
Sustainability 2015, 7, 11098-11113; doi:10.3390/su70811098 
 

sustainability 
ISSN 2071-1050 

www.mdpi.com/journal/sustainability 

Article 

Seasonal and Diurnal Thermal Performance of a  
Subtropical Extensive Green Roof: The Impacts  
of Background Weather Parameters 

Lilliana L. H. Peng 1,* and C. Y. Jim 2  

1 Department of Urban and Rural Planning, College of Architecture, Nanjing Tech University;  

No. 30 Puzhu Road, Nanjing 210094, China 
2 Department of Geography, The University of Hong Kong, Pokfulam Road, Hong Kong, China;  

E-Mail: hragjcy@hku.hk  

* Author to whom correspondence should be addressed; E-Mail: plhblue@126.com or 

plhblue@njtech.edu.cn; Tel.: +86-189-1398-4921; Fax: +86-25-5813-9090.  

Academic Editor: Marc A. Rosen 

Received: 15 July 2015 / Accepted: 7 August 2015 / Published: 14 August 2015 

 

Abstract: Most studies explored green-roof thermal effects on a few hot summer days based 

on short-term monitoring data. Few studies investigated the seasonal and diurnal patterns of 

thermal performance and associated weather effects. This research aims to address the 

following two questions: (1) how green-roof thermal performance varies with different season 

and time; and (2) to what extent can thermal performance be predicted by background weather 

parameters? A retrofitted extensive green roof was established on the top of a railway station 

in subtropical Hong Kong. Monitoring data covering a two-year period, one year before roof 

greening and one year after, were collected and analyzed. Results indicated notable seasonal 

and diurnal patterns of green-roof thermal performance. It exhibited cooling effects in spring, 

summer and fall, but warming effects in winter. The cooling effects were more pronounced in 

summer than spring and fall, on sunny days than rainy and cloudy days, and in nighttime than 

daytime. Air temperature, relative humidity, wind speed, solar radiation, and soil moisture 

could explain 83.6%–86% of the thermal effects’ variation. The multiple-regression models 

based on the five weather variables established in this study provide an uncomplicated and 

direct approach to predict the thermal performance of similar extensive green roofs in 

subtropical areas.  
  

OPEN ACCESS



Sustainability 2015, 7 11099 

 

 

Keywords: green roof; thermal performance; weather effects; seasonal effect;  

temporal pattern 

 

1. Introduction 

The combined effects of global warming and urban heat island (UHI) effects have caused a large amount 

of energy use and greenhouse gas (GHG) emissions, as well as thermal discomfort in urban areas [1]. 

Designing cities in a climate-conscious way not only contributes to UHI mitigation and urban 

sustainability, but also offers cities opportunities to address global issues at the local level [2]. Giving 

the large amount of worldwide energy use associated with a building’s life cycle, various design 

strategies have been proposed to improve a building’s energy efficiency [3]. Among these strategies, 

cool roofs have received much research attention due to the notable thermal benefits. Continuous 

monitoring and simulation studies have been involved to evaluate the impacts of cool roofs on surface 

and air temperature, the number and frequency of extreme weather conditions, energy consumptions and 

GHG emissions [4–6].  

Green roofs present one important category of the cool-roof family. The multiple layers of the  

green-roof structure can protect building roofs from direct solar radiation in the summer, cutting heat flux 

entering the interior spaces and saving electrical energy for cooling. The evapotranspiration from vegetation 

and soil can cool the ambient air and improve microclimate, triggering “cool-island” effects [7,8]. The 

literature has generated extensive studies on green-roof thermal effects in various climatic contexts. 

