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Abstract: A metafrontier slack-based efficiency measure is presented to measure 

environmental efficiency for various regions in China. The objective of the new approach 

is to investigate the change of environmental efficiency while incorporating group 

heterogeneities and all variable slack and environmental pollutants into environmental 

efficiency analysis. Global production technology is used to improve the discriminating 

power of environmental efficiency measurement. An empirical analysis of regional 

environmental efficiency is carried out incorporating sulfur dioxide emissions and the 

chemical oxygen demand (COD) of China’s regions from 2000–2011. Results indicate that 

excessive emissions pollution is the major cause of environmental inefficiency. Most of the 

regions return environmental efficiency values. Significant regional technology gaps in 

environmental efficiency are found between the east, central, and west areas. Finally, some 

policy implications are presented from the empirical results. 
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metafrontier slack-based measure (MSBM) 
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1. Introduction 

Since the reform and opening-up policy, China’s economy has maintained rapid growth, but 

progress is based on the consumption of resources and environmental pollution. Extensive economic 

growth reduces the potential of economic sustainability, so improving the environmental efficiency of 

regions is an inevitable requirement for sustainable development. 

According to the Ministry of Environmental Protection’s report, the cost of environmental pollution 

continues to rise and pressure to control it is increasing. The cost of ecological environmental degradation 

and ecological destruction in 2010 was about 1538 billion Yuan, 3.5% percentage of GDP [1]. 

Since early 2013, the hazy weather over most regions in China has greatly impacted residents’ 

living conditions and economic development. This impact reflects the fact that rapid industrialization has 

caused severe environmental problems. Most provinces are now facing these serious environmental 

problems. The extensive mode of economic development, irrational industrial structure, and irrational 

energy structure will cause even greater environmental pollution. 

With the increasing environmental pollution, environmental efficiency has become one of the 

important academic subjects. Environmental efficiency is critically important because environmental 

improvement brings potential benefits to social and economic development. Higher environmental 

efficiency reflects the quality of economic development. The aim of this study is to propose a new 

approach, metafrontier slack-based, to measure environmental efficiency for China’s regions. 

The rest of this paper is organized as follows: Section 2 presents the related literature review, Section 3 

explains the methodology, Section 4 presents an empirical study using the proposed metafrontier approach 

to analyze China’s regions from 2001–2011, and Section 5 concludes with some policy suggestions. 

2. Literature Review 

In previous efficiency analysis studies, Färe et al. [2] and Krüger [3] employed the Malmquist index 

to analyze the total-factor efficiency and productivity of industrialized countries. However, these 

authors neglected to address the environmental impact of undesirable output in their efficiency 

analysis, so there were some limitations to their studies. To take into account the growing concern 

regarding environmental impacts, undesirable outputs should be incorporated into the environmental 

DEA framework [4]. In order to consider undesirable output variables, an output-oriented, directional, 

distance function has been proposed to solve the problem of assessment efficiency of undesirable 

outputs [5]. Kumar [6] used the directional distance function to derive the Malmquist–Luenberger (ML) 

productivity index and break the total-factor productivity (TFP) down into measures of technical and 

environmental efficiency changes. Chung et al. [7] proposed a directional distance function (DDF) to 

label environmental pollution as an undesirable output, taking into account that ignoring undesirable 

outputs will lead to biased results. The DDF has also been used for measuring eco-efficiency [8].  

However, the above approaches were based on radial efficiency measures and suffered the 

limitation of overestimating environmental efficiency because they neglected the slack variables that are an 

important source of inefficiency [9]. To overcome this problem and in order to improve the accuracy of 

environmental efficiency, Tone [10] first proposed the slack-based measure (SBM) model, which 

incorporates slack variables to measure technical efficiency. Li and Hu [11] incorporated undesirable 
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outputs into the slack-based model (SBM) to measure ecological total-factor energy efficiency.  

Zhou et al. [12] also incorporated undesirable outputs into the basic SBM to calculate environmental 

performance. Some recent studies have employed the SBM to calculate environmental efficiency and 

carbon emission performance [13–15]. Using the SBM approach can improve the accuracy of 

environmental efficiency measurement. Although there is much progress in measuring environmental 

efficiency, some methodological limitations persist. A notable limitation of [13–15] is that they did not 

consider regional heterogeneities in production technology. If technological heterogeneities are not 

considered, the estimated environmental efficiency may be placed under the unified group “frontier 

technology” [16]; the estimated efficiency may be biased because group heterogeneity may lead to 

differences in production technologies [17]. For China, this situation is especially significant. There are 

large differences among provinces in the production structure; some provinces have more FDI and 

fixed asset investment to develop industry while others have more rural industry. Thus, there are large 

heterogeneities in production technology among provinces. The single technology approach, wherein the 

production technology is assumed to be the same, is therefore not accurate. Some studies have used the 

metafrontier approach to incorporate technology heterogeneities to overcome this limitation [18–21]. 

However, these studies have not combined the metafrontier approach with the SBM framework. Thus, 

this study proposes a metafrontier SBM, incorporating regional heterogeneities to measure China’s 

environmental efficiency. This new approach can simultaneously incorporate slacks, undesirable 

outputs, and group heterogeneities of regions into an environmental efficiency analysis framework. 

Furthermore, this new approach has better discriminating power because it employs global 

environmental technology as the reference technology. 

3. Methodology 

3.1. SBM Model 

Many studies have adopted the data envelopment analysis (DEA) approach to analyze 

environmental efficiency. Song et al. [22] provided literature reviews on energy and environmental 

performance using the DEA method. 

The non-parametric DEA method is employed in our research to construct the frontier for 

ecological total-factor efficiency. The basic idea of this method is to use a metafrontier slack-based 

model to calculate the efficiency index incorporating regional heterogeneities. In this paper, we 

propose a new approach by combining the concept of metafrontier environmental technology and the 

SBM method; we refer to this as the metafrontier SBM model (MSBM).  

Suppose that there are N provinces and that each has three factors—inputs, good outputs, and bad 

outputs (pollutants)—which are denoted by three vectors.  

The SBM model incorporates the slacks for undesirable outