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Abstract: A discrete-time model is presented to describe the complex interaction between
industrial production and environmental quality in a closed area. Its Neimark–Sacker
bifurcation and chaos are discussed based on Wen’s explicit Neimark–Sacker bifurcation
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Melbourne’s 0–1 test algorithm. Numerical simulations are employed to validate the main
results of this work.
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1. Introduction

In the handicraft economy, manufacturing was often done in people’s homes or small and rural
shops by using hand tools or basic machines, and life for the average person was difficult, with meager
incomes and malnourishment. In that period, the environment was a utopia, almost free from human
disturbance, so the pollution risk to the environment was really quite negligible, and thus, the ecological
environment’s capability of self-adjustment and restoration was quite strong. In contrast, after the
Industrial Revolution, people produced the bulk of their own food, clothing, furniture and tools by
using new chemical manufacturing and iron production processes, improving the efficiency of water
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power, increasing the use of steam power and developing machine tools. Unfortunately, industrial
production can produce many forms of pollution as follows: air pollution, light pollution, littering,
noise pollution, soil contamination, radioactive contamination, thermal pollution, visual pollution, water
pollution, plastic pollution and others, increasing the risk of various occupational hazards, such as
asbestosis and pneumoconiosis. Though the industrial production brought about such a greater volume
and variety of industrial goods and improved the living quality for many people, particularly for the
middle and upper classes, the poor and working classes were lowly paid and struggling to improve their
dangerous and monotonous working conditions. What is more, they could enjoy less blessings poured out
from industrial production, but suffer more from industrial pollutants than the middle and upper classes.
From this point of view, studying the interactions between industrial production and environmental quality
would be helpful to promoting their harmonious development, on the one hand, and improving social
equity and preventing the gap between the rich and the poor from widening, on the other hand.

Based on the interaction between product and environment, Salomone et al. [1–3] proposed their
pioneering work, the product-oriented environmental management system (POEMS), a sustainable
management framework. To address the complex relationship adequately, many researchers employed
various appropriate theoretical frameworks to represent the nexus between industrial production and
environmental quality. For example, Zhao et al. [4] proposed a plant-level aggregation method to
estimate the relationship between production’s spatial distribution and regional water environmental
carrying capacity in a a small region. Aşıcı [5] explored the relationship between economic growth
and the pressure on nature from the environmental sustainability perspective. Dinda [6], Copeland and
Taylor [7] investigated the relationship between environmental degradation and economic development.
Paraschiv [8] discovered relationships between the textile industry and sustainable development and
conducted a Holt–Winters forecasting investigation for the eastern European area. Empirical methods
were adopted in the above research. By using differential equations, Aliehyaei et al. [9] reported the
results of exergy, economic and environmental analyses of simple and combined heat and power internal
combustion engines. In this paper, difference equations and numerical simulations will be employed to
discover complex interactions between industrial production and environmental quality in a closed area.

As a kind of dynamical bifurcation, Neimark–Sacker bifurcation [10–12] is a crucial phenomenon
that has drawn considerable attention in many discrete-time systems, such as financial systems [13],
investment competition models [14] and Hénon systems [15]. The Neimark–Sacker bifurcation emerges
with a closed invariant curve from a fixed point in discrete-time dynamical systems, when the fixed point
changes stability via a pair of complex eigenvalues with unit modulus [10]. We will focus on the existence,
stability and direction of Neimark–Sacker bifurcation in the interaction system.

Gottwald and Melbourne [16] firstly proposed the 0–1 test algorithm, a reliable and efficient binary
test method for chaos, which is one of the simplest and most effective ones, though there have been
many methods for detecting chaotic attractors. The 0–1 test algorithm has already been successfully
implemented in various discrete or continuous systems, such as in [17–25].

The remainder of this paper is organized as follows. In Section 2, we formulate the model of the
interaction between production and environment in a closed area. In Section 3, we analyze the stabilities
of the real-valued fixed point of the model. In Section 4, we study the existence of Neimark–Sacker
bifurcation by using Wen’s Neimark–Sacker bifurcation criterion [11], and prove the stability and
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direction of Neimark–Sacker bifurcation by means of Kuznetsov’s normal form method and center
manifold theory [10]. In Section 5, we detect the chaos by using the 0–1 test algorithm [16]. Finally, the
conclusion in Section 6 closes the paper.