These studies roughly fall into three categories in terms of study approaches and objectives, including: 

(1) on-site monitoring to investigate green-roof impacts on summer temperature parameters and building 

heat flux patterns [9–22]; (2) dynamic energy modeling to analyze the heat and moisture processes within 

the green-roof layers and identify key influential factors [23–28]; and (3) building energy simulation or 

meso-scale climatic modeling to predict the cooling and energy effects of individual or multiple  

green-roof installations [29–34]. The studies have reported that green roofs can reduce summer daily 

peak surface temperature by 15 °C–45 °C and peak air temperature by up to 5 °C. Energy demand can 

be cut by 8%–80% for individual buildings, depending on background climatic conditions and roof 

insulation levels [35]. When applied on a city scale, green roofs may reduce the ambient temperature 

between 0.3 °C–3 °C [36]. 

These studies, however, have largely focused on green-roof thermal effects in summer daytime, while 

ignoring their seasonal and diurnal variability and underlying weather effects. It has been widely reported 

that the UHI effect display notable seasonal and diurnal patterns with varying background weather 

parameters, such as radiation, humidity, temperature, and wind speed [37]. These weather factors also 

exert significant influence on the heat and water dynamics of green-roof systems [7,19]. Evaluation of 

the temporal variations of green-roof thermal performance with respect to weather effects enables a deep 

and comprehensive understanding of its role as a UHI mitigation measure. Speak et al. [38] compared 

the seasonal and diurnal cooling effects between a healthy green roof and another damaged green roof 

with exposed bare substrate. Results found that both green roofs display remarkable temporal variations 

in cooling effects. However, this study provides limited reference for the performance of subtropical 
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green roofs as it was conducted in a temperate climate zone. This study aims to answer the following 

two questions that have not been adequately addressed: (1) How green-roof thermal effects vary with 

seasons across a year, and with time across a day, in humid subtropical areas? (2) To what extent can 

thermal effects be predicted by background weather parameters? The research objectives are twofold: 

(1) evaluate the daytime and nocturnal modification of main weather parameters by green roofs for 

different season-cum-weather conditions; and (2) investigate the effects of key weather parameters on 

green-roof thermal performance based on multiple-regression models. 

2. Study Area and Methods 

2.1. Study Area 

Hong Kong is situated at the south coast of China, at 22° N latitude and 114° E longitude with a 

typical humid-subtropical climate influenced by the dominating Asian monsoon climatic system. It has 

four distinct seasons with varying temperature, rainfall, and humidity features. Spring is the most humid 

and cloudiest time of the year, with an average temperature of about 22 °C. Summer is hot and humid 

from late April to September, with August the hottest month often exceeding 33 °C. Fall is the sunniest 

and pleasant season through the year when there is a large decrease in rainfall and temperature, compared 

to summer. Winter is relatively dry and mild, running from January to February, with average 

temperature above 10 °C.  

Hong Kong is characterized as one of the most densely-built cites in the world. The compact urban 

morphology, in conjunction with the extreme shortage of ground-level green spaces, has resulted in an 

intense UHI effect. It has been reported that the UHI intensity in Hong Kong ranges from 1.5 °C to 3.8 °C 

in terms of air temperature based on 19-year daily and hourly meteorological data from typical urban 

and rural weather stations. The UHI intensity demonstrates notable diurnal and seasonal variations, 

stronger in nighttime than daytime, with a maximum value in winter [39]. Roof greening has been 

proposed as an effective tool to compensate for the scarcity of ground-level greenery and alleviate the 

thermal and environmental plight [40–42]. The public services provided by this doorstep green oasis can 

also improve urban sustainability and quality of life [43]. 

2.2. Experimental Design 

The extensive green roof was retrofitted in July 2009 on a two-storey railway station located in a 

suburban district named Tai Po in Hong Kong. The station is surrounded by low-rise public and 

commercial buildings and, thus, is free from the influence of shadows or reflected radiation from 

adjacent buildings or trees. The large flat rooftop is composed of several parcels with different elevations 

and areas. This study enlists the largest plot (the experimental site with green roof) which is square in shape 

with an area of 484 m2. A nearby plot (the control site with original bare roof), with an area of 106 m2, 

provides a baseline for comparison. The green roof was installed on the reinforced-concrete flat-roof 

protected by a waterproofing membrane, thermal insulation, screed, and cement tiles. A proprietary 

multiple-layer green-roof system (Nophadrain, Kirkrade, The Netherlands) was laid directly on the 

concrete tile with a 2% gradient to shed drainage water. From bottom to top, it contains five layers: plastic 
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(polyethylene) root barrier, plastic (high impact polystyrene) drainage, geotextile filter, rockwool water 

retention, and growing medium (Table 1).  

A perennial, herbaceous and evergreen vine, Arachis pintoi (Perennial Peanut), was chosen for its 

vigorous growth and formation of a tight and complete green cover. It is a tropical low-growing  

(about 20 cm thick), ground-hugging, non-twining, and nitrogen-fixing legume. Its ornamental value is 

attributed to the continuously verdant green foliage and many dainty golden-yellow flowers presented 

for seven warm months in a year. Vigorous stem cuttings were spread at a high density on the prepared 

soil surface. The vigorous plant was able to achieve 100% site coverage in three months of growth in 

the warm season. Thereafter, a continuous green mantle has been maintained with gradual addition of 

new stems and foliage to enhance the thermal insulation effect. An automatic sprinkler irrigation system 

provided supplementary water supply at 5 L/m2/day, sustaining an average soil moisture content of about 

0.3 m3/m3. Watering was regulated by a rainfall detector to stop the pump when cumulative antecedent 

rainfall exceeded 10 mm. 

Table 1. Physical properties of the green-roof multiple-layered components. 

Vertical component Material 
Thickness 

(mm) 

Reinforced 
roof deck 

Roof slab Screed and concrete 200 
Waterproof membrane Two-layer torched-applied modified bitumen assembly 0.5 
Insulation Extruded polystyrene 50 
Concrete tile Screed and concrete 200 

Extensive 
green roof 

Root barrier Polyethylene 0.5 
Drainage  High impact polyethylene 25 
Filter Geo-textile 0.5 
Water storage Rockwool 40 
Growing medium Decomposed granite and compost 70 

Vegetation Perennial Peanut 200 

Five background weather parameters were measured (Figure 1), including solar radiation (SR), 

ambient air temperature (Ta), relative humidity (RH), wind speed (WS), and substrate moisture (SM). 

Three sets of thermal-performance indicators were monitored, including air temperature at 10 cm and 

160 cm level (T10 and T160), relative humidity at 10 cm and 160 cm level (RH10 and RH160), and surface 

temperature at the vegetation surface (Tv) and concrete tile (Tt). All sensors were synchronized to take 

readings at 15-min interval, and measurements were stored in stand-alone data loggers kept in 

weatherproof cabinets. Two types of data loggers were installed (Figure 2), including a HOBO industrial 

logger (U12-008) connected with infrared temperature sensors for monitoring vegetation canopy surface 

temperature, a micro station logger (H21-002) connected with anemometer for measuring wind speed, 

and a weather station for the record of temperature, humidity, solar radiation, and moisture data. 

Collected data were exported to PC every month via a direct USB interface.  
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Figure 1. Position and height of environmental monitoring sensors at green roof 

experimental plot (site A) and bare roof control plot (site Z).  

 

Figure 2. Sensor and logger positions to measure the above-surface environmental 

parameters (left: green roof; right: control bare roof). 

2.3. Data Collection  

Monitoring data from 1 June 2008 to 21 May 2009 before the installation of green roof and 7 August 

2009 to 30 September 2011 after the roof greening were used to perform the analyses. Both sessions 

permit data coverage of the four seasons: spring from 1 March to 31 May, summer from 1 June to  



Sustainability 2015, 7 11103 

 

 

30 September, fall from 1 October to 31 December, and winter from 1 January to 28 February. Three 

weather types, namely sunny, rainy, and cloudy were differentiated for each season. Table 2 presents the 

general range of daily sunshine hours, cloud amount, and rainfall for each weather category.  

The four seasons, in conjunction with three weather types, generates 12 season-cum-weather 

scenarios which offer a comprehensive coverage of weather conditions over a year (abbreviation of each 

weather type is given in Table 3). The winter-rainy scenario was removed from the analysis as it is not 

a typical weather type of Hong Kong.  

