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Abstract: The coupling relationship between urban vegetation and land surface temperature 

(LST) has been heatedly debated in a variety of environmental studies. This paper studies 

the urban vegetation information and LST by utilizing a series of remote sensing imagery 

covering the period from 1990 to 2007. Their coupling relationship is analyzed, in order to 

provide the basis for ecological planning and environment protection. The results show that 

the normalized difference vegetation index (NDVI), urban vegetation abundance (UVA) and 

urban forest abundance (UFA) are negatively correlated with LST, which means that both 

urban vegetation and urban forest are capable in decreasing LST. The apparent influence of 

urban vegetation and urban forest on LST varies with the spatial resolution of the imagery, 

and peaks at the resolutions ranging from 90 m to 120 m. 

Keywords: urban vegetation abundance; urban forest abundance; land surface  

temperature; Beijing 

 

1. Introduction 

Since 1978, China has been experiencing unprecedented market-oriented urban growth [1,2]. The 

8%–10% annual gross domestic product (GDP) growth rate during the past 30 years has been 

accompanied with an urbanization rate growth from 18% in 1978 to 45% in 2007 [3]. One of the 
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ecological consequences of dramatic urban growth and land use conversion is the significant decrease 

of urban vegetation and increase of the land surface temperature (LST) in the summer [4–6]. 

Both urban vegetation and urban land surface temperature are vital to maintaining public health and 

urban suitability in densely populated Chinese cities [7]. The coupling relationship between urban 

vegetation and higher atmospheric/surface temperatures in urbanized areas is therefore of great interest 

to a variety of urban planners and environmental scientists [8–12]. Extensive research has been 

conducted by deriving LST through moderate resolution imageries such as Thematic Mapper (TM), 

Enhanced Thematic Mapper Plus (ETM+), and Advanced Spaceborne Thermal Emission and Reflection 

Radiometer (ASTER). Normalized difference vegetation index (NDVI) is the most widely used 

vegetation index and has contributed to global climate, ecosystem, and agricultural studies [13,14]. For 

instance, Liu et al. [15] constructed NDVI time series (1982–2009) from the spectrum of three kinds of 

satellites, and to study the relationship among NDVI, climate factors and land cover changes. As a result, 

NDVI is mentioned in much of the remote sensing analysis between vegetation information and land 

surface temperature [16,17]. In addition, scholars have widely investigated the empirical relationships 

between LST and various biophysical or socio–economic measurements [6,18]. 

The research on urban vegetation and LST has been supported with growing availability of higher 

spatial and temporal resolution datasets and improved methods for geospatial analysis, along with 

debates over the trends and underlying forces of urban heat island effect [3]. However, much of the 

existing studies analyzing the relationship between NDVI and the Urban Heat Island (UHI) effect are 

based on brightness temperature or air temperature, rather than measurement of real land surface 

temperature [19–21]. Besides, in spite of these significant contributions, the study on the relationship 

between LST and vegetation information based on a time–series of remote sensing imagery is limited. 

Urban forests, small enclaves of ecosystems featured with biological diversity in the artificial urban 

landscape, are considered as a specific part of vegetation in mitigating UHI [22]. Dramatic urban sprawl 

and urban growth have threatened such green space [23–25]. As urban forest provides much more 

environmental, ecological services than grassland or shrubs covering equivalent areas, such as air 

pollution removal, carbon storage, the urban forest has been analyzed as a specific part of urban 

vegetation [26–29]. The analysis of the relationship of urban forest and land surface temperature 

comparing that between NDVI or overall urban vegetation would be another key material for making 

decisions on mitigating UHI. 

Beijing, the capital of China, has witnessed significant urban growth since the reforms that started in 

1978, but it has been suffering from a growing assortment of environmental problems. These include 

severe air pollution, water shortages and traffic congestion. Beijing is noted for a poor climate throughout 

much of the year, with cold dry winters, spring periods of severe dust storms and hot summers. These 

climatic conditions are exacerbated by loss of vegetation, the urban heat island and air pollution and 

make life for the over 20 million inhabitants unpleasant and often unhealthy particularly in relation to 

respiratory ailments. The extent of the urbanized area of Beijing has expanded from approximately  

269 square kilometers in 1975 to approximately 901 square kilometers in the 32 years up to 2007 and 

that rate has been continuing in the years since then. In this paper, the urban vegetation and LST are 

monitored and analyzed utilizing a time-series of remote sensed imagery dating from 1990 to 2007. 

Classification and regression tree (CART) models are generated and applied to estimate forest 

abundance, vegetation abundance and real LST. The coupling relationship between vegetation and LST 
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are studied accordingly. The data were resampled at different spatial resolutions, similar as the 

downscaling of land surface temperature method of Ha et al. [30], so as to study the effect of scale on 

the coupling relationship. The analysis seeks to provide a basis for decision making to improve urban 

planning and environmental protection in Beijing and by extension in other urbanizing regions. 

2. Data, Study Site and Methods 

2.1. Data and Study Site 

Beijing lies on the north tip of the North China Plain, with the geographic spread over the area 

between 39.5° to 41.1° North Latitude, and 115.4°–117.5° East Longitude (Figure 1a). The city is near 

the meeting point of the Xishan and Yanshan mountain ranges. The main part of the city lies on flat land 

with elevations of 20 m to 60 m above sea level that opens to the east and south. The municipality’s 

outlying districts and counties extend into the mountains that surround the city from the southwest to the 

northeast. The highest peaks are over 2000 m high. These mountains contribute to trapping smog that 

gives Beijing the distinction of having some of the planets worst air pollution as the situation is made 

worse by the urban heat island effect and by loss of urban vegetation. The urban heat island effect 

intensifies the urban temperature in the hot, humid and smoggy summers, while urban vegetation is 

efficient in decreasing UHI effect. Figure 1b is a true color image of the study area from a Landsat ETM+ 

image acquired in the year 2000. 

 
(a) location and elevation 

Figure 1. Cont. 
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(b) true color image (Landsat ETM+, 30 April 2000) 

Figure 1. The location, elevation (a) and a true color image (b) of the central part of Beijing City. 

