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Abstract: The primary cause of soil degradation in sub-Saharan Africa (SSA) is expansion 

and intensification of agriculture in efforts to feed its growing population. Effective 

solutions will support resilient systems, and must cut across agricultural, environmental, 

and socioeconomic objectives. While many studies compare and contrast the effects of 

different management practices on soil properties, soil degradation can only be evaluated 

within a specific temporal and spatial context using multiple indicators. The extent and rate 

of soil degradation in SSA is still under debate as there are no reliable data, just gross 

estimates. Nevertheless, certain soils are losing their ability to provide food and essential 

ecosystem services, and we know that soil fertility depletion is the primary cause. We 

synthesize data from studies that examined degradation in SSA at broad spatial and 

temporal scales and quantified multiple soil degradation indicators, and we found clear 

indications of degradation across multiple indicators. However, different indicators have 

different trajectories—pH and cation exchange capacity tend to decline linearly, and soil 

organic carbon and yields non-linearly. Future research should focus on how soil 

degradation in SSA leads to changes in ecosystem services, and how to manage these soils 

now and in the future. 
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1. New Perspectives for Examining Soil Degradation in Sub-Saharan Africa 

Soil degradation is a major global problem, the effects of which may be felt most strongly in 

developing countries where large proportions of the population reap their livelihoods directly from the 

soil. In this review, we will focus on soil degradation in sub-Saharan Africa (SSA), where declines in 

crop productivity have been linked to hunger and poverty [1,2]. While the reality of hunger in SSA is 

undeniable, the nature and extent of soil degradation, and the role it plays in the vicious cycle of 

poverty, is still under debate [3]. Across SSA, 75 percent of the population depended on subsistence 

farming at the end of the last century [4,5]. Livelihoods are diversifying [6] and urbanization is on the 

rise [7], but in the near-term, soils in SSA must currently sustain a largely subsistence population. 

Using the Brundtland Commission’s definition of “sustainability”, sustainable soils meet the needs of 

present populations without preventing future generations from meeting their needs [8]; thus, soil 

degradation can be defined in contrast to this, as the processes by which soils can no longer maintain 

the provisioning, supporting and regulating ecosystem services required by current and future 

generations. In order to reverse soil degradation, it is critical to understand the factors that affect the 

stability and resilience of soils.  

Unfortunately, there are few data on soil degradation across SSA, so rigorous assessment 

frameworks are lacking to guide research on the topic. In this review, we will highlight the handful of 

studies that have evaluated soil degradation in SSA in a comprehensive way by clearly defining the  

(1) temporal and (2) spatial scale of analysis and (3) examining multiple degradation indicators.  

We then provide a description of useful methods for measuring degradation in remote regions. Finally, 

we will provide a brief overview of practices that may reverse soil degradation in SSA.  

1.1. Time Horizons 

Long-term data are crucial for evaluating soil degradation, as a snapshot of soil properties can be 

misleading. Soil phosphorus (P) levels in tropical forests, for example, can fluctuate within a day [9], 

year [10], and across centuries [11,12]. Capturing one point in time could incorrectly suggest soil P 

depletion or P surplus. Humans can drive change in soils. Their activities, such as farmer management 

practices, play a large role in soil degradation and may vary greatly between seasons and across  

years [13,14]. Thus, longitudinal studies that follow specific sites for years provide the most reliable 

data on the changes in soil properties over long time scales. Unfortunately, longitudinal studies require 

continuity of access to study sites, funding, and infrastructure. While difficult to secure in any  

region, this is especially true in SSA, where land tenure, political systems, and local markets are 

frequently unstable, and there has been low and inconsistent investment in national universities and 

research institutions.  

Chronosequences are often used in place of longitudinal studies and substitute space for time.  

A primary assumption of chronosequence studies, with respect to soil degradation, is that the soil 

properties at sites characterized by different times since conversion to agriculture were initially the 
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same when under natural vegetation. This approach further assumes that differences among these sites 

represent the trajectory of change in soil properties during periods of cultivation. While this approach 

can be useful, it is limited by (1) the fact that farmers tend to clear the best land first; (2) ability to find 

sites that have similar soil textures and horizon structures; and (3) selection of an appropriate 

benchmark or baseline site. We will examine a number of chronosequences to evaluate and contextualize 

their findings.  

In order to understand the extent of soil degradation in SSA, we need clear baselines from which to 

examine the differences in physical and chemical properties. Studying fossil plants (e.g., pollen grains 

and macrofossils) allows scientists to reconstruct the history of forest loss [15], and river sediments to 

provide insights into erosion rates over several centuries [16]. Still, there is a paucity of data on early 

forest cover and practically no data on historical soil fertility in SSA (even from this last century). 

Appropriate selection of a baseline or reference state is particularly crucial for any study on degradation. 

When a forest becomes a farm, a land use shift occurs, and suddenly, the controls on ecosystem 

structure and function change as the system settles into a different state (stability domain) [17,18].  

For example, monitoring the system on any stable branch before or after the switch would lead one to 

conclude that little change occurred, but monitoring during the rapid state change might suggest 

“catastrophic” losses in SOC [17]. Thus resilience, like soil degradation, must be evaluated over a long 

time period in order to observe the ability or inability of the ecosystem to continue to perform its 

desired functions when confronted with stress or external shocks [19]. 

Sub-Saharan Africa itself underwent a major land use change about 3000 years ago when much of 

the Central African rainforest was rapidly replaced by savannas. Though often linked to climate 

change, recent evidence suggests that the transformation may have been related to a major population 

expansion of the Bantu people across Central Africa, which led to the clearance of vast swaths of land 

for shifting cultivation and charcoal production [20]. Such strong ecosystem shifts indicate that 

ecosystem resilience itself can be changed or degraded by both natural and human forcings. At the 

same time, the persistence of ecosystems and societies suggests that resilient systems must be adaptive 

systems [21,22]. The resilience conceptual framework is particularly useful for evaluating soil 

degradation in SSA as both degradation and resilience must be evaluated within its spatial, temporal, 

economic, environmental, and cultural context [23].  