2. Model

In this section, we focus on depicting a complex interaction between production and environment in a
closed area by using nonlinear dynamics. For the purpose of our description of the model, let us first give
some notations and assumptions as follows.

2.1. Notations

The following notations in Table 1 are used throughout this paper:

Table 1. Notations.

Variables/Parameters Descriptions

xn the environmental quality index at period n;
(xn+1 − xn) indicates the change of environmental quality, either improvement or deterioration;

yn the production amount at period n;
(yn+1 − yn) indicates the change of production amount, which represents a production

decision, either an increase or a decrease;
a the low threshold of environmental quality;
c the high threshold of environmental quality;
b the payment on the pollution emission right;
δ the step size of a decision or measurement;
ε a general, small parameter.

2.2. Assumptions

The following assumptions in Table 2 are available throughout this paper:

Table 2. Assumptions.

Assumptions Descriptions Expressions

Assumption 1 The environmental quality has a positive linear
impact on the production decision.

(yn+1 − yn) ∝ xn

Assumption 2 The last production amount has a negative linear
impact on the current production decision due to
congestion in the product market.

(yn+1 − yn) ∝ −yn

Assumption 3 The payment on the pollution emission right has a
negative linear impact on the production decision.

(yn+1 − yn) ∝ −b

Assumption 4 The production amount has a negative linear impact
on the change of environmental quality.

(xn+1 − xn) ∝ −yn

Assumption 5 The change of environmental quality is affected
simultaneously by the last environmental quality and
deviations from its low and high thresholds.

(xn+1 − xn) ∝ xn (xn − a) (c − xn)
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2.3. Model Formulation

Based on Assumptions 1–5, if we let c = 1 and readjust the dimensions of the production amount and
the environmental quality index, then we can get the following equations: xn+1 − xn = δ(xn(xn − a)(1 − xn) − yn)

yn+1 − yn = δ(xn − yn − b)
(1)

where a, b, δ > 0
As we know, in some cases, x changes more quickly than y; in other cases, x changes more slowly

than y. Therefore, we can employ a general small parameter ε to proportionally synchronize x and y
as follows:  xn+1 = xn + δ(xn(xn − a)(1 − xn) − yn)

yn+1 = yn + εδ(xn − yn − b)
(2)

where ε > 0.

Case 1. : ε = 0.
This means that yn+1 = yn, i.e., the production amount is a constant, for instance, because production
resources are rigidly constrained or regulated by their government.

Case 2. : 0 < ε < 1.
This means that x is a fast variable and y is a slow variable, for instance, because the environmental
quality can projectively change in accordance to the producers’ production amounts, whereas producers
cannot change instantaneously their production amounts in a centrally-planned economy.

Case 3. : ε = 1.
This means that x and y are completely synchronized. More prosaically, x and y have the same step size
of decision or measurement.

Case 4. : ε > 1.
This means that x is a slow variable and y is a fast variable, for instance, because the environmental quality
changes gradually under government control, whereas producers can instantaneously and independently
adjust their production amounts in a market economy.

3. Stability of the Fixed Points

The fixed points of system Equation (2) satisfy the following equations: x = x + δ(x(x − a)(1 − x) − y)

y = y + εδ(x − y − b)
(3)
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which have only a real-valued fixed point E0 = (x0, y0), where:

y0 = x0 − b

x0 =
1 + a

3
+

3√2(2 + a − a2)
3K

−
K

3 3√2
K =

3√
7 + 12a + 3a2 − 2a3 + KK − 27b

KK =
√

4(2 + a − a2)3 + (7 + 12a + 3a2 − 2a3 − 27b)2

The Jacobian matrix of system Equation (2) at E0 is given by:

J(E0) =

 KA −δ

δε 1 − δε

 (4)

where KA = 1 + δ((x0 − a)(1 − x0) + x0(1 − x0) − x0(x0 − a)). Its characteristic equation can be written as:

p(λ) = λ2 + p1λ + p2 = 0 (5)

where:
p2 = δ(a − 2x0 − 2ax0 + ε + 3x2

0) − 2

p1 = εδ2(a + 1 − 2x0 + 3x2
0 − 2ax0) − 1 − p2

According to the relations between roots and coefficients of a quadratic equation, one can get the
following proposition.