Table 2. Criteria for selection of typical weather types. 

 Sunshine hours Cloud amount (%) Rainfall (mm) 

Sunny 
Cloudy

4–11 
0–4 

<80 
>90 

0 
0 

Rainy 0 80–90 >10 

2.4. Data Processing 

2.4.1. Thermal-Effect Indicators 

Daytime values (DT) averaged from 12:00 h–16:00 h, and nighttime values (NT) averaged from  

20:00 h–24:00 h of T10, T160, RH10, RH160, Tv, and Tt were derived as thermal indicators.  

2.4.2. Background Weather Variables 

DT and NT of five weather variables, including solar radiation (SR), ambient air temperature (Ta), 

relative humidity (RH), and substrate moisture (SM) were derived to represent the background  

weather conditions. Table 3 presents all the symbols and abbreviations used in this paper.  

Table 3. Symbols and measurement units used in this paper. 

Symbol Unit Explanation 

Study site 

A na Experimental plot after green roof installation 

B na Experimental plot before green roof installation 

Z na Control (bare roof) plot 

Monitoring thermal-effect indicators 

Tt °C Concrete tile surface temperature 

Tv °C Vegetation canopy surface temperature 

T10 °C Air temperature at 10 cm height 

T160 °C Air temperature at 160 cm height 

RH10 °C Relative humidity at 10 cm height 

RH160 °C Relative humidity at 160 cm height 

Derived thermal-effect indicators 

DT ------ Daytime mean from 12:00 h to 16:00 h 

NT ------ Nighttime mean from 20:00 h to 00:00 h 
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Table 3. Cont. 

Symbol Unit Explanation 

Season-cum-weather scenarios 

SPS ------ Spring sunny 

SPR ------ Spring rainy 

SPC ------ Spring cloudy 

SUS ------ Summer sunny 

SUR ------ Summer rainy 

SUC ------ Summer cloudy 

FLS ------ Fall sunny 

FLR ------ Fall rainy 

FLC ------ Fall cloudy 

WTS ------ Winter sunny 

WTC ------ Winter cloudy 

Background weather variables 

Ta °C Air temperature 

RH % Relative humidity 

SR Wm−2 Solar radiation 

WS ms−1 Wind speed 

SM m3m−3 Substrate moisture 

2.5. Data Analysis 

2.5.1. Independent T-test 

Independent T-test was conducted to study the magnitude and significant level of temperature and 

humidity modifications due to green-roof installation. Comparisons were made between the before (site B) 

and after session (site A) for each season-cum-weather scenario in terms of DT and NT difference 

between the green (site A) and bare roof (site Z).  

2.5.2. Multiple Regression Analysis 

Multiple regression analysis was adapted to explore how significantly the green-roof thermal effects 

can be determined by background weather condition. The green-bare differences in Tv, T10, RH10, and Tt 

were used as thermal-effect indicators. The five background weather variables were used as independent 

variables in the model. For each thermal-effect indicator, two regression models (DT and NT) were 

constructed to explore the weather effects on daytime and nighttime thermal performances, respectively. 

DT models examined all the five background weather variables, while the NT ones excluded SR, as it 

has no variation in the nighttime. Due to correlations among the weather variables, we used stepwise 

regressions in all models, which added the independent variables one by one and only keeps those that 

contribute to the model significantly with a threshold of 90% as the final independent variables.  
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3. Seasonal and Diurnal Patterns of Green-roof Thermal Effects 

3.1. Overall Assessment 

Generally, thermal effects are notable in the nighttime but less so in the daytime (Table 4). Of the 

four seasons, fall exhibits the smallest thermal effects as it has the least number of significant 

modifications in both daytime and nighttime. Within each season, sunny weather conditions tend to have 

a larger number of significant modifications than cloudy and rainy scenarios. Of the six thermal effects 

indicators, the modifications on temperature parameters are more notable than relative humidity at the 

same level. The closer to the green roof, the larger the temperature change.  