1.2. Spatial Scales 

Sub-Saharan Africa is an enormous region of 24.6 million km2, with a huge range of soil and land 

management types [24]. The predominant soils (Table 1) are Arenosols (21.5%), Cambisols (10.8%), 

and Ferralsols (10.4%), and Leptosols (17.5%). The type and degrees of soil constraints vary widely. 

Nearly 40% of soils in SSA are low in nutrient capital reserves (<10% weatherable minerals), 25% 

suffer from aluminum toxicity, and 18% have a high leaching potential (low buffering capacity; [25]; 

Table 3). A region’s initial soil fertility will affect the extent of soil degradation—with regions of low 

soil fertility degrading more quickly than regions with higher natural soil fertility. If (plant-available) 

soil nutrient stocks are initially high, the process of nutrient depletion can take a long time, but the 

absolute amount of nutrients lost will be high. However, if nutrient stocks are low to begin with, this 

process can reach critical levels within a few years. Further, inherent soil properties will play a large 
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role in resilience and sustainability of a particular land use (e.g., how long continuous agriculture 

remains productive). For example, anion exchange capacity in subsoils will affect the ability of soils to 

retain and efficiently recycle nutrients (in particular, anions like NO3
−; [26,27]). These subsoil 

properties are highly spatially variable [28,29] and often ignored in soil degradation studies—only two 

out of 18 studies in Table 4 reported subsoil properties. 

Table 1. Distribution of soil types in Africa based on the Harmonized World Soil 

Database. Modified from [24]. 

Million ha in Africa Percent of Land in Africa * 

Acrisol 87.8 2.9 
Alisols 20.3 0.7 

Andosols 4.0 0.1 
Arenosols 650.3 21.5 

Chernozems 1.0 <0.1 
Calcisols 161.0 5.3 

Cambisols 325.4 10.8 
Durisols 0.9 <0.1 
Fluvisols 82.2 2.7 
Ferralsols 312.4 10.3 
Gleysols 52.5 1.7 
Gypsisols 37.5 1.2 
Histosols 4.4 0.1 

Kastanozems 2.7 0.1 
Leptosols 530.0 17.5 
Luvisols 105.1 3.5 
Lixisols 126.8 4.2 
Nitisols 60.4 2 

Phaeozems 12.1 0.4 
Planosols 27.7 0.9 

Plinthosols 146.1 4.8 
Podzols 2.9 0.1 
Regosols 93.5 3.1 

Solonchaks 32.6 1.1 
Solonets 36.0 1.2 

Stagnosols 0.5 <0.1 
Technosols 0.0 <0.1 
Umbrisols 5.6 0.2 
Vertisols 102.0 3.4 

* Note that percentages do not add up to 100% as soil may be affected by multiple soil modifiers. 

Soil degradation occurs at multiple scales: a farm field (individual), a farming community (social 

system), or landscape (biophysical system). There is no single scale at which it must be studied, but it 

is critical that the chosen spatial scale of analysis can encompass the type of soil degradation being 

described. For example, the presence of gullies in farms is usually indicative of a change in land use 

upstream (at the head of the watershed) such as heavy grazing or excessively mechanized agriculture, 
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which leads to erosion or contamination downstream [30]. In SSA, this raises some interesting cultural 

concerns, because uplands and foothills will surely be managed by different households (landholdings 

are small in SSA). In some cases, neighboring areas are managed by different ethnic groups, with 

pastoralists of one ethnic group grazing cattle upslope from agriculturalists of a different ethnic group. 

Clearly, solving landscape-level erosion issues requires community cooperation across agroecological 

zones that may cross ethnic and cultural lines. 

Most studies in the literature compare and contrast management practices [31–34] or examine one 

farming practice across different regions [5,35]. There are relatively few studies that attempt to 

examine soil degradation at a scale that can encompass the spatial and temporal heterogeneity of 

farmed landscapes in SSA. Although a great deal of soil data exists for Africa, there is little 

standardization in the sampling design or analytical tests conducted. The Africa Soils Information 

System is an example of how this situation may be remedied in the future by standardized protocols 

that examine change at large spatial scales through time [36]. 

1.3. Multiple Indicators 

When evaluating soil degradation, it is important to define the particular ecosystem function, 

management practice, and/or livelihood outcome you are trying to sustain [19], which usually cannot 

be captured by one soil property or indicator. Certain soil properties may be considered “degraded” for 

a particular crop, but not for another [37,38]. For example, higher soil residue cover may prevent N 

losses during the non-growing season (good for the environment), but lead to reduced available N 

during the following growing season (bad for yields [39,40]). While some indicators of degradation are 

incontrovertible (e.g., gully formation), others are evaluated subjectively (e.g., livestock walk longer to 

reach water; [41]). It was this subjectivity that led to the heated debates of the 1990s surrounding soil 

degradation in SSA. Some studies suggested that SSA agriculture was inherently unsustainable, and 

indicated losses of productivity due to erosion and declines in soil fertility at continental [42,43] and 

global scales [44]. However, estimations of the extent and rate of degradation was limited by an overall 

lack of biophysical data on Africa, and thus relied heavily on estimations of one indicator (namely, 

erosion, which was modeled not measured) and interpolation when scaling-up to regions and countries [3]. 

Many refuted the claim that farmers were to blame for the increased rates of soil degradation and 

suggested that more attention should be paid to farmer knowledge and adaptability [45–48]. It is not 

the goal of this review to resolve this debate, rather, we offer a critical examination of the works that 

have followed in its wake. We find that even decades later, there are very few studies that have 

comprehensively measured soil degradation in SSA.  