In the analysis, a time-series of remote sensing imagery (Table 1) is utilized to estimate the vegetation 

information and LST. The vegetation information consists of forest abundance, vegetation abundance 

and NDVI. Urban forest is also included. These images were acquired on the sunny days. As the 

precipitation before acquisition date would affect LST, the precipitation data within 24 h until 8:00 PM 

of the day before the acquisition date is also listed in Table 1. 

Table 1. Time-series of remote sensing imagery and the precipitation before acquisition date. 

 Data Type Acquisition date Precipitation before acquisition date (mm) * 

1 Landsat TM 13 May 1990 1 

2 Landsat TM 7 September 1992 0 (159 the day before) 

3 Landsat TM 8 May 1994 0 

4 Landsat TM 21 September 1997 0 

5 Landsat TM 6 May 1999 0 

6 Landsat ETM+ 1 July 1999 0 

7 Landsat ETM+ 30 April 2000 13 

8 Landsat ETM+ 19 May 2001 0 

9 Terra ASTER 4 June 2001 0 

10 Terra ASTER 12 June 2004 0 

11 Terra ASTER 22 April 2006 0 

12 Terra ASTER 8 August 2007 68 

* The precipitation data is provided by China Meteorological Administration. 
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2.2. Estimation of Vegetation Cover 

2.2.1. NDVI 

NDVI is calculated using the red and near infrared band of the ASTER by using Equation (1)  

as follows: 

RNIR

RNIRNDVI
ρρ
ρρ

+
−

=  (1) 

where NIRρ  and Rρ  are the reflectivity of near infrared and red band of the ASTER sensor respectively. 

2.2.2. Vegetation Abundance 

Vegetation abundance in each pixel of the area of Beijing covered by the images is computed using 

a Dimidiate Pixel Model based on NDVI [31], as shown in Equation (2) below: 

0
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where pixelNDVI  is the NDVI value in each pixel. 
0NDVI  and ∞NDVI  are the NDVI values where the pixel 

contain bare soil and full vegetation cover respectively. A frequency accumulation method is employed 
to estimate the value of 0NDVI  and ∞NDVI , where frequency accumulations are 5% and 95%, 

respectively. Figure 2 shows the vegetation abundance derived from Landsat enhanced thematic mapper 

(ETM+) imagery for 1999. 

 

Figure 2. An example map of vegetation abundance (Landsat ETM+, 1 July 1999). 

2.2.3. Forest Abundance 

Compared to vegetation abundance, forest abundance is computed using a different method. The 

method consists of three steps (Figure 3). Classification and regression tree techniques are applied in the 

sub–pixel classification of the remote sensing imagery. First, training areas are chosen, and the imagery 

of various areas with varying levels of forest cover are retrieved from the use of Quickbird images, 

airborne remote sensing images and from field surveys (ground truth). Then, a raster based geographic 
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information system (GIS) data layer of forest abundance (i.e., percentage of forest within each pixel) is 

produced within the 15 m × 15 m area of the corresponding ASTER data layer and 30 m × 30 m pixel 

area for Landsat TM data. The forest abundance data in each pixel, as well as Landsat 

TM/ETM+/ASTER spectrum and NDVI values, are stored in the GIS as model training data and used 

as accuracy assessment data. Secondly, the relationships between forest abundance and Landsat 

TM/ETM+/ASTER spectrum and NDVI are learned by the Cubist software, which is a tool from an 

Australian company RuleQuest Research for generating rule–based predictive models from data, and a 

suit of regression tree models for calculating forest abundance are thereby generated. The models are 

estimated and adjusted by use of the accuracy assessment data. Step 3: the forest abundance over the 

entire study area is calculated, utilizing the models and Landsat TM/ETM+/ASTER data. Figure 4 is an 

example map of forest abundance derived from Landsat TM imagery from 1999. 

 

Figure 3. A flowchart of forest abundance retrieval. 

 

Figure 4. An example map of forest abundance (Landsat TM, 6 May 1999). 
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2.3. LST Retrieval 

Landsat TM/ETM+ and Terra ASTER images have many similarities. The processes of LST retrieval 

are concluded as shown in Figure 5. The LST calculation is generated based on land surface emissivity 

and land surface brightness temperature. The calculation of land surface brightness temperature based 

on use of these two types (Landsat TM, ASTER) of images is different, because Landsat TM images 

have only one thermal infrared (TIR) band, while ASTER images have four TIR bands; while step 1 and 

3 for the two types of data are generally the same. 

 

Figure 5. A flowchart of land surface temperature (LST) retrieval. 

2.3.1. Land Surface Emissivity Estimation 

Based on the method of Qin [32] and Sobrino [33], land surface emissivity is estimated as follows in 

Equations (3)–(5) below: 

for 0.05NDVI < , 973.0=ε ; 

for 0.7NDVI > , 99.0=ε ; 

and for 0.7NDVI05.0 ≤≤ . 

986.0004.0 += vPε  (3) 
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where: ε  is the land surface emissivity; NDVI  is the normalized difference vegetation index of the pixel; 

sNDVI  and vNDVI  are respectively the NDVI  of bare soil and of vegetation, which are assigned values of 

0.05 and 0.7. 

2.3.2. LST Calculation from Landsat TM/ETM+ Imagery 

Since Landsat TM/ETM+ imagery has just one TIR band (band 6), only single-channel methods can 

be used to estimate LST [9]. Various methods have been proposed for retrieving LST from Landsat 
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images, which do not require any atmospheric parameters or other auxiliary data. In this study, a 

generalized single-channel method [34] for Landsat data analysis is applied to calculate the LST. It 

requires two essential parameters for the estimation process: values for emissivity and transmittance. 

Generally, it requires the estimation of two principal parameters: one is the brightness temperature, the 

other is the emissivity. Both of them can be derived from Landsat TM/ETM data using this method. 