Table 4. Modification of key thermal indicators after roof greening. 

  T10 T160 RH10 RH160 Tt Tv 

Daytime 

SPS −0.6 **  −0.2  0.8 *  −5.3 **  −4.1 **  1.6 **  

SPR −1.1 **  −0.4  3.2 *  −2.6 **  −0.7  0.4  

SPC −0.5 **  −0.3  0.9  −4.1 **  −2.1 **  1.0 **  

SUS −0.9 ** −0.7 **  2.7 **  −3.6 **  −7.9 **  2.2 **  

SUR −1.3 ** −0.5 **  4.4 **  −2.1 **  −1.1 **  1.8 **  

SUC −0.8  −0.2  1.5  −4.7 **  −1.4  2.0  

FLS −0.2  0.1  −1.1 **  −5.7 **  −5.8 **  1.7 **  

FLR −0.6  −0.1  1.5  −3.4 **  1.3  0.2  

FLC −0.6 *  0.1  0.4  −5.2 **  −2.9 **  0.3  

WTS 0.8 **  0.3 **  −3.2 **  −6.2 **  −4.3 **  2.7 **  

WTC 0.5 **  0.6 **  −2.4 **  −6.1 **  −0.7 **  2.1 **  

Nighttime 

SPS −1.6 **  −0.5 **  3.4 **  −3.5 **  2.7 **  0.3 **  

SPR −1.3 **  −0.2 *  3.5 **  −2.6 **  2.1 **  0.6 **  

SPC −1.1 **  −0.2 ** 2.1 **  −3.8 **  2.0 **  0.6 **  

SUS −2.9 **  −0.6 **  7.9 **  −3.0 **  0.9 **  2.3 **  

SUR −2.3 **  −0.7 **  7.3 **  −1.1 **  0.8 **  2.0 **  

SUC −2.2 **  −0.6 *  5.6 **  −2.7 **  −0.2 **  2.6  

FLS −1.9 **  −0.4 **  3.7 **  −3.3 **  1.3 **  −0.4 **  

FLR −1.2 *  −0.1  2.9  −3.2 **  3.0 *  −0.4  

FLC −1.2 **  −0.1  2.0 *  −4.3 **  0.7 −0.3  

WTS −1.5 **  −0.3 **  2.8 **  −3.5 **  2.0 **  0.8 **  

WTC −0.5 **  0.2  −0.2  −4.7 **  1.2 **  1.2 **  

* The modification is significant at 0.05 level. ** The modification is significant at 0.01 level. 

3.2. Air Temperature 

Figure 3 shows the air temperature change after roof greening for each season-cum-weather scenario. 

Positive values denote temperature increase, and negative values denote decrease. Generally, spring, 

summer, and fall record cooling effects (temperature reduction) in both daytime and nighttime, whereas 

winter only experiences nocturnal cooling with a slight temperature rise in daytime. The dominant 

cooling effects through the year can be attributed to the warm climatic conditions in subtropical areas 
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which sustains high evaporation rate throughout the year. Winter warming can be explained by the trap 

of heat in the vegetation canopy which augments the near surface ambient temperature.  

The three cooling seasons (spring, summer, and fall) share a similar spatial and temporal temperature 

reduction pattern, with nocturnal cooling being stronger than daytime, and T10 greater than T160 in terms 

of both magnitude and significance coefficient. For example, the nocturnal T10 reduction is significant 

at the 0.01 level for all season-weather types, whereas significant reduction of daytime T10 is only 

restricted to SPS, SPR, SPC, SUS, SUR, FLC, WTS, and WTC. The difference between daytime and 

nighttime T10 reduction ranges from 0.2 °C–2 °C, with a maximum value on sunny summer days.  