2. Soil Degradation in Sub-Saharan Africa 

2.1. Drivers of Degradation 

Sociopolitical and economic drivers determine (1) where; (2) which; and (3) how many people live 

in a given region. In many cases, the poorest people in SSA are pushed into unproductive lands, or 

areas with minimal infrastructure and accessibility [49]. One of the most extreme examples of this is 

Tanzania’s Ujamaa “villagization” campaign of 1973–1976, where over five million rural residents 
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were relocated from their dispersed family homesteads into concentrated settlements [50]. The social 

and ecological effects of this major resettlement campaign are evinced in the replacement of fallow 

cycles with intensified, continuous cropping systems.  

The tenure system often determines how land is managed and used and thus is often implicated as a 

primary driver of degradation [51,52]. For example, in smallholder systems in East Africa, investments 

in soil fertility are more likely when there is security in tenure or ownership [53]. For those who have 

tenure, policies that raise the farm-gate prices of commodities are critical means for encouraging good 

land management strategies since they provide farmers with both resources and incentives [48]. 

Smallholder farmers in SSA often operate at the economic “margin” where agricultural investments 

are a lower household priority than school fees, medical treatment, or funeral costs [53]. Farmer wealth 

and ethnicity often determines whether soil degradation can be addressed on the farm. Wealthier 

farmers, who have more access to resources, are better equipped to cope with soil degradation [54].  

Gender roles have direct input on household foods security and nutritional levels [55]. Men are 

often forced to seek jobs in urban areas leaving women to tend to the land, but without the primary  

decision-making power. Women and men also tend to invest differently in soil fertility management, 

with women more likely to adopt organic amendments like manure and men more likely to purchase 

mineral fertilizer [56]. Population density in farming communities will also have a large impact, either 

positive or negative, on degradation potential. High population density usually means little land 

available for rotation into natural vegetation fallow. However, low population density may result in 

labor shortages and long distance from homestead to fields. Labor shortage is a primary reason why 

labor-intensive conservation measures have low adoption rates in many regions of SSA [57].  

2.2. Types of Degradation in Sub-Saharan Africa 

Soils can be altered physically, chemically, or biologically as the result of natural processes (Table 2). 

For example, soil itself forms over millennia through physical and chemical weathering of rocks 

(morphogenesis/soil formation). Wind erosion shifts the dunes in sparsely vegetated deserts, and 

transports dust to other continents. Humans, however, are accelerating many of these natural 

processes, causing the degradation of soils.  

Physical degradation can occur when excessive soil tillage breaks down soil aggregates; thus 

rapidly decomposing organic matter, loosening the soil in excess and making it vulnerable to wind and 

water erosion. Cultivation on steep slopes, clearing of vegetation (especially leaving land bare between 

cultivation cycles), and poorly managed grazing are the primary factors accelerating soil erosion in 

SSA [58]. High rates of topsoil loss contribute to downstream sedimentation and degradation of local 

and regional water bodies. For example, in Tigray, Ethiopia, reservoirs designed to improve water 

access with a 20-year lifespan, lost half of their storage capacity in only five years due to 

sedimentation [59]. Tillage itself—independent of wind and water—also moves a great deal of soil 

downslope. This is especially evident on steep, short slopes where hand or animal traction tillage 

moves the soil preferentially in the easier downslope direction [60]. Poorly managed grazing in 

pastureland can also contribute significant amounts of sediment downstream [61]. Poor management 

of both grazing and tillage can lead to compaction of surface or subsurface soil layers [62], and in turn 

to reduced infiltration [63]. 
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Table 2. Major types of soil degradation and the conditions under which they are most commonly found. Although the table separates 

physical, chemical and biological degradation, in reality soils are complex systems in which these processes interact and influence one 

another. The first three processes listed, erosion by water, wind and tillage, together dominate soil degradation on the vast majority of land 

area degraded. (Modified from [64]). 

Category Specific degradation processes 
State factors 

Socioeconomic drivers 
Parent material and topography Climate 

Physical  

Soil erosion by water Slope Humid to semi-arid regions Tillage agriculture, deforestation and improper grazing 

Soil erosion by wind Less vegetation Semi-arid to arid regions 
Disturbance of soil, vegetation or bio-crust by agricultural  
tillage and poorly-managed grazing 

Soil erosion by tillage Hilly landscapes Continuous cultivation, especially with tillage 
Surface sealing  Low organic matter sandy or silty soils Urbanization, compaction, tillage 
Soil compaction Clayey soils Humid regions  Heavy machinery, grazing  
Reduced capacity to store water  Low organic matter Compaction, erosion, removal of mulch or residue 

Chemical 

Nutrient depletion Low inherent fertility Low input agriculture, grazing, excessive forest harvest 
Acidification Old, weathered soils Humid regions Excessive N fertilization, leaching, sulfur and nitrogen oxidation 

Dispersion/alkalization 
Excessive monovalent ions, exposure 
and incorporation of calcareous 
subsoil material into surface horizon 

 
Poor quality irrigation water, loss of perennial vegetation, tillage 

Salinization Shallow water table Arid to semi-arid regions Excessive irrigation 
Toxic Contamination Urbanization, mining, industrial waste spillage or disposal 

Biological 

Depletion of soil organic matter 
Sandy texture, steep slopes, deep 
water table 

High temperatures, 
limited rainfall 

Degradation of vegetation, excessive tillage, lack of sufficient 
organic amendments and plant residues; excessive biomass 
removal by harvest, grazing or fire; erosion of sloping surface  
soil by tillage, wind and water  

Loss of soil biological diversity 

Sandy texture, steep slopes, root 
limiting subsoil layers (fragipans, 
cemented layers, aluminum toxicity, 
calcic horizons) 

High temperatures Mono-cropping, deforestation and poorly managed grazing 

Loss of plant, animal and 
microbial biomass 

Side slopes, shallow bedrock, root 
limiting subsoil layers (fragipans, 
cemented layers, aluminum toxicity, 
calcic horizons) 

 

Reduced plant growth and subsequent addition of litter,  
roots and exudates limits carbon fuel for food web; exposure  
to extremes of dryness and temperature by removal of plant litter; 
destruction of macropores, aggregates and other habitat by tillage, 
compaction and erosion. 
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Unlike physical degradation, chemical soil degradation it not easily observed by the naked eye. 