According to the generalized single channel method mentioned above, the following Equations (5)–(10) 

are utilized: 
1

1 2 3[ ( ) ]s sensorT Lγ ε ψ ψ ψ δ−= + + +  (5) 

1
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12
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sensor
sensor

sensor

c L
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−
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sensor sensorL Tδ γ= − + (7) 

2
1 0.14714 0.15583 1.1234w wψ = − + (8) 

2
2 1.1836 0.37607 0.52894w wψ = − − − (9) 

2
3 0.04554 1.8719 0.39017w wψ = − + − (10) 

where: w  is atmospheric moisture value acquired from the MODerate resolution atmospheric 
TRANsmission (MODTRAN) computer model; 

1ψ , 
2ψ  and 

3ψ are atmospheric parameters; sensorL  is 

radiance at the sensor; mμλ 457.11=  is the effective wavelength for Landsat TM/ETM+ images; ε  is 

the land surface emissivity; 1248
1 1019104.1 −−×= srmmWc μ , mKc μ7.143872 = ; sT , with units of degrees 

kelvin (K ), is the land surface temperature. Figure 6 is an example of a map of land surface temperature 

(LST in degrees Celsius °C) derived from Landsat ETM+ imagery from 1999. 

 

Figure 6. An example map of land surface temperature (LST/°C) (Landsat ETM+, 1 July 1999). 
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2.3.3. LST Calculation from Terra ASTER Images 

ASTER images, which contain five thermal infrared bands with 90 M resolution, are more feasible 

to use to calculate the LST. However, there is less research on LST estimation using ASTER imagery 

than derivation of LST using Landsat imagery. In this analysis, a split-window algorithm [20] is used 

for the purpose of LST estimation. Bands 13 and 14 are used for the calculation. It also requires two 

essential parameters be derived for the estimation. They are emissivity and transmittance. The former is 

derived from the ASTER data, while the latter is calculated using Moderate resolution Imaging 

Spectroradiometer (MODIS) data acquired by the same satellite at the same time as the ASTER data. 

Kaufman [35] proposed that Equations (11) and (12) can be used for this purpose: 

)]5()2(/[)19()2/19( 21 ρρρτ ×+×= CC (11)

2
ln








 −=
β

τα
w  (12)

where: )2/19(τ  is the atmosphere transparency of band 19 of the MODIS data; )2(ρ  and )5(ρ  are 

respectively the radiance of bands 2 and 5 in the MODIS data; 8.01 =C , 2.02 =C , 02.0=α , 

651.0=β , w  in 2/ cmg  is the atmospheric moisture. 

According to the split-window algorithm developed by Mao et al. [36], in 2006, Equation (13) can 

be employed: 
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where: 

131313 145236.0 τε ××=A  

685.33685.33145236.0 13131313 −××+×= τεTB  

145236.0])1(1[)1( 13131313 ××−+×−= τετC  

685.33])1(1[)1( 13131313 ××−+×−= τετD  

141414 13266.0 τε ××=A  

273.30273.3013266.0 14141414 −××+×= τεTB  

13266.0])1(1[)1( 14141414 ××−+×−= τετC  

273.30])1(1[)1( 14141414 ××−+×−= τετD  

2.4. Coupling Relationship Analysis 

The coupling relationship analysis consists of four parts. The first three are an analysis of  

the relationship between NDVI and LST, urban vegetation cover and LST and urban forest cover  

and LST; while the last one is the coupling relationship sensitivity to analysis under different resolutions 

of imagery. 

Each of the first three analyses steps consists of two steps: 

Step 1: draw a scatter plot of the vegetation information and LST to define the relationship. 
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Step 2: divide each type of vegetation information into mini-intervals, e.g., 100 intervals for NDVI, 

and analyze the relationship between the original values of the LST estimates and vegetation cover 

estimates, as well as the means of the mini–intervals and the means of the corresponding LST estimates. 

In the following analysis, Pearson’s correlation coefficient is calculated to indicate the level of the 

correlation, which is defined by Equation (14) as: 
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where r  is Pearson’s correlation coefficient; x ,y are the variables, e.g., NDVI and LST; x , y  are their 

mean values. The range of r  is [−1, 1]: 

- )0,1[−∈r : x , y  are negative correlations, absolutely negative correlations if 1−=r ; 

- 0=r : x , y  are absolutely not correlated; 

- ]1,0(∈r : x , y  are in positively correlated, and absolutely positively correlated if 1=r ; 

2R  is calculated for the linear fits and quadratic fits, and is defined by Equation (15) as: 
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(15)

where Y  is the predicted value of the linear fit or quadratic fit, y  and y  are same as in Equation (14). 

3. Results and Discussion 

3.1. NDVI and LST 

The scatter plot of NDVI and LST in each year is shown in Figure 7. It is an example derived from 

the Landsat ETM+ image from 1999. The range of NDVI is [−1, 1]. It is divided into 100 intervals. The 

mean value of NDVI in these intervals and the mean temperatures in corresponding areas are collected, 

i.e., “mean of intervals” in Figure 8, so that scatter plots of mean NDVI and LST for each set of intervals 

is portrayed. In Figure 8, this data is portrayed based on Landsat ETM+ data acquired in 2000.  

 

Figure 7. An example of scatter plot of NDVI–LST (Landsat ETM+, 1 July 1999). 
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Figure 8. An example scatter plot of mean NDVI and LST of intervals (Landsat ETM+, 1 July 1999). 

Based on the analysis portrayed in Figure 7 and Figure 8, the relation between NDVI and LST can be 

classified by three categories by threshold values defined as follows: Water is the least of the three 

categories defined by threshold values, the corresponding area where NDVI is in the range [−1, water] 

is generally a water body or an area covered by clouds [35]. Bare soil is the second category, it occurs 

where NDVI is around the threshold value associated with bare soil. NDVI and LST are generally in a 

positive relationship where NDVI is in this range [water, bare soil]. Vegetation cover is the third category 

defined by threshold values. Where NDVI is in the range (bare soil, vegetation cover), the corresponding 

areas are partly covered by vegetation. This range is the most relevant NDVI range for the analysis. In 

these areas, NDVI and LST have a significant negative correlation. The corresponding areas where 

NDVI is in the range [vegetation cover, 1], are generally fully covered by vegetation. 