The three seasons also demonstrate a similar vertical pattern of cooling effects. The closer to the 

ground, the greater the air temperature reductions. T10 reduction is only insignificant (p > 0.05) for 

daytime SUC, FLS, and FLC, while at T160 the insignificant reduction is extended to daytime SPS, SPR, 

SPC, FLC, and nighttime FLR, FLC, and WTC. The temperature reduction ranges from  

0.2 °C–0.9°C, and 1.1 °C–2.9 °C for daytime and nighttime T10, comparing with 0.2 °C–0.6 °C and  

0.1 °C–0.6 °C for equivalent values of T160. The divergence in T10 and T160 reduction demonstrate the 

“distance attenuation effect” of green-roof thermal performance. At the 10 cm level, both shading and 

evaporative cooling effects can bring down T10, while at the 160 cm level the temperature reduction is 

only due to cool air advection from the near surface.  

 

Figure 3. Modification of ambient air temperature after roof greening for the four seasons. 

Seasonal variations were observed in terms of cooling intensity. Of the three cooling seasons, summer 

generally has a more remarkable cooling magnitude than spring and fall, when comparing equivalent 

temperature indicators among the three. For example, the reduction in T10 of sunny-summer daytime is 

0.9 °C, comparing with 0.6 °C and 0.2 °C of equivalent values in spring and fall, respectively. The 

sunny-summer nocturnal cooling at T10 can reach 2.9 °C, while the numbers for spring and summer are 

1.6 °C and 1.9 °C, respectively.  

-0.6 
-1.1 

-0.5 

-1.6 -1.3 -1.1 

-0.2 
-0.4 

-0.3 
-0.5 

-0.2 -0.2 

-4.0 

-3.0 

-2.0 

-1.0 

0.0 

1.0 

SPS SPR SPC

A
ir

 te
m

pe
ra

tu
re

 (℃
)

Summer

D T10

N T10

D T160

N T160

-0.9 
-1.3 

-0.8 

-2.9 
-2.3 -2.2 

-0.7 
-0.5 

-0.2 
-0.6 

-0.7 -0.6 

-4.0 

-3.0 

-2.0 

-1.0 

0.0 

1.0 

SUS SUR SUC

A
ir

 te
m

pe
ra

tu
re

 (℃
)

Summer

D T10

N T10

D T160

N T160

-0.2 
-0.6 -0.6 

-1.9 

-1.2 -1.2 

0.1 

-0.1 

0.1 

-0.4 
-0.1 -0.1 

-3.0 

-2.0 

-1.0 

0.0 

1.0 

2.0 

FLS FLR FLC

A
ir

 te
m

pe
ra

tu
re

 (℃
)

Fal l

D T10

N T10

D T160

N T160

0.8 
0.5 

-1.5 

-0.5 

0.3 
0.6 

-0.3 

0.2 

-3.0 

-2.0 

-1.0 

0.0 

1.0 

2.0 

WTS WTC

A
ir

 te
m

pe
ra

tu
re

 (℃
)

Winter

D T10

N T10

D T160

N T160



Sustainability 2015, 7 11107 

 

 

Within each season, the cooling effects are notably higher on sunny days, with similar magnitude on 

rainy and cloudy days. On sunny days, the bare roof surface is heated across the day, which further 

warms the near-surface air by strong sensible heat flux. While on the green roof, the high solar radiation 

combined with high air temperature can help sustain a large evaporation rate to enhance cooling.  

The equal cooling intensity during rainy and cloudy conditions might be explained by the similar 

temperature background.  

3.3. Relative Humidity 

The “wet island” effects of green spaces characterized by the increase of ambient humidity above the 

vegetation canopy are generally concurrent with their “cool-island” effects, both owing to the 

evapotranspiration process. Thus, evaluation of ambient humidity changes after roof greening can inform 

evaporative cooling effects of the green roof.  

 

Figure 4. Modification of relative humidity after roof greening for the 11 season-cum-weather scenarios. 