Nutrient depletion is the primary form of soil degradation in SSA. For decades, across SSA, nutrient 

outputs have exceeded inputs, exhausting soil nutrient pools. Partial nutrient balances (or budgets) are 

typically used to describe the stocks and fluxes (ins and outs) of a soil [65]. They have been calculated 

for many different regions and countries [66], and are often used in Africa to evaluate management 

practices that promote nutrient surpluses or deficits [42,67–69]. In many SSA farming systems, certain 

soils suffer from nutrient depletion even if the whole farm or farming community does not. This 

pattern of nutrient depletion has been documented in many studies that show how nutrients are 

transported from “out fields” to fields near the homestead in the form of crops harvested and animal 

manure deposited [68,70]. 

Soils in SSA also suffer from declining cation exchange capacity, cation imbalances, and declining 

soil pH (which can lead to Al toxicity; Table 3). Secondary soil acidification can occur due to  

long-term application of relatively high rates of N fertilizers (mostly in South Africa) or continuous 

cropping without organic inputs [71]. In certain coastal area (e.g., Senegal, Gambia), lowering of the 

water table for crop production has led to formation of active acid sulfate soils and extreme acidity  

(pH < 3.5) [72]. Alkalization can also occur when perennial vegetation is lost, or when calcareous 

subsoil material is incorporated into the topsoil as a result of erosion or tillage [73]. Other forms of 

chemical degradation such as salinization, while common in other tropical soils, is less common than 

alkalization in SSA [74] (Table 3). 

Table 3. Prevalence of soil constraints in sub-Saharan Africa based on the fertility 

capability soil classification (FCC) system [25,75]. 

Soil Constraint Modifier 
Million ha 

in SSA 
Percent of 

Land in SSA * 

Low nutrient capital reserves k 942.06 39.94 
Al toxicity a 588.27 24.94 
High P fixation i 200.35 8.49 
Steep sloped (>30%) s 55.62 2.36 
Poor drainage g 159.95 6.78 
High leaching potential e 425.05 18.02 
Calcareous reaction b 158.11 6.70 
Salinity s 19.09 0.81 
Alkalinity n 52.06 2.21 
Allophane x 2.83 0.12 
Shrink-swell v 132.65 5.62 
Total area 2358.79 

* Note that percentages do not add up to 100% as soil may be affected by multiple soil modifiers. 

Biological degradation is closely linked to chemical degradation. Both the balance of different 

nutrients and their chemical forms are also important to soil fertility [76,77]. Population pressures in 

some countries have reduced or eliminated natural fallow periods, reducing nutrient and organic matter 

inputs [3,78,79] and thus causing declines in soil biological activity and soil species diversity [80–82] 

Reductions in organic matter can reduce porosity [83,84] and infiltration capacity and therefore change 
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water and nutrient cycles, plant productivity, and even the energy balance of a system [85,86].  

The abundance and biodiversity of soil organisms is reduced as a result of intensive grazing, biomass 

burning (either of crop residue or for land clearing) [87], tillage and bed preparation [88], leaving soils 

bare, mono-cropping, especially in maize growing areas, and excess fertilizer application [82,89].  

Such changes in the soil diversity (or functional diversity) of soil biota can affect the availability of 

nutrients [90,91] and alter pest and disease pressure [81] as well as the complexity of food-webs [81] 

with consequences for ecosystem resilience.  

3. Synthesis of Knowledge  

While the African subcontinent is often at the nexus of discussions on soil degradation, a relatively 

small number of studies rigorously assess it. We define rigorous assessments as studies having:  

(1) A temporal dimension, as degradation is a dynamic process;  

(2) A spatial scale of analysis that is meaningful both for assessing degradation and for providing 

soil management recommendation for smallholder farmers; and 

(3) Multiple criteria of assessment that reflect the use of the soil because degradation results from a 

complex set of processes and cannot be captured in a single measure. 

We identified 18 studies that meet these criteria (see Table 4). We classified these studies into three 

groups: longitudinal studies, chronosequences, and integrated assessments. 

3.1. Methods for Data Synthesis 

Information on the temporal and spatial scale, indicators measured, etc. from each study is reported 

in Table 4. We also extracted data from 15 of those studies that reported soils data. We extracted data 

from four studies in annual crops (e.g., maize) that reported cation exchange capacity (CEC) from soils 

collected from 0–10 or 0–15 cm depth. In all four studies, CEC was measured at pH 5.5–7.5, and 

calculated by summing the base cations. Study sites had similar clay contents (~20%) and bulk 

densities (66 g cm−3) and did not report data from an uncultivated site, thus we report raw CEC data. 

Thirty-year trends in soil pH are reported for red soils near Holetta Research Center, Ethiopia. These 

data are previously unpublished (Appendix). Soil organic carbon (SOC) data were extracted from three 

published studies plus unpublished data from the Holetta red soils (R. Weil; Appendix), all of which 

used the Walkley-Black method for SOC determination. To normalize the data from different soil 

types and agroecological zones, we calculated the percent SOC remaining and plotted against time 

since conversion. Data on maize yields were reported in tons ha−1 from two regions: western Kenya 

and southwestern Nigeria. In some cases, the farm field age was not reported, thus we used reported 

sampling dates and the date of forest clearance to calculate the time since forest conversion. To avoid 

any site or sampling bias, we plotted maize yield data separately for the two regions. When data were 

reported in graphical form, they were extracted using GraphClick 3.0 (Arizona Software, 2008). 

Figures and statistics were performed in the R statistical package [92]. 
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Table 4. Published studies examining soil degradation across large spatial and temporal scales using multiple indicators. 

Reference 
Study 

Type 

Select Indicators of Degradation Temporal 

scale 
Spatial scale 

Baseline 

(Reference) 
Depth Region Trajectory 

Quantitative Qualitative 

[93] Chrono 

Particle size, Water holding capacity, 

SOM, Exch. Ca, Exch. K, Exch. 

Mg, total N, Ext. P, pH, and CEC 

NA 15 years Landscape 
 

0–20 cm Nigeria Downward 

[94] Chrono 

Soil spectra, total C, Exch. Mg, 

Exch. Ca, Exch. K, total N, pH, 

ECEC, Clay, Silt, and Sand 

NA 100 years Landscape 
Humid tropical 

forest 
0–20 cm Kenya Downward 

[95] Chrono 

Total N, pH, SOM, Sand, Silt, 

Clay, Bulk density, Tree density, 

Tree species 

NA 50 years Landscape 

Tropical dry  

Afro-montane 

forest (deforested/

heavy harvesting) 

0–100 cm Ethiopia Downward 

[16] Long 

Soil erosion (water-induced), 

Sediment flux, River discharge, and 

Coral Ba/Ca 

NA 300 years 
River basin 

(66,800 km2) 
None NA Kenya Downward 

[78] 
Long; 

Integ 

Land use and land cover. Trees in 

fields, CEC, Exch. Ca, Exch. K, 

Exch. Mg, total N, Ext. P, pH,  

and SOC 

Farmer mgmt, 

perception of 

change, veg 

cover 

15 years 

(imagery); 

8 years 

(soils) 

Multi-scale 

(Landscape 

and farm 

field) 

1981—imagery; 

1988—soils 
0–20 cm 

Burkina 

Faso 

Minimal change 

to upward (field 

scale), Possibly 

downward 

(landscape scale) 

[96] Long 
Exch. Ca, Exch. Mg, ECEC, SOC, 

pH, bulk density, maize grain yield 
NA 13 years Landscape Tropical forest 0–15 cm Nigeria 

Mixed dependent 

on management 

strategies: 

Decline without 

fallow or addition 

of organic input 

[97] Chrono 

Total N, Ext. P, SOM, Maize 

biomass, Plant tissue (N, P, K, Ca, 

Mg, Mn, Cu and Zn), 

Socioeconomic survey 

Crop yield, 

Indicator 

plants, Soil 

softness and 

Soil color 

57 years Landscape 

Tropical dry  

Afromontane 

forest (deforested/

heavy harvesting) 

0–20 cm Ethiopia 
Downward 

(maize biomass) 
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Table 4. Cont. 

Reference 
Study 

Type 

Select Indicators of Degradation Temporal 

scale 
Spatial scale 

Baseline 

(Reference) 
Depth Region Trajectory 

Quantitative Qualitative 

[98] Chrono 

CEC (effective and potential), pH, 

SOC, Grain and stover yield, Plant 

tissue: N, P, K, Ca, and Mg 

NA 100 years Landscape 
Humid tropical 

forest 
0–10 cm Kenya 

Downward  

(non-linear) 

[99] Long 

Land cover classes, Precipitation, 

Socioeconomic survey, Soil 

chemical properties 

Incidence of 

soil erosion 
40 years Landscape Baseline (1966) NA Tanzania 

Spatially 

heterogeneous 

(Downward in 

some zones) 

[100] Long 

CEC, Exch. Ca, Exch. K, Exch. 

Mg, pH, total N, Ext. P, SOC, Bulk 

density, Infiltration, Penetrometer 

resistance, Soil moisture retention, 

Water stable aggregates, and Yield 

NA 8 years 
Farm field 

(Field trial)  
0–20 cm Nigeria 

Downward 

(dependent on 

management) 

[79,101] Chrono 

Soil depth, Base Saturation, % of 

CEC, C:N, Exch. Ca, Exch. K, 

Exch. Na, Total N, Ext. P, pH, 

SOC, Bulk density, Particle size 

analysis, Pore space, 13C and 15N, 

carbon fractions 

Qualitative 

land 

evaluation for 

maize 

53 years Landscape 

Tropical dry  

Afro-montane 

forest 

(deforested/heavy 

harvesting) 

0–20 cm; 

60–70 cm, 

90–100 cm 

Ethiopia 

Downward  

(C-exponential) 

in topsoil, C & N 

increase in 

subsoil 

[102] Chrono 

Active C, CEC, Exch. Ca, EC, 

Exch. K, Exch. Mg, pH, Total N, 

Ext. P, S, SOM, Zn, Sand, Silt, 

Clay, Water stable aggregation 

(WSA), Available water capacity 

(AWC), Penetrometer resistance, 

Crop yield 

NA 77 years Landscape 
Humid tropical 

forest 

0–15 cm, 

0–45 cm 
Kenya 

Downward in 

most properties, 

slope of 

trajectory less 

severe with better 

soil management 
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Table 4. Cont. 

Reference 
Study 

Type 

Select Indicators of Degradation Temporal 

scale 
Spatial scale 

Baseline 

(Reference) 
Depth Region Trajectory 

Quantitative Qualitative 

[103] Chrono 

Mineral N, P fractions, P sorption 

capacity, Fertilizer recovery, Maize 

yield, Maize nutrient concentration 

NA 100 years Landscape 
Humid tropical 

forest 
0–10 cm Kenya 

Downward trend 

in soil fertility; 

yield increased 

dependent on 

nutrient additions 

[104] Chrono 

Soil C & N concentration, Isotopic 

signature of soil C, Infiltrability, 

Bulk density, Proportion of macro 

and micro-aggregates in soil 

Crop yield 

estimates 
120 years Landscape 

Humid tropical 

forest 
0–15 cm Kenya Downward 

[105] Long 

EC, Exch. K & Exch. Mg, Ext. P, 

pH, SOM, and Plant tissue analysis 

(N, P, K, Ca, Mg, S, Zn, B, Mn, Fe, 

Cu and Al) 

NA 7 years Sub-national Baseline (1991) 0–15 cm Gambia Minimal change 

[106] Chrono 
13C, Near-edge X-ray absorption 

fine structure, SOC, 
NA 

103 years 

(Kenya); 

90 years 

(South 

Africa) 

Landscape 

Humid tropical 

forest (Kenya); 

Subtropical 

grassland (South 

Africa) 

0–10 cm 

(Kenya;  

0–20 cm 

(South 

Africa) 

Kenya; 

South 

Africa 

Downward 

(exponential) 

[41] 
Chrono; 

Integ 

N, P, K, SOC, Woody and 

herbaceous species, Land cover 

change 

Soil properties 

Livestock 

Yield, Pests, 

Trees 

50 years 

(soil);  

15 years 

(imagery) 

Landscape 
Grass strips 

adjacent to fields 
NA 

Botswan

a and 

Swazilan

d 

Downward 

[107] Chrono 

CEC, Exch. Ca, Exch. K, Exch. 

Mg, pH, total N, Ext. P, SOC, Clay, 

Silt, SFI, Surface reflectance, Soil 

spectra 

Soil quality - 

poor, average, 

good 

50 years Landscape Rainforest 0–20 cm 
Madagas

car 
Downward 
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3.2. Longitudinal Studies 

We identified six studies that go beyond the traditional long-term trials to examine soil degradation 

in SSA. In sum, these studies indicate that rates of soil degradation vary through time (are non-linear) 

and that not all indicators behave the same way. The longest study is the best example of this, which 

uses coral barium to calcium ratios from the Malindi reef to evaluate sediment transport (erosion) from 

the Sabaki river basin in Kenya [16]. Sediment flux was relatively low and consistent from 1700 to 

1905, but rises after 1905, corresponding to the start of British settlement and land clearing, and 

periodic spikes that can be traced back to historical changes in land management. This study clearly 

shows that picking one point (or a small portion) along the timeline does not capture the dynamics of 

soil degradation. While a study in Nigeria showed steady declines in pH, soil organic carbon (SOC), 

and available P (over eight years; [100]), a similar study in Gambia (over 1159 fields) showed no 

changes in any of those soil properties (over six years) [105]. Seemingly conflicting results may be due 

to the fact that sites are at different points along a non-linear curve. For example, a 13-year study in 

Nigeria showed non-linear trends in many indicators, with SOC and maize yields declining in the first 

seven years of the study (similar to [100]), and reaching a steady state for the remainder of the study 

(similar to [105]; Figure 1d). On the other hand, soil pH, exchangeable calcium and magnesium, and 

effective CEC all declined linearly with each year of continuous cultivation [96]; Figure 1a,c). A final 

study showed different conclusions about degradation could be drawn from different indicators. The 

comparison of land-cover maps for the Monduli District in northeast Tanzania showed a 94% increase 

in agricultural, but only a 16% decline in vegetation between the 1960s and the 1990s. Using only one 

of these indicators would easily lead one to different conclusions regarding the extent of degradation. 

Between the 1991 and 1999, however, was the rapid increase (by almost 1700%) in the presence of 

gullies and bare land, (equivalent to 1400 ha per year across 400,000 ha [99]). 

3.3. Chronosequences (Space-for-Time) 

Chronosequences are the most common method for studying soil degradation. Typically, forests are 

used as the baseline, with only the upper few cm of soil considered. Thus, cultivated soils almost 

always appear degraded in comparison. Most of the studies were located in the same region using 

Kenya’s Kakamega and Nandi forests as the baseline and measured soil properties in continuous maize 

farms cleared between 50 and 100 years ago [94,98,102,103,106,108]. Similar to the longitudinal 

studies, chronosequences tended to show non-linear declines in topsoil properties with time since 

forest conversion to agriculture. Soil infiltrability [93], SOM [93,102,106], Soil P [103], pH [102,107], 

and total C and N [107,108] all showed marked declines in cultivated compared to forested baselines.  

Soil type varies widely across SSA ([74]; Table 3), and thus it is possible that some results may be 

confounded by differences in inherent soil properties. For example, soil texture in the soil profile is a 

property not likely to change considerably with either management or time, and thus similarity in the 

texture (and color) profile is a good indication that the soils are comparable across space and time. 

Further, soils in chronosequence sites should belong to the same Great Group in Soil Taxonomy [109]. 

If one is examining erosion, the criteria should also be adjusted for topsoil loss. For an excellent 

example of how soil profiles are used to validate a chronosequence (in Brazil), see [110]. Almost all 
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the studies examined only the top 10 cm, comparing the rich A horizon of a forest soil to the Ap 

horizon of an agricultural soil (mixture of the A and B horizons). This is a serious limitation of many 

of the studies presented here, as only one study presented texture data to 100 cm [95] and another to  

40 cm [79].  

The studies that examined multiple depths also found non-linear declines in topsoil C and N with 

increasing farm age, eventually reaching steady state after several decades [79,95,101] (Figure 1c). 

However, they also showed that a good portion of this C (70%) may be transferred to the deeper soil 

layers [80], and total C stocks (0–1 m) remain stable for many decades [95]. Non-linear declines in 

(unfertilized) maize yields, served as an indicator of soil degradation in many studies. Yields declined 

rapidly immediately following forest conversion to agriculture (first 14 years; [96,100]), but reached a 

steady state after 35 years [103], 77 years [102] and after 100 years of cultivation ([106]; Figure 1d). 

 

Figure 1. Selected indicators of soil degradation as a function of time since conversion.  

(a) Cation exchange capacity (CEC; 0–10 cm); (b) pH in water (1:1 slurry); (c) percent 

remaining soil organic carbon (SOC); and (d) maize yields with increasing time since 

forest conversion. Where data were reported in graphical form, points were extracted using 

GraphClick 3.0 (Arizona Software, 2008). In panel (b), dashed line represents the point 

below which aluminum toxicity can occur (pH = 5.0). In panel (d), two trend lines are 

reported for the two study regions: YieldKE refers to the best-fit equation for maize yields 

from Kenya and YieldNI the equation for maize yields from Nigeria. Number corresponds 

to the source study in References section. 

3.4. Integrated Assessments 

Studies that actively involve community members have the potential to improve their relevance and 

application, and are more likely to have broad impact on land management and system resilience. 
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Farmers and scientists measure soil degradation differently with the former often relying on visual 

assessments of crop performance and yield and the latter on chemical analyses. Still, in some cases, 

there is good agreement between farmers knowledge and scientific indicators of soil degradation 

(SOM and maize yields; [97]). There was significant overlap between scientific and local understanding 

of soil degradation indicators (e.g., crop yield, plant stunting and presence of weeds) in Swaziland and 

Botswana [41] and Ethiopia [111], however no data on soil properties other than color and texture 

were collected.  

Where scientists manage soils to maximize fertility and improve production, farmers optimize soil 

use for livelihood priorities. Thus, degradation may be difficult to discern from integrated assessments, 

which evaluate specific priorities. For example, the replacement of forest by cropland can be used as a 

landscape scale indicator of degradation [78], even if at the field-scale, farmers report no declines in 

yield. Similarly, farmers may report improving maize yields when soil properties (C, N, and pH) 

remain unchanged [48]. 

Clearly the goal is to reverse degradation, and therefore farmer perceptions must not be overlooked, 

as they are a primary actor on agricultural landscapes. Farmers provide invaluable information on the 

location and type of degradation they observe on their lands as well as describe solutions. Still, to 

rigorously assess the trajectory or extent of degradation, quantitative data on soil properties must  

be collected. 

3.5. Synthesis Summary 

Overall, the longitudinal and the chronosequence studies indicate that most indicators of soil 

degradation decline with time since conversion. However, the rate of change differs among them, 

emphasizing the importance of evaluating multiple indicators when assessing degradation. We found 

that soil chemical properties (CEC, exchangeable bases, pH) decline linearly with farm age (Figure 1a,b). 

On the other hand, soil biological properties (SOC, maize yields) tend to decline rapidly at first and 

then reach a steady state (Figure 1c,d). Differing responses have consequences for thresholds and 

system resilience. For example, chemical thresholds may be easier to define and their consequences for 

ecosystem functioning more predictable. For example, aluminum toxicity can occur in soils with a pH 

(in water) below 5.5, depending on the percentage of aluminum saturation, at which point crop yields 

may suffer substantially [112]. On the other hand, losses of SOC will have different consequences 

depending on other biophysical conditions. That is, a dramatic loss of SOC in a sandy soil may lead to 

a regime change as the primary mechanism for water retention is removed [113–115]. Soil moisture in 

a clayey soil, on the other hand, which has a higher water holding capacity, may not be as sensitive to 

SOC loss. As agriculture in SSA is primarily rain-fed, any changes in soil moisture regimes will have 

serious consequences for crop yields and food security outcomes. The integrated assessments indicate 

that some farmers are good and others are poor quantitative estimators of soil degradation, and that 

soils and yield should always be monitored in tandem with farmer perceptions in order to make 

accurate assessments of degradation. Farmers are the primary actors and stakeholders on the SSA 

landscape; their perspective must not be ignored, especially when it comes to developing strategies for 

reversing degradation and improving food security.  
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4. Methods for Monitoring Soil Degradation in Sub-Saharan Africa 

Clearly, long-term monitoring is needed as reporting changes in degradation indicators (especially 

biological indicators like SOC) on a stable branch suggest little change, while monitoring only during 

the rapid decline suggest dramatic losses [17]. While there have been major logistical barriers to 

measuring soil physical and chemical properties in SSA due to a lack of resources, recent growth in 

investment and technical expertise in SSA is leading to better environmental monitoring. Sample 

preservation, transportation, and traditional chemical analysis are limited in the region. Here, we offer 

practical methods for evaluating soil degradation in spite of the logistical barriers encountered in 

remote regions.  

4.1. Visual Indicators 

Visual assessment can provide much detail on the state and potential drivers of soil degradation. 

Root exposure in trees and shrubs are other indicators of soil erosion that can be quickly assessed. 

Crop productivity often declines as you move uphill (even on very gentle slopes) as soil moves 

downslope (Figure 2). Erosion “pins” can be deployed easily at the beginning of a cropping season to 

measure the amount of sheet erosion occurring within a given time period [116].  

 

Figure 2. (A) Difference in size maize plants in (B) a field experiencing soil degradation 

due to erosion near Mwandama, Malawi. Reduced stature of maize (B) appears to be a 

matter of perspective however, when plants from each end of the field are compared  

side-by-side (A), it is clear that small slope can have dramatic effects on crop productivity 

due to the movement of water, soil, and nutrients. Photo credit, R. Weil. 
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4.2. Management Indicators 

Biomass removal is a common practice in smallholder systems where weeds and crop residues are 

uprooted from the farm field and tossed to the field edges. Relocation of this biomass translates to 

relocation of valuable nutrients and organic matter to the field edges and nutrient mining in the middle 

of the farm fields. In contrast, rice threshing often occurs in the middle of the drained paddy, which 

concentrates nutrients (mainly K) in the center of the field (Figure 3).  