NDVI values are divided into four ranges, and then separately linearly fitted/quadratically fitted with 

the LST values. Six of all the twelve potential permutations of the relationship between the categories 

of NDVI and LST, are chosen for example and portrayed in Figure 9, covering three types of sensors 

and from the beginning to the end of the research period. The associated parameters are listed in  

Table 2. In the range [–1, water), NDVI and LST are roughly in negative correlation. However, the 

corresponding area accounts for only a small percentage of the total area, and these areas are mostly not 

covered by vegetation. For Landsat TM in 1990, the coefficient of determination 2R  is 0.1253, while it 

is 0.0016 for the Terra ASTER in 2007. 

In the range of [water, bare soil], NDVI and LST are generally positively correlated. For Landsat TM 

in 1990 and Terra ASTER in 2007, the monomial coefficients of linear fit are 42.52 and 48.73 

respectively, while the 
2R  values are 0.42 and 0.08 respectively. In the range of (bare soil, vegetation 

cover), NDVI and LST are strongly negatively correlated. For the monomial coefficient of linear fit, 

which indicates the influence of increasing NDVI on decreasing LST, is generally in the range of  

[−8, −24], while the mean value is −15.915. For Landsat TM in 1990 and Terra ASTER in 2007, the 

monomial coefficients are −12.30 and −21.64, respectively. The value varies with atmospheric 

conditions, soil moisture, climate, land cover and other conditions. The areas with the same NDVI are 

in different soil moisture, climatic and other conditions, so that the corresponding LST varies 

significantly. As a result, the 
2R  values hardly reach 0.8. Also in the range (bare soil, vegetation cover), 
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the mean NDVI of the intervals and the corresponding LST are linearly fitted. The monomial coefficients 

approach the monomial coefficients of direct linear fit mentioned above (and shown in Table 2). 

However, the 
2R  values are much greater, most them are greater than 0.9. 

In the range [vegetation cover, 1], the corresponding areas are mostly covered by vegetation [20].  

In these areas, NDVI and LST are not in a stable relationship. For example, the fitting results from the 

Landsat TM imagery from 1990 is quite different from that derived from the same imagery by the same 

analysis methods for 1992. It is noticed that in the west of the study area, the elevation is higher than 

most of other parts. There is a famous hill (Xiangshan Park) that is a park covered with forest. In this 

area, the elevation is one of the significant elements that influences LST. While there was some urban 

growth over the intervening two years other factors such as soil moisture, climate, leaf area index and 

atmospheric moisture probably account for the differences. Consequently, it is evident that in this range, 

LST is mainly determined by elevation, Leaf Area Index (LAI), soil moisture, etc., other than by NDVI. 

The last two columns of Table 2 list the Pearson’s correlation coefficient relationship between NDVI 

and LST, where the latter column calculates the case where NDVI is in the range (bare soil, vegetation 

cover). The results show that NDVI and LST are generally in a negative correlation, and in those areas 

covered by vegetation, NDVI and LST are more strongly negatively correlated (most of the Pearson’s 

correlation coefficients are greater than 0.95). 

 

 

Figure 9. Cont.  
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(b) Landsat TM, 8 May 1994 
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(c) Landsat ETM+, 1 July 1999 
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(d) Terra ASTER, 4 June 2001 
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Figure 9. Eamples of relation between NDVI and LST.  

3.2. Urban Vegetation Abundance and LST 

The scatter plot of urban vegetation abundance (UVA) and LST in each year is portrayed in Figure 10. 

It is based on an example derived from the Landsat ETM+ image from 1999.The range of UVA is  

[0, 100%]. It is divided into 100 intervals. The mean values of UVA in these intervals and the mean LST 

in the corresponding areas are collected, i.e., “mean of intervals”, so that scatter plots of the mean  

UVA–LST of the intervals are derived and portrayed in Figure 11. Six of twelve results are chosen 

covering three types of sensors and from the beginning to the end, but mostly different from those chosen 

in Figure 9. Based on these scatter plots shown in Figures 10 and 11, the relationship between UVA and 

LST is evidently a negative correlation most of the time.  

 

Figure 10. An example of scatter plot of UVA–LST (Landsat ETM+, 1 July 1999).  
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(e) Terra ASTER, 22 April 2006 

-0.4 -0.2 0 0.2 0.4 0.6
15

20

25

30

35

NDVI

T
em

pe
ra

tu
re

 

 

区区区区

植植植植区

无植植植植区

(f) Terra ASTER, 8 August 2007 
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Figure 11. Examples of relation between urban vegetation abundance and LST. 

Compared to NDVI and LST, the correlation of UVA and LST is easier to discern. In the same way 

as for the analysis of NDVI–LST, the analysis will be divided into two parts: 

(1). Directly based on analysis of all pixels, the value of UVA and LST are linearly fitted and 

quadratically fitted; Pearson’s correlation coefficients are calculated for all pixel values (and 

presented in Table 3); 
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(b) Landsat TM, 21 September 1997 
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(c) Landsat ETM+, 1 July 1999 
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(d) Landsat ETM+, 19 May 2001 
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(e) Terra ASTER, 12 June 2004 
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(f) Terra ASTER, 8 August 2007 
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(2). The range of UVA, [0, 100%], is divided into 100 intervals. The mean values of the 100 intervals 

and the corresponding mean values of LST are also linearly fitted; Pearson’s correlation 

coefficients are calculated for the mean values (and presented in Table 3). 

It warrants notice that the figure from Terra ASTER acquired on 12 June 2004 (Figure 11e) is different 

from the rest. In addition, the fit of LST and mean NDVI of each interval (NDVI ∈(Bare soil, Vegetation 

cover)) and Pearson’s correlation coefficients (NDVI ∈(Bare soil, Vegetation cover)) in Table 2, as well 

as Pearson’s correlation coefficients (mean of intervals) in Table 3 show that the results from Terra 

ASTER acquired on 12 June 2004 are not as good as the rest. The image is as clear as the rest. In addition, 

the precipitation before the acquisition date (in Table 1) is similar to most of the rest. The image is 

clipped by the shape file of the study site, and the infrared band is resampled as the same resolution of 

visual near infrared band. One of the possible reasons is that the visual and near infrared band are not 

georeferenced well with thermal infrared band after these steps. 