Similar as T10, RH demonstrate notable seasonal, diurnal, and vertical patterns (Figure 4). In spring, 

summer, and fall, RH10 is significantly increased (p < 0.01) during both daytime and nighttime except 

FLS, reflecting enhanced evaporation in the three seasons. Summer has a larger increase than spring and 

fall, with the greatest rise in nocturnal sunny summer days at 7.9%, contrasting with equivalent 3.4% 

and 3.7% in spring and fall, respectively. This indicates the highest evaporation during summer when 

solar radiation and air temperature peak. The winter season shows a reverse pattern with decreased RH10 

during all weather conditions, reflecting suppressed evaporation during the cold season.  

The diurnal pattern of RH10 shows similarity among spring, summer, and fall that the nighttime RH10 

increase was generally 1%–5% higher than that of the daytime, with maximum diurnal variation on 

sunny summer days. The higher nocturnal RH10 increase corresponding with a similar diurnal pattern of 

T10 modification further confirms that green-roof cooling effects are mainly achieved in the nighttime.  
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In contrast to RH10, RH160 is significantly reduced after roof greening for all the season-cum-weather 

scenarios. The vertical divergence of modifications in air temperature and relatively humidity after roof 

greening suggest that the cooling effects of extensive green roofs decrease with increasing distance from 

the roof surface, and might be marginal at a certain height.  

3.4. Canopy Surface Temperature (Tv) 

Surface temperature modification is a major indicator for green-roof thermal effects. Tv affects 

sensible heat flux and long-wave radiation to the air, hence determining the magnitude of UHI 

mitigation. Contrary to expectations, most Tv parameters were significantly increased after roof greening, 

with a higher increase on sunny days than rainy and cloudy days. The vegetation canopy anomaly might 

be explained by the following reasons: (1) the control bare roof in this study contains materials like 

asbestos which has high thermal capacity to sustain a relatively low surface temperature even without 

greening. The existing low surface temperature of the control roof render limited temperature reductions 

after roof greening; (2) the plants of the extensive green roof form a little dense tussock of short stems 

and tiny leaves as a cushion, which enhances friction when wind blows over the vegetation surface, 

resulting in a static wind layer known as the boundary layer. The leaves are warmed by the sun and most 

heat is trapped due to static air, contrasting to radiative cooling on the bare roofs during the daytime; 

and (3) the lower albedo of vegetation leaves, and feeble evaporation due to moisture exhaustion in the 

early afternoon, might also account for it in the study.  

3.5. Concrete Tile Surface Temperature (Tt) 

Tt affects the downward heat flux transmitted to the interior space, hence the electrical energy use for 

heating and cooling. The impact of green roofs on Tt tends to be dual, decreasing during daytime on 

sunny and cloudy days of the four seasons, while increasing on other occasions (Figure 5). The daytime 

Tt reduction is more notable on sunny days than cloudy days in terms of magnitude and significant level. 

For instance, the sunny daytime Tt was significantly reduced by 4.1 °C, 2.7 °C, 4.9 °C, and 4.3 °C, 

respectively for spring, summer, fall, and winter (p < 0.01 for the four seasons), contrasting equivalent 

values of cloudy days were 2.1 °C (p < 0.01), 1.4 °C (p < 0.01), 2.9 °C (p < 0.01), and 0.7 °C (p > 0.05). 

The results indicate a notable decrease in cooling load on sunny and cloudy daytime through the year, 

with higher energy saving on sunny days.  

In contrast, the nocturnal Tt is significantly increased for all weather types of the four seasons except 

FLC. The nocturnal increase plays contradictive roles in different seasons. In summer time, increased Tt 

impedes heat loss from the interior space, implying potential negative impacts of green roofs in uplifting 

electrical energy use for space cooling. In spring and fall when the space-conditioning is absent, the 

increase of Tt has limited implication for energy consumption. In winter when warming is desirable, the 

rise of Tt can, instead, trim energy use for space warming. The above results suggest potential trade-offs 

associated with green-roof installation in humid-tropical Hong Kong with positive impacts sometimes 

and negative on other occasions. The energy-saving of green roofs should be estimated based on net 

effects considering both daytime cooling and nocturnal warming.  
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Figure 5. Modification of surface temperature after roof greening for the four seasons. 
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** **0.08 ( ) 0.03 ( ) 4.3t aNT T T SM⋅ = − − +  (6)

** ** ** ** **0.17 ( ) 0.03 (RH) 0.002 ( ) 0.05 ( ) 0.4 (WS) 5.7V aDT T T SR SM⋅ = − − − + − +  (7)

** ** **0.15 ( ) 0.23 ( ) 0.02 ( ) 1.5V aNT T T WS RH⋅ = − + + +  (8)

Table 5. Multiple regression models for predicting green-roof thermal effects by background 

weather parameters. 