 

Figure 3. Aerial photograph of rice paddies after harvest in Tanzania. Difference in soil 

color in the middle of the fields is indicative of variation in soil nutrient availability within 

rice paddies, which is caused by the movement of biomass to the middle of the field during 

threshing. Photo credit, R. Weil. 

4.3. Physical Indicators 

The soil aggregate stability is a key indicator as it integrates physical, chemical, and biological 

information into a single measurement. It is closely related to soil organic matter composition [117], 

biological activity [118], infiltration capacity [119], and erosion resistance [120]. The micro-sieve 

method developed by [121] is a simple, field-ready assessment of aggregate stability that can provide 

detailed information on management-induced changes to soil structure.  
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4.4. Chemical Indicators 

Soil organic matter content is another integrative measure of soil degradation. Active carbon (C) 

can be determined in the field using a dilute permanganate extraction and can serve as a good proxy 

for soil organic matter [122]. If laboratory facilities are available, we suggest measuring total organic 

matter, pH and other important plant nutrients (total N, inorganic N, available and total P, total S, 

exchangeable Ca, Mg, K). Further, most soil tests are performed on the top 15 cm of soil, with subsoil 

properties largely ignored. We suggest that studies examine both the A horizon (typically 0–15 cm) 

and the upper subsoil (usually a B horizon at 20–50 cm). Sampling soil increments solely by a set 

depth may confound changes in horizon thickness and allow a single sample to cross boundaries 

between contrasting horizons. In fact, the thickness of the A horizon is a valuable measure of 

degradation where a clear color change marks the boundary of the horizon. Likewise, if a profile is 

characterized by a clay accumulation or an old erosional surface or stone line, the depth from the 

surface or from the bottom of the A horizon to the top of the subsoil layer may also be indicative of 

soil truncation and degradation (but could also indicate a shallow soil). Assessing nutrient depletion 

solely on topsoil soil properties may be especially misleading for some elements. For example, K may 

be low in the topsoil, but be in sufficient quantities of the subsoil [123,124]. Other important indicators 

will depend on the location. For example, in regions vulnerable to salinization, such as arid or  

semi-arid landscapes or irrigated agriculture, electrical conductivity and pH should be more 

systematically measured.  

4.5. Biological Indicators 

Net productivity can be indicative of overall ecosystem health. In an agricultural system, it is 

important to consider the biomass generated in both the intentional and unintentional species present 

(e.g., crop and weeds). Crop yields are sensitive to minor changes in management practices, and in 

poorly managed farms, yields may suffer to the benefit of weed populations. In such a case, low crop 

productivity may suggest soil degradation when, in fact, the high weed productivity would tell a 

different story. The species of weeds present can serve as a proxy for certain soil properties. For 

example, witchweed (Striga spp.) is a parasitic weed that plagues cereal crops across East Africa. This 

weed often occurs when soil N levels are low and is often used as a visual indicator of low soil 

available N [41]. Further, some fern species, native to tropical forests, are indicators of extreme acidity 

if found in farm fields [125]. 

5. Positive Trajectories and Conclusions 

The conversion from forest to managed land substantially alters soil physical, chemical, and 

biological properties, however the extent of these changes is mediated by the new land use practice. In 

our review thus far, we have focused on continuous (typically unfertilized) agriculture in SSA, which 

offers little opportunity for the rehabilitation of soils. The majority of the available literature on 

degradation describes longitudinal or chronosequence studies along a degradation gradient from a 

forest or unmanaged baseline. However, a growing body of research in SSA uses the same study 

design to examine land management practices that may improve soil conditions (aggrade soils) from a  
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degraded baseline. Such practices include (but are not limited to) communal grazing [126,127], tree 

plantations [93,128], and fallowing [96,129].  

Many studies have compared soil properties among different management treatments in SSA, with 

indications that some are better suited to smallholder farming systems, can be practiced across a large 

range of climates and soil types, and are more readily adopted by farmers. Extensive research has been 

conducted into the broader frameworks of integrated soil fertility management [130–137], conservation 

agriculture [138–143], erosion control [144–148], and improved grazing management [149–151]. 

There is also a wealth of information on the benefits of specific practices such as short legume 

rotations (improved fallows) [152–158], agroforestry systems [159–165], and no-till systems [166–170]. 

Most of these studies, however, are short-term and geographically limited. We know that one 

management cannot fit all soil types, landscapes, or cultures. Still, these evidence-based practices hold 

great potential for supporting sustainable soil management, and broad improvement will require a 

coherent policy framework to support their wider adoption and long-term investment by farmers. 

Fortunately, a growing global demand for good quality, low-cost soils data has been moving  

forward [36,85]. Such integrated research efforts are necessary to inform national and international 

efforts that invest in agricultural intensification across SSA [171–173]. Land management strategies 

will only be successful if they can adapt to future demands for food and other ecosystem services. 

Future research efforts should focus on how soil degradation leads to changes in soil ecosystem 

services, and what land management strategies make systems resilient and, thus, more sustainable.  
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Appendix: Methods Used by R. Weil for Collecting Thirty-Year Trends on Soil Properties in 

Red Soils near Holetta Research Center, Ethiopia 

Soil archives at the Holetta Research Center, Ethiopia were searched for historical soil data from 

farmer fields near the station. Archived data were only present in hardcopy and were entered into a 

database, which excluded soil samples that were collected on the research station as they were likely 

from manipulated trials. Originally, soil samples that were collected between 0–30 cm were included 

and soils with a P2O5 concentration greater than 25 ppm were excluded as it was this was used as a 

marker of past fertilizer application. However, only 8 samples had high P concentrations, and their 

inclusion in statistical models did not change the patterns observed. The archived data contained 338 

records that met these criteria collected between 1972 and 2000. We report data on soil organic carbon 

(Walkey-Black method) and pH (1:1 soil to water slurry) for this time period. 
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