Based on the data presented in Figure 11 and Table 3, the negative correlation between LST and UVA 

is significant. Most of the results (except for that derived from Landsat TM, from 1992, portrayed in 

Figure 11) show that, to some extent, the trend of the correlation varies, while UVA reaches 60%. Except 

for the result derived from Landsat ETM+ in 2001, other results show that the variation of LST with 

UVA decreases. The probable explanation is that increasing vegetation coverage is more effective in 

decreasing LST when the vegetation coverage is less than 60%. Thus adding some trees to a denuded 

area will have a major effect on LST, but the benefits fall off as the area becomes more heavily vegetated. 

Most of the monomial coefficients are in the range of [−9, −6], which reflects the numeric effect of 

vegetation in decreasing LST. Nevertheless, this is the average effect ignoring other conditions such as 

land surface moisture. The mean value of 2R  is 0.9448, proving that the mean values of the intervals are 

close to having a negative linear correlation. 

With respect to the polynomial fitting of pixel values, the results of the linear fitting and quadratic 

fitting are fairly similar. It is worth noting that the linear fitting curve almost coincides with the quadratic 

fitting curve with respect to Landsat TM data for 1997 and Landsat ETM+ data for 1999 and for 2001. 

The absolute values of the quadratic coefficient of the quadratic fitting are relatively small, but the values 

for 
2R  are greater than that of the linear fitting, showing that the quadratic function is more capable of 

accurately representing the relationship. 

For the pixel based analysis, the mean value of Pearson’s correlation coefficients is −0.5078, while it 

is −0.9716 for the mean of the intervals. This demonstrates that LST is influenced both by vegetation 

and other factors. Comparing the fitting for the mean values of the intervals and the polynomial fitting 

we can observe that: 

(1). The monomial coefficients are approximate, with the mean values from 12 images being between 

−7.1116 and −7.3429, which also show the numeric effect of vegetation in decreasing LST. 

(2). The values of 2R  differ greatly. For the polynomial fitting for all 12 images, the mean values of 
2R  are 0.2982 and 0.3055. For the linear fitting and quadratic fitting, the values are much smaller 

than 0.9448. This also demonstrates that LST is influenced by vegetation, whereas it is also 
influenced by other factors, including elevation mentioned above. 

Comparing the correlation of NDVI–LST and UVA–LST, the Pearson’s correlation coefficient of 

pixel values are −0.4880 and −0.5078, respectively. The mean values derived from 12 images using the 
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Pearson’s correlation coefficient of the mean of the intervals are −0.9716 and −0.9559, respectively. It 

is concluded from this that the correlation of UVA to LST is slightly more significant. 

3.3. Urban Forest Abundance and LST 

The scatter plot of the relationship between urban forest abundance (UFA) and LST in each year is 

displayed in Figure 12. It is an example derived from a Landsat ETM+ image from 1999. It is similar to 

UVA mentioned above. The range of UFA is [0, 100%]. In the following analysis, it is also divided into 

100 intervals. The mean value of UFA in these intervals and the mean LST in the corresponding areas 

were collected, i.e., “mean of intervals”, so that scatter plots of mean UFA and LST of the intervals is 

shown in Figure 13. 

According to the scatter plots displayed in Figures 12 and 13, the relationship between UFA and LST 

is generally a negative correlation, but it is not as robust as the relation between UVA and LST. 

 

Figure 12. An example of scatter plot of UFA–LST (Landsat ETM+, 1 July 1999). 

 

Figure 13. Cont. 
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(a) Landsat TM, 13 May 1990 
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(b) Landsat TM, 8 May 1994 
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Figure 13. Examples of relationships between urban forest abundance and LST. 

Compared to UVA and LST, the correlation of UFA and LST is less apparent. It is similar to the 

analysis of NDVI–LST and UFA–LST, the analysis can also be divided into two parts: 

(1). Based on analysis of all pixels, the values of UFA and LST are linearly fitted and quadratically 

fitted. Pearson's correlation coefficients are calculated for all pixel values (Table 4); 

(2). The range of UFA, [0, 100%], is divided into 100 intervals. The mean values of the 100 intervals 

and the corresponding mean values of LST are also linearly fitted. Pearson's correlation 

coefficients are calculated for the mean values (Table 4). 

Based on the analysis of Figure 13 and the values listed in Table 4, it is concluded that from fitting 

the mean values of the intervals, UFA and LST are generally in a negative correlation. Some of the 

scatter plots undulate as UFA increases, thus the correlation between UFA is more complicated and 

random than that of UVA and LST. The most probable explanations for this observation are that: 

- There is not very much urban forest in the study area; 
- Some western areas are mountainous areas covered with forest. So elements other that the UFA, 

e.g., elevation, soil moisture, also influence LST. 

- In the study area, there are various types of trees, which play different roles in decreasing LST; 

- There exist some errors in the calculation of UFA; 

(c) Landsat TM, 6 May 1999 
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(d) Landsat ETM+, 30 April 2000 
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(e) Terra ASTER, 4 June 2001 
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(f) Terra ASTER, 22 April 2006 
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The mean value of the monomial coefficients derived from the 12 images is −10.4548. The absolute 

value is greater than that of the fitting of the means of the intervals of UVA and LST. This implies that 

forest is more successful in decreasing LST than other types of vegetation. 

The mean value of 2R  is 0.6572 is lower than that derived from fitting the mean of the intervals of 

UVA and LST (0.9448). From this result, one can infer that the correlation between UFA and LST is 

more complicated than that between UVA and LST. 

Since the correlation of UFA and LST varies depending on the type of remote sensing imagery 

employed in the analysis, these values are fitted utilizing the simplest means available, i.e., use of a 

linear fitting and quadratic fitting (see Figure 13). From the polynomial fitting of pixel values using the 

linear fitting with monomial coefficients, one obtains a mean value of −15.3428, and these exhibit a larger 

difference. Its absolute value is also larger than that from fitting UVA and LST; the value of 2R  is barely 

0.3452. Therefore, one can conclude that the result from the linear fitting is merely useful for reference. 

In the quadratic fitting: the value of 2R  is 0.3452, this is a bit higher than that from the linear fitting. From 

the use of Pearson’s correlation coefficients one can conclude, for the calculation of the mean of the intervals, 

the mean value of Pearson’s correlation coefficients is −0.7994, this is lower than that of UVA–LST. 