Proposition 1. Let p(λ) = λ2 + p1λ + p2. Suppose that p(1) > 0, λ1 and λ2 are two roots of p(λ) = 0.
Then, the fixed point E0 is:
(i) locally asymptotically-stable if and only if p(−1) > 0 and p2 < 1;
(ii) a saddle if and only if p(−1) < 0;
(iii) locally unstable if and only if p(−1) > 0 and p2 > 1;
(iv) non-hyperbolic if either p(−1) = 0 and p1 , 0, 2 or p2

1 − 4p2 < 0 and p2 = 1.

4. Neimark–Sacker Bifurcation

4.1. Existence of Neimark–Sacker Bifurcation

In order to discuss the existence of Neimark–Sacker bifurcation, an explicit criterion of Neimark–Sacker
bifurcation needs to be introduced as follows.

Lemma 1. [11] For an n-th order discrete-time dynamical system, assume first that at the fixed point x0,
its characteristic polynomial of Jacobian matrix A = (ai j)n×n takes the following form:

pµ(λ) = λn + a1λ
n−1 + · · · + an−1λ + an
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where a j = a j(µ, k), j = 1, · · · , n, µ is the bifurcation parameter and k is the control parameter or the
other to be determined. Consider the sequence of determinants 4±0 (µ, k) = 1, 4±1 (µ, k), · · · ,4±n (µ, k),
where:

4±j (µ, k) = |M1 ± M2| , j = 1, · · · , n

where:

M1 =



1 a1 a2 · · · a j−1

0 1 a1 · · · a j−2

0 0 1 · · · a j−3

· · · · · · · · · · · · · · ·

0 0 0 · · · 1


M2 =



an− j+1 an− j+2 · · · an−1 an

an− j+2 an− j+3 · · · an 0
· · · · · · · · · · · · · · ·

an−1 an · · · 0 0
an 0 · · · 0 0


If the following conditions hold,
(H1) Eigenvalue assignment 4−n−1(µ0, k) = 0, pµ0(1) > 0, (−1)n pµ0(−1) > 0, 4+

n−1(µ0, k) > 0,
4±j (µ0, k) > 0, j = n − 3, n − 5, · · · , 1 (or 2), when n is even (or odd, respectively),
(H2) Transversality condition d 4−n−1 (µ0, k)/dµ , 0,
(H3) Non-resonance condition cos(2π/m) , ψ or resonance condition cos(2π/m) = ψ, where m =

3, 4, 5, · · · and ψ = 1 − 0.5pµ0(1) 4−n−3 (µ0, k)/ 4+
n−2 (µ0, k), then a Neimark–Sacker bifurcation occurs

at µ0.

According to Lemma 1, for n = 2, we can get the following equalities and inequalities:

4−1 (ε) = |1 − p2| = 0 (6)

pε(1) = 1 + p1 + p2 > 0 (7)

(−1)2 pε(−1) = 1 − p1 + p2 > 0 (8)

4+
1 (ε) = |1 + p2| > 0 (9)

d 4−1 (ε0, k)/dε = aδ − 2δx0 − 2aδx0 + εδ + 3δx2
0 − 2 , 0 (10)

By using the Mathematics software to solve Equations (6)–(10), the critical value of Neimark–Sacker
bifurcation of system Equation (2) can be obtained as the two following expressions:

(i) δ∗ =
2ax0 + 2x0 − 3x2

0 − a − ε

ε(2ax0 + 2x0 − 3x2
0 − a − 1)

(11)

when (x0 >
1
2 ∩ K1 > a ∩ ε < K2 + K3 ∩ ε > K2 − K3) ∪ (x0 <

1
2 ∩ K1 < a ∩ ε < K2 + K3 ∩ ε >

K2 − K3) holds.

