runoff per capita - - 1 −0.098 
Vulnerability using 

fuzzy TOPSIS 
- - - 1   
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6. Conclusions 

This study used the objective framework to assess the water use vulnerability using fuzzy TOPSIS 

coupled with the Shannon entropy method. It was applied to the 12 major basins covering 88% area of 

South Korea. SWAT model was applied to simulate the hydrological components and SWAT-CUP was 

used to calibrate and validate SWAT’s parameters. In terms of climate exposure, sensitivity and adaptive 

capacity, 15 indicators for water use vulnerability were proposed by three experts and their relative 

importance are objectively determined using the entropy method. 

As a result, the ranking of water use vulnerability is derived as follows: A12 (Hyeongsan River) > 

A6 (Seomjin River) > A5 (Youngsan River) > A8 (Mangyung River) > A2 (Ansung River) > A9 

(Dongjin River) > A10 (Nakdong River) > A3 (Geum River) > A4 (Sapgyo River) > A11 (Taehwa 

River) > A7 (Tamjin River) > A1 (Han River). Also, it was compared to the three rankings obtained 

from total runoff, runoff depth, and runoff per capita. Then, the Spearman rank correlations among four 

results showed very low values between any rankings. Therefore, it can be certainly stated that any 

single-indicator values cannot decide the water use vulnerability of large areas. Furthermore, it should 

be required to consider the annual variations using TFNs. It can reduce the uncertainty inherent in 

quantifying water use vulnerability. 

In the future, this study will be utilized in the sustainable water resources management and also used 

to the climate change vulnerability assessment for the Korea peninsula. 
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