For the calculation of pixel values, the mean value of Pearson’s correlation coefficients is –0.5439. 

The absolute value is a bit greater than that of UVA–LST (which was −0.5078). It is noticed that this 

differs from other results: comparing the 
2R  and absolute value of Pearson’s correlation coefficients of 

the mean of the intervals, the results of UVA–LST are all lower than that of UFA–LST, except for the 

result discussed in this paragraph.  

3.4. Scale Effects 

The correlation of NDVI–LST, UVA–LST varies as a function of image resolution. Pixels in remote 

sensing imagery aggregate as the resolution decreases. In order to learn effects of the scale on the 

relationship between vegetation information and LST, GIS generated maps derived from remote sensing 

imagery of NDVI, UVA, UFA and LST are resampled to the resolution of 30 m, 60 m, 120 m, 240 m, 

480 m and 960 m, and then the correlations are calculated separately (see Table 5). 

In this scale-effect analysis, Landsat TM imagery from 1990, Landsat ETM+ from 2001 and Terra 

ASTER imagery from 2007 were chosen for sample calculations. The image used in this analysis range 

from the year 1990 to 2007 (listed in Table 1), and the images use in scale effects analysis were acquired 

in the beginning, the middle or the end of the range. They are each taken from a different type of sensor 

system, so that they are representative of a range of sensors, dates and resolutions. 

3.4.1. NDVI–LST 

In Section 3.1, NDVI was divided into four ranges to study its relation with LST. In this portion of 

the paper, only the range (bare soil, vegetation cover) is chosen for analysis of vegetation information 

used in the linear fitting while all pixels are involved in the calculation of Pearson’s correlation coefficient. 

In the case of Landsat TM from 1990 as the pixel size increased from 30 m to 960 m, and the 

resolution decreased, the absolute value of the monomial coefficient decreases accordingly; 2R  and the 

absolute value of Pearson’s correlation coefficient also decrease. This indicates that the relationship 

decreases as there is an increase of scale. 
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In the case of Landsat ETM+ from 2001, some of the results are different from that of Landsat TM 

from 1990. As the pixel size increases from 30 m to 960 m, and the resolution decreases, the absolute 

value of the monomial coefficient slightly decreases, but it is maintained at a high level, and it is in the 

range [14.84, 17.63]. It peaks when the resolution is 120 m. The trend of 2R  reflects a similar effect. 

In the case of Terra ASTER imagery from 2007, the results are similar to that for Landsat ETM from 

200. The result of Landsat ETM+ from 2001 and Terra ASTER from 2007 are consistent with the 

analysis of Weng [9]. One of the possible reasons for the difference in the result of the analysis of Landsat 

TM from 1990, is that for the Pearson’s correlation coefficient for all pixel values, the trend is different 

from above analysis. It increases as the scale increases, i.e., the pixel size increases. In the case of Landsat 

ETM+ from 2001 and Terra ASTER from 2007, it turns out to be positive, when the pixel size is greater 

than 120 m, and reaches 0.83, and 0.77 when the pixel size is 960 m. In the case of Landsat TM from 

1990, it is also positive while the pixel size is 960m. This indicates that the character of the NDVI–LST 

relationship might reverse as the pixel size increases. 

3.4.2. UVA–LST 

Table 5 shows that the scale effects of the UVA–LST relationship is quite different from that of the 

NDVI–LST relationship. As the resolution decreases and pixel size increases (from 30 m to 960 m), the 

absolute value of the monomial coefficient of the linear fitting increases and then decreases, peaking 

when the pixel size is 120 m for Landsat TM from 1990 and Terra ASTER from 2007, and at a resolution 

of 90 m for Landsat ETM+ from 2001. The 
2R  value as well as the absolute value of Pearson's 

correlation coefficients, generally decreases as the scale increases. When the pixel size enlarges to a 

maximum of 480 m, they are tiny or even close to 0, indicating that UFA and LST are not correlated. 

3.4.3. UFA–LST 

The analysis on the scale effects of the UFA–LST correlation is similar to that for the correlation 

between UFA and LST. The result is similar to that of the relationship between UVA and LST, and is 

different from that of the relationship between NDVI and LST. As the resolution decreases and pixel 

size increases (from 30 m to 960 m), the absolute value of the monomial coefficient of the linear fitting 

increases and then decreases, peaking when the pixel size is 120 m for Landsat TM from 1990, and 90 m 

for Landsat ETM+ from 2001 and Terra ASTER from 2007. Similar to the result for the relationship 

between UVA and LST, the 
2R  value, as well as the absolute value of Pearson's correlation coefficients, 

generally decreases as the scale increases. When the pixel size enlarges to a maximum of 480 m, they 

are tiny or even close to 0, indicating that UFA and LST are not correlated. 

3.4.4. Summary 

The resolution scale has an influence on the correlation between vegetation information and LST. For 

UVA–LST and UFA–LST, the 2R  and Pearson’s correlation coefficient peaks at a resolution around 

120 m, and decreases to near 0 at 960 m, this indicates that the correlation is most significant at a 

observed scale around 120 m (Table 5).  
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Table 2. Coupling relationship between normalized difference vegetation index (NDVI) and land surface temperature (LST). 

 

Thresholds of NDVI 
Fit of LST and NDVI 

NDVI ∈ (Bare soil, Vegetation cover) 

Fit of LST and mean NDVI of each interval 

NDVI ∈ (Bare soil, Vegetation cover) 
Pearson’s correlation coefficients 

Water Bare Soil 
Vegetation 

Cover 
Monomial 
coefficient 

Constant 
2R  

Monomial 
coefficient 

Constant 
2R  All Pixels 

NDVI ∈ (Bare soil,  
Vegetation cover) 