(ii) ε∗ =
2ax0 + 2x0 − 3x2

0 − a

2aδx0 − 3δx2
0 − aδ + 2δx0 − δ + 1

(12)

when (x0 >
1
2∩K1 > a∩δ < K4−K5∩ε > −K4−K5)∪(x0 <

1
2∩K1 < a∩δ < K4−K5∩ε > −K4−K5) holds,

where K1 =
1−2x0+3x2

0
−1+2x0

, K2 = 2 + a − 2x0 − 2ax0 + 3x2
0, K3 = 2

√
K2 − 1, K4 = 2

(
(K2 − 1)(2 − K2)2

)− 1
2
,

K5 = 2
2−K2

.
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Thus, it follows from Equation (1) that the eigenvalues satisfy the condition (H1) in Lemma 1, that is
Neimark–Sacker bifurcation occurs at the fixed point E0 = (x0, y0).

4.2. Direction and Stability of the Neimark–Sacker Bifurcations

In this section, we will use Kuznetsov’s normal form method and center manifold theory [10] to
investigate the direction and stability of the Neimark–Sacker bifurcations in the system Equation (2).
Since the fixed point E0 = (x0, y0) is not origin O(0, 0), the E0 need to be transformed to the origin by the
following change of variables:

x = x0 + u, y = y0 + v

This transforms system Equation (2) into the following equivalent system: un+1 =un + x0 + δ((un + x0)(un + x0 − a)(1 − un − x0) − vn − y0)

vn+1 =vn + y0 + εδ(un + x0 − b − vn − y0)
(13)

This system can be written as:

Xn+1 = JXn +
1
2

B(Xn, Xn) +
1
6

C(Xn, Xn, Xn) + O(X4
n)

where Xn = (un, vn)T is the vector of the transformed system and J is the Jacobin matrix of system
Equation (13) evaluated at the origin O(0, 0) as follows.

J(O) =

 KA −δ

δε 1 − δε

 (14)

Additionally, the multilinear functions B : R2 × R2 → R2 and C : R2 × R2 × R2 → R2 are defined
respectively by:

Bi(x, y) =

n∑
j,k=1

∂2Xi(ξ, 0)
∂ξ j∂ξk

∣∣∣∣∣
ξ=0

x jyk, i = 1, 2

Ci(x, y, z) =

n∑
j,k,l=1

∂3Xi(ξ, 0)
∂ξ j∂ξk∂ξl

∣∣∣∣∣
ξ=0

x jykzl i = 1, 2

which take on the planar vectors ξ = (ξ1, ξ2)T , η = (η1,η2)T and ζ = (ζ1, ζ2)T .
For the system Equation (13),

B(ξ,η) =

 (2a − 6x0 + 2)δξ1η1

0


C(ξ,η, ζ) =

 −6δξ1η1ζ1

0
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The eigenvalues of the matrix J(O) are:

λ1,2 = N0 ± i
1
2

√
N1 = e±iθ0 (15)

where:
N0 = 1 + δx0 + aδx0 −

1
2

(
aδ + εδ + 3δx2

0

)
N1 = −δ2

(
4N2x0 + 2N3x2

0 + 3N4x3
0 − N5

)
N2 = aε + ε − a − a2

N3 = 2 − 3ε + 7a + 2a2

N4 = 3x0 − 4 − 4a

N5 = 2aε + 4ε − ε2 − a2

0 < θ0 < π

Let q ∈ C2 be a complex eigenvector of the matrix J corresponding to λ1 given by Equation (15)
and satisfying:

Jq = eiθ0q

Let p ∈ C2 be a complex eigenvector of the transposed matrix J corresponding to λ2 given by
Equation (15) and satisfying:

JT p = e−iθ0 p

Then, we can obtain:

q ∼
(R0 + R1

2ε
, 1

)T

, p ∼
(R0 − R1

2ε
, 1

)T

where:
R0 = ε − a + 2x0 + 2ax0 − 3x2

0

R1 =
√

R2 + R3 + R4 + R5

R2 = a2 + ε2 − 2aε − 4ε

R3 = 4
(
aε − a2 − a + ε

)
x0

R4 = 2
(
2 + 7a + 2a2 − 3ε

)
x2

0

R5 = −12 (1 + a) x3
0 + 9x4

0

For the eigenvector q =
(

R0+R1
2ε , 1

)T
, to normalize p, let:

p =

(
2δ

1
R6

(R1 − R0)2 ,
4εδ
R7

)T

where:
R6 =

R8

ε

∣∣∣(R1 − R0)2
∣∣∣ − 4εδ (R1 − R0)