Weather parameter 

/thermal indicator 

T10 Tt Tv RH10 

DT NT DT NT DT NT DT NT 

SR 
−0.001 ** 

(−0.16) 
–– 

−0.01 ** 

(−0.48) 
–– 

−0.002 ** 

(−0.17) 
–– 

0.005 ** 

(0.22) 
–– 

Ta 
−0.15 ** 

(−0.62) 

−0.14 ** 

(−0.84) 

−0.19 ** 

(-3.43) 

−0.08 ** 

（−0.30） 

−0.17 ** 

(−0.59) 

−0.15 ** 

（−0.90） 

0.40 ** 

(0.59) 

0.45 ** 

（0.80） 

RH 
−0.03 ** 

(−0.29) 

0.02 ** 

(0.19) 

0.08 ** 

(0.35) 
- 

−0.03 ** 

(−0.3) 

0.02 ** 

（0.18） 

0.11 ** 

(0.40) 
- 

WS 
−0.3 ** 

(−0.14) 

0.39 ** 

(0.32) 

0.59 ** 

(0.11) 
- 

−0.4 ** 

(−0.14) 

0.23 ** 

（0.19） 

0.56 * 

(0.09) 

−1.20 ** 

（−0.30） 

SM 
0.03 ** 

(−0.15) 

0.03 ** 

(0.16) 
- 

−0.03 * 

（−0.13） 

0.05 ** 

(0.17) 
- 

−0.07 ** 

(−0.11) 

−0.07 ** 

（−0.14） 

Constant 4.14 −1.25 −3.5 4.29 5.73 1.47 −15.1 −2.5 

R2 0.72 0.73 0.72 0.08 0.72 0.7 0.74 0.72 

Note: Two predictive models, DT and NT, were established for each thermal-effect indicator; the determination 

coefficients (R2) represent the percentage of the variation in thermal indicators that can be explained by the 

regression models; the standardized coefficients (Beta value in parentheses) represent the relative contributions 

of different weather parameters to thermal effects.  

5. Conclusions 

Based on monitoring data of the railway station extensive green roof, we investigated the diurnal and 

seasonal patterns of green-roof thermal performance. Compared with previous field experiments,  

which focused on a few sunny summer days, we evaluated thermal performance in relation to key 

meteorological parameters and 11 weather scenarios covering a whole-year cycle.  

Green-roof thermal performance demonstrated notable seasonal, diurnal, and vertical patterns. It had 

cooling effects in spring, summer, and fall, with slight warming effects in winter. The cooling effects 

were more pronounced in summer than spring and fall, on sunny days than rainy and cloudy days, and 

in nighttime than daytime. The result of higher nocturnal cooling effects is consistent with Speak et al.’s 

study, which also found that across a day strongest cooling occurs at night [38]. However, the effects 

were mostly restricted to limited distance. At 160 cm above the roof surface, the modification of ambient 

air temperature became insignificant.  

The multiple regression analyses found that background weather parameters contribute significantly 

to green-roof thermal effects and, thus, are a major cause of seasonal and diurnal variations of thermal 

performance. The five weather parameters (SR, Ta, RH, WS, and SM) could explain 83.6%–86% of the 
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thermal effects’ variation. Our experimental site represents a typical extensive green roof  

(evergreen herbaceous plants) established on low-rise structures in low-density urban settings. The 

multiple-regression models established in this study might help to predict the thermal performance of 

extensive green roofs in subtropical areas.  
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