1990 TM −0.45 −0.09 0.56 –12.2928 35.4764 0.3408 –12.4806 35.5156 0.9867 –0.6158 –0.9934 

1992 TM −0.2 –0.05 0.58 –17.9615 37.7120 0.6989 –17.9276 37.7203 0.9790 –0.8264 –0.9894 

1994 TM −0.32 –0.1 0.42 –14.7138 35.2906 0.2798 –14.8015 35.2758 0.9951 –0.4987 –0.9976 

1997 TM –0.8 –0.15 0.74 –7.9520 30.9888 0.3002 –8.0716 31.0836 0.9491 –0.5943 –0.9742 

1999 TM –0.7 –0.05 0.78 –13.7330 43.7044 0.3765 –15.5863 44.3581 0.9313 –0.5070 –0.9650 

1999 ETM+ –0.3 –0.14 0.34 –18.6408 36.1800 0.5177 –18.2092 36.1230 0.9812 –0.7058 –0.9906 

2000 ETM+ –0.8 –0.33 0.32 –12.2349 33.5019 0.2319 –14.3637 33.3297 0.9702 –0.3212 –0.9850 

2001 ETM+ –0.58 –0.32 0.2 –17.1152 38.9377 0.3141 –17.2958 38.9225 0.9902 –0.4912 –0.9951 

2001 ASTER –0.5 –0.08 0.42 –24.0389 38.5407 0.1771 –25.6857 38.5730 0.9748 –0.3923 –0.9873 

2004 ASTER –0.23 –0.09 0.5 –18.0121 35.2307 0.0566 –11.8544 35.2114 0.4391 –0.1333 –0.6626 

2006 ASTER –0.2 –0.09 0.45 –12.6498 29.7159 0.0347 –11.3023 29.8595 0.8687 –0.1394 –0.9320 

2007 ASTER –0.5 –0.09 0.34 –21.6386 35.4286 0.3402 –21.1473 35.3610 0.9966 –0.6307 –0.9983 

Mean −0.47 −0.13 0.47 −15.9153 35.8923 0.3057 −15.7272 35.9445 0.9218 −0.4880 −0.9559 
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Table 3. Coupling relationship between vegetation and LST. 

 Fit of mean of intervals Linear fit Quadratic fit Pearson’s correlation coefficients 

 
Monomial 
coefficient 

Constant 
2R  

Monomial 
coefficient 

Constant 
2R  

Quadratic 
coefficient 

Monomial 
coefficient 

Constant 
2R  Pixel value Mean of intervals 

1990 TM −8.0942 35.6088 0.9781 −8.1612 35.5866 0.4100 −1.3365 −7.0286 35.4868 0.4109 −0.6403 −0.9890 

1992 TM −7.4503 35.4107 0.9744 −9.0569 36.5539 0.6626 3.8315 −12.5202 36.8455 0.6698 −0.8140 −0.9871 

1994 TM −6.7556 36.4812 0.9936 −6.5170 36.3318 0.2760 −1.5332 −5.2720 36.2340 0.2772 −0.5253 −0.9968 

1997 TM −7.5678 31.1136 0.9717 −8.2169 31.3132 0.4133 0.0570 −8.2664 31.3178 0.4133 −0.6429 −0.9858 

1999 TM −12.2816 44.9093 0.9340 −10.2816 43.8315 0.3177 −9.4809 −2.6838 43.2458 0.3382 −0.5637 −0.9665 

1999 ETM+ −8.2592 38.0257 0.9845 −8.0378 37.9278 0.5256 0.0362 −8.0676 37.9303 0.5256 −0.7250 −0.9922 

2000 ETM+ −8.4197 38.0622 0.9466 −6.0629 37.0959 0.1504 −7.5576 −0.6721 36.7461 0.1701 −0.3878 −0.9730 

2001 ETM+ −9.3462 44.2796 0.9772 −8.8133 44.1252 0.2892 0.0476 −8.8476 44.1275 0.2892 −0.5378 −0.9885 

2001 ASTER −6.7738 40.2789 0.9854 −6.0567 39.8884 0.1332 −4.9580 −1.9717 39.4737 0.1409 −0.3650 −0.9927 

2004 ASTER −2.2155 36.9150 0.7868 −1.6963 36.5617 0.0199 −4.8204 2.6790 36.0580 0.0339 −0.1409 −0.8870 

2006 ASTER −2.9451 30.6702 0.9169 −2.8875 30.6096 0.0236 −0.8655 −2.2508 30.5558 0.0238 −0.1536 −0.9576 

2007 ASTER −8.0054 34.8716 0.8888 −9.5506 35.5724 0.3568 7.8842 −15.9222 36.1484 0.3725 −0.5973 −0.9427 

Mean −7.3429 37.2189 0.9448 −7.1116 37.1165 0.2982 −1.5580 −5.9020 37.0141 0.3055 −0.5078 −0.9716 
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Table 4. Coupling relationship between urban forest and LST. 

 Fit of mean of intervals Linear fit Quadratic fit Pearson’s correlation coefficients 