R7 =
R8

εδ

(
R1 − R0

)
+ 4εδ

R8 =
(
R1 − aδ + 2δx0 + 2aδx0 + δε − 3δx2

0

)
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We have 〈p, q〉 = 1, where 〈., .〉 means the standard scalar product in C2 : 〈p, q〉 = p̄1q1 + p̄2q2.
Therefore, the coefficients of the normal of the system Equation (13) can be obtained by the

following formulas:

g20 =〈p, B(q, q)〉

g11 =〈p, B(q, q)〉

g02 =〈p, B(q, q)〉

g21 =2〈p, B
(
q, (In − J)−1 B(q, q)

)
〉 + 〈p, B

(
q,

(
ei2θ0 In − J

)−1
B(q, q)

)
〉

+ 〈p,C(q, q, q)〉 +
e−iθ0

(
1 − 2eiθ0

)
1 − eiθ0

g20g11 +
2

1 − e−iθ0
|g11|

2 +
eiθ0

e3iθ0 − 1
|g02|

2

(16)

Then, the direction coefficient of bifurcation of a closed invariant curve can be obtained by the
following formula:

d (δ∗, ε∗) = Re
(
e−iθ0g21

2

)
−

1
2
|g11|

2 −
1
4
|g02|

2 − Re

e−i2θ0
(
1 − 2eiθ0

)
2
(
1 − eiθ0

) g20g11

 (17)

Thus, the following theorem holds.

Proposition 2. For parameters ε∗ and δ∗, the direction and stability of Neimark–Sacker bifurcation
of system Equation (2) can be determined by the sign of d (ε∗, δ∗). If d (ε∗, δ∗) < 0(> 0), then the
Neimark–Sacker bifurcation of system Equation (2) at (ε∗, δ∗) is supercritical (subcritical), and the unique
closed invariant curve bifurcating from E0 = (x0, y0) is asymptotically stable (unstable).

4.3. Numerical Example

In this section, we will justify the above analytic results by means of a bifurcation diagram, phase
portrait and evolution series diagram.

In what follows, we let a = 0.5, b = 0.4 and the initial state (xs, ys) = (0.4, 0.6); then, system
Equation (2) can be rewritten as the following form: xn+1 = xn + δ(xn(xn − 0.5)(1 − xn) − yn)

yn+1 = yn + εδ(xn − yn − 0.4)
(18)

which have a unique real-valued fixed point E0 = (0.37,−0.03) and two complex conjugate fixed points
E1 = (0.57 + i0.87, 0.17 + i0.87), E2 = (0.57 − i0.87, 0.17 − i0.87). The E1 and E2 are always complex
conjugate and will not be considered here.

Figure 1 is the bifurcation diagram of x of the system Equation (18) with two parameters δ and ε. The
bifurcation diagram illustrates the possible long-term values of the system Equation (18) as parameters δ
and ε are varied. To produce Figure 1, ε varies from zero to 1.2 with an increment of 0.0024; and δ is
sampled 12 values from zero to 1.2, and for x is used 300 data points after skipping 1000 transient data.
Figure 1 can be regarded as a kind of superposition of bifurcation diagrams for 12 different values of δ. We
plot Figure 1 to show bifurcation slices of xwith two parameters δ and ε. Each slice exhibits a bifurcation
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of x with the varying ε and a fixed δ. Figure 2 is the critical value curve of Neimark–Sacker bifurcation
of system (18), which can be obtained from Equations (11) and (12). What is more, for combinations of
parameters ε and δ in Figure 2, once crossing over the blue critical curve of Neimark–Sacker bifurcation
and falling into the region on the left, the system Equation (18) must begin to undergo the Neimark–Sacker
bifurcation. It is obvious that Figure 1 agrees well with Figure 2.

Figure 1. Bifurcation slices of x with parameters δ and ε.

0 0.5 1 1.5
0

0.5

1

1.5

 ε

 δ

Critical value curve of Neimark−Sacker bifurcation

Figure 2. The critical value curve of Neimark–Sacker bifurcation with parameters δ and ε.

The real-valued fixed point E0 is shown in Figure 3, and the bifurcation diagram is shown in Figure 4.
The above two figures indicate that the system Equation (18) is asymptotically stable with ε = 0.4 and
δ < 0.62773.

According to Equations (11) and (12), one can take a critical bifurcation value pair (ε∗, δ∗) =

(0.4, 0.62733). Thus, there are |λ±| = 1 and d(0.4, 0.62733) = −6.676 < 0. It follows from Proposition 2
and Figure 4 that a supercritical Neimark–Sacker bifurcation occurs at (ε∗, δ∗) = (0.4, 0.62733) of system
Equation (18).
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When one gives a small perturbation 4δ = 0.001, a sufficiently small real number, i.e., δ = δ∗ + 4δ =

0.62733 + 0.0001 = 0.62833, the system Equation (18) has a stable, closed invariant curve around the
the fixed point (quasi-periodic solution), as shown in Figure 5. Furthermore, Figure 6 represents that the
solution in the system Equation (18) asymptotically approaches a unique invariant closed circle, i.e., the
Neimark–Sacker bifurcation is supercritical.

0.34 0.35 0.36 0.37 0.38 0.39 0.4
−0.05

−0.045

−0.04

−0.035

−0.03

−0.025

−0.02

−0.015

−0.01

 x

 y

Figure 3. Phase portrait with ε = 0.4 and δ = 0.5.

0 0.2 0.4 0.6 0.8 1 1.2 1.4
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0.5

1

1.5

2

 δ

 x

Figure 4. Bifurcation diagram for System (18) with ε = 0.4.
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Figure 5. Phase portrait with ε = 0.4 and δ = 0.62833.
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Figure 6. Evolution series of x with ε = 0.4 and δ = 0.62833.

5. Chaos

5.1. 0–1 Test Algorithm for Chaos

We can formulate the 0–1 test algorithm [16–21] as follows.
Suppose φ(n) is a discrete set of measurement data sampled at times n = 1, 2, 3, · · · ,N, where N is the

total amount of the data.
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Step 1: Choose a random number c ∈ (π5 ,
4π
5 ), then define the new coordinates (pc(n), sc(n)) as follows.

pc(n) =

n∑
j=1

φ( j)cos(θ( j))

sc(n) =

n∑
j=1

φ( j)sin(θ( j))

(19)

where:

θ( j) = jc +

j∑
i=1

φ( j), j = 1, 2, 3, · · · , n

Step 2: Define the mean square displacement Mc(n) as follows:

Mc(n) = lim
N→∞

1
N

N∑
j=1

(pc( j + n) − pc( j))2 + (sc( j + n) − sc( j))2 , n ∈ [1,
N
10

] (20)

Step 3: Define the modified mean square displacement Dc(n) as follows:

Dc(n) = Mc(n) −

 lim
N→∞

1
N

N∑
j=1

φ( j)


2

1 − cos nc
1 − cos c

(21)

Step 4: Define the median value of correlation coefficient K as follows:

K = median(Kc) (22)

where:
Kc =

cov(ξ,∆)√
var(ξ)var(∆)

∈ [−1, 1]

in which ξ = (1, 2, 3, · · · , ncut), ∆ = (Dc(1),Dc(2), · · · ,Dc(ncut)), ncut = round( N
10), and the covariance

and variance are defined with vectors x, y of length q as follows:

cov(x, y) =
1
q

q∑
j=1

(x( j) − x̄) (y( j) − ȳ)

x̄ =
1
q

q∑
j=1

x( j)

var(x) = cov(x, x)

Step 5: Interpret the outputs as follows:
(1) K ≈ 0 indicates that the underlying dynamics is regular (i.e., periodic or quasi-periodic), whereas

K ≈ 1 indicates that the underlying dynamics is chaotic.
(2) Bounded trajectories in the (p, s)-plane imply that the underlying dynamics is regular, whereas for

Brownian-like (unbounded) trajectories, the underlying dynamics is chaotic.
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In periodic dynamics, there are isolated values of c for which Kc is large due to resonances, so it is
suggested to use the median of the computed values of Kc as K = median(Kc). In practice, 100 choices
of c is sufficient to get various values Kc versus c [21,22]. In this work, we let N = 9500 and use 100
random c values in [π/5, 4π/5].