 
Monomial 
coefficient 

Constant 
2R  

Monomial 
coefficient 

Constant 
2R  

Quadratic 
coefficient 

Monomial 
coefficient 

Constant 
2R  

Pixel 
value 

Mean of intervals 

1990 TM −11.6010 34.5226 0.8539 −12.9336 35.3560 0.4494 8.0636 −18.1931 35.6938 0.4563 −0.6704 −0.9241 

1992 TM −11.1884 36.4250 0.9112 −11.5014 36.5410 0.6489 9.1876 −18.6565 37.1977 0.6595 −0.8055 −0.9546 

1994 TM −7.7636 33.3574 0.7008 −19.1950 36.8026 0.4248 26.3016 −32.2491 37.5484 0.4611 −0.6517 −0.8372 

1997 TM −7.4677 27.6790 0.7026 −13.8285 30.1439 0.3583 21.9188 −29.4157 31.1497 0.4271 −0.5986 −0.8382 

1999 TM −8.1828 38.8291 0.2550 −29.8147 43.9045 0.3698 119.6103 −77.4715 45.8674 0.4924 −0.6081 −0.5049 

1999 ETM+ −7.6300 36.2626 0.7260 −12.8932 37.7325 0.3424 8.6190 −17.2400 38.0232 0.3475 −0.5851 −0.8520 

2000 ETM+ −11.0101 37.5955 0.7022 −8.8423 37.1371 0.1636 −22.1424 2.1104 36.6507 0.1895 −0.4044 −0.8379 

2001 ETM+ −5.4096 41.3349 0.6384 −9.9076 43.6218 0.2384 15.5237 −21.7775 44.2037 0.2963 −0.4882 −0.7990 

2001 ASTER −11.3096 37.6455 0.3905 −23.9683 40.7667 0.1445 −0.3147 −23.8586 40.7600 0.1445 −0.3801 −0.6249 

2004 ASTER −10.1165 36.0246 0.3953 −12.9336 37.4387 0.0859 −18.5385 −5.1195 36.9165 0.0901 −0.2931 −0.6287 

2006 ASTER −10.3612 30.2757 0.9011 −14.6337 31.4104 0.1888 7.2639 −18.0127 31.5644 0.1908 −0.4345 −0.9493 

2007 ASTER −23.4166 38.5703 0.7096 −13.6613 36.4287 0.3683 18.8188 −25.2949 37.4774 0.3874 −0.6069 −0.8424 

Mean −10.4548 35.7102 0.6572 −15.3428 37.2737 0.3152 16.1926 −23.7649 37.7544 0.3452 −0.5439 −0.7994 
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Table 5. Scale effect of the coupling relationships between vegetation information and LST. 

 Resolution 

13 May 1990, Landsat TM 19 May 2001, Landsat ETM+ 8 August 2007, ASTER 

Linear Fit, 
Monomial 
coefficient 

Linear Fit, 
2R  

Pearson’s 

correlation 

coefficients 

Linear Fit, 
Monomial 
coefficient 

Linear Fit,
2R  

Pearson’s 

correlation 

coefficients 

Linear Fit, 
Monomial 
coefficient 

Linear Fit,
2R  

Pearson’s 

correlation 

coefficients 

N
D

V
I 

an
d

 L
S

T
 

30 M −12.29 0.34 –0.62 –17.12 0.31 –0.49 –21.64 0.34 –0.63 

60 M −12.92 0.30 –0.58 –17.37 0.30 –0.36 –23.06 0.36 –0.55 

90 M –13.25 0.25 –0.54 –17.55 0.31 –0.18 –23.65 0.38 –0.39 

120 M –13.16 0.20 –0.49 –17.63 0.31 –0.02 –24.15 0.39 –0.26 

240 M –11.57 0.09 –0.32 –16.96 0.28 0.37 –24.11 0.39 0.16 

480 M –5.95 0.01 –0.12 –15.92 0.24 0.66 –22.74 0.38 0.55 

960 M 6.89 0.01 0.09 –14.87 0.23 0.83 –20.38 0.33 0.77 

V
eg

et
at

io
n

 a
n

d
 L

S
T

 30 M –8.16 0.41 –0.64 –8.81 0.29 –0.54 –9.55 0.36 –0.60 

60 M –8.35 0.35 –0.59 –8.99 0.23 –0.48 –10.14 0.37 –0.61 

90 M –8.62 0.29 –0.54 –8.84 0.17 –0.41 –10.40 0.33 –0.57 

120 M –8.64 0.24 –0.49 –8.56 0.12 –0.35 –10.50 0.29 –0.54 

240 M –7.53 0.10 –0.32 –6.79 0.04 –0.20 –9.57 0.16 –0.40 

480 M –3.35 0.01 –0.10 –2.12 0.00 –0.04 –6.19 0.04 –0.19 

960 M 6.53 0.02 0.13 –6.36 0.04 –0.19 1.11 0.00 0.02 

F
or

es
t 

an
d 

L
ST

 

30 M –12.93 0.45 –0.67 –9.91 0.24 –0.49 –13.66 0.37 –0.61 

60 M  –14.01 0.42 –0.65 –10.86 0.22 –0.47 –14.58 0.33 –0.58 

90 M –14.52 0.37 –0.61 –11.08 0.18 –0.43 –14.73 0.29 –0.53 

120 M –14.64 0.31 –0.56 –10.99 0.15 –0.38 –14.65 0.25 –0.50 

240 M –14.06 0.17 –0.41 –10.17 0.07 –0.27 –12.85 0.13 –0.35 

480 M –10.50 0.05 –0.21 –7.37 0.02 –0.14 –7.42 0.02 –0.15 

960 M 0.14 0.00 0.00 –2.25 0.00 –0.03 1.93 0.00 0.03 
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4. Conclusions 

Mounting land surface temperature has caused many problems, including the deterioration of the 

environment, amplified energy consumption, and growing mortality rates [7]. As Lo and Quattrochi 

pointed out, UHI is caused by dense buildings/roads with rare vegetation cover [37]. Obviously, UHI 

has been driven by a coupled human–environment system [3].This paper chooses Beijing, China as the 

case study area, and analyzes the coupling relationship between urban vegetation and land surface 

temperatures (LST) in detail. The coupling relationship between NDVI and LST is analyzed in detail 

based on the study of multiple years of data. It is postulated that the influence of NDVI on LST could 

be divided into four phases each subject to three thresholds. The threshold values are found to vary 

noticeably due to different external influences. 

Based on the comparison of coupling relationships between NDVI, UVA, UFA and LST, the main 

conclusions are that NDVI, urban vegetation abundance (UVA) and urban forest abundance (UFA) are 

all negatively correlated with land surface temperature (LST). Urban vegetation and urban forest are 

both capable of decreasing LST. Urban forest has a more complex coupling relationship with LST but 

is the most effective factor in reducing LST. The negative correlation between urban vegetation 

information (NDVI, UVA, and UFA) and LST decreases as the scale increases; the influence of urban 

vegetation and urban forest increases initially and then decreases with pixel aggregation, which peaks in 

the range of 90 m ~ 120 m resolution. It is of significance to analyze the spatial pattern of high LST and 

its driving forces for policy implications. 

The monomial coefficient of linear fit of UVA–LST and UFA–LST could be a quantitative reference 

for decision making on decreasing LST in hot summers. It is one of the proofs that urban forest provides 

much more services on adjusting land surface thermal environment than grassland or shrubs covering 

equivalent areas, so that urban forest is not only economic in land use especially in the crowded cities 

but also more capable in mitigating UHI. Future analysis would focus on the influence of detailed urban 

forest information on LST, such as urban forest structure and the surrounding land use of urban forest. 
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