5.2. Numerical Example

We sample the dataset x from system Equation (18) and let the time series length N = 9500, parameters
ε ∈ [0, 0.34] and δ ∈ [0, 1.37], initial values x1 = 0.4 and y1 = 0.6. The 0–1 test with ε and δ will be
implemented as follows, respectively.

As mentioned in Subsection 3.2 and shown in Figure 2, if ε = 0.4 is fixed, the point
(ε, δ) = (0.4, 0.6273) is the critical point of the Neimark–Sacker bifurcation of system Equation (18).
Therefore, the region with δ ∈ [0, 0.6273) is stable, and the other region with δ ∈ (0.6273, 1.37] is
unstable, where chaos may occur. With δ varying from zero to 1.37 in increments of 0.001, one can get
the diagram of the K value and Lyapunov exponents shown in Figure 7. There is a very good agreement
between Figure 7 and the bifurcation diagram shown in Figure 4. From Figures 4 and 7, one can find that
chaos occurs when δ ∈ [1.35, 1.37], where K ≈ 1, which means that the system has chaotic movement.
When δ = 1.36, Figure 8 presents a chaotic attractor in the original state space (x, y), and Figure 9 denotes
the plots with the transformed coordinates (p, s), where Brownian-like trajectories denote that the system
Equation (18) is chaotic.
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Figure 7. Lyapunov exponents and K versus δ for system Equation (18) with ε = 0.4.
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Figure 8. Plot of in the original state space (x, y) for system Equation (18) with ε = 0.4 and δ = 1.36.
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Figure 9. Plot in the new coordinates (p, s) space for system Equation (18) with ε = 0.4 and δ = 1.36.

As shown in Figure 2, if δ = 1.44 is fixed, then points (ε, δ) must locate above the critical
value curve of the Neimark–Sacker bifurcation of system Equation (18) for arbitrary ε ∈ [0, 1.5].
With ε varying from zero to 0.34 in increments of 0.000425, one can get the diagram of the
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K value and Lyapunov exponents shown in Figure 10, which is consistent with the bifurcation
diagram shown in Figure 11. From Figures 10 and 11, one can find that chaos occurs when
ε ∈ [0.229, 0.237]

⋃
[0.279, 0.294]

⋃
[0.306, 0.321], where K ≈ 1, which means that the system is

chaotic. Let ε = 0.32; Figure 12 presents a strange attractor in the original state space (x, y), and
Figure 13 shows the plot with the transformed coordinates (p, s), where Brownian-like trajectories
indicate that the dynamics of system Equation (18) is undergoing chaos.
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Figure 10. Lyapunov exponents and K versus ε for system Equation (18) with δ = 1.44.
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Figure 11. Bifurcation diagram versus ε in the original state space for system Equation (18) with
δ = 1.44.
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Figure 12. Plot of in the original state space (x, y) for system Equation (18) with δ = 1.44 and
ε = 0.32.
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Figure 13. Plot in the new coordinates (p, s) space for system Equation (18) with δ = 1.44 and
ε = 0.32.

6. Conclusions

(i) We proposed a discrete complex interaction model about industrial production and environmental
quality in a closed area, which can help us understand the above dynamical interaction mechanism from
the environmental sustainability perspective.
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(ii) We calculated the critical value, direction and stability of Neimark–Sacker bifurcation of the
discrete-time interaction model, which can help us make use of its attribution of the Neimark–Sacker
bifurcation of the interaction system and even control it.

(iii) We employed the 0–1 test algorithm to verify the chaos of the model, which can help us find and
utilize the chaos of the interaction system and even control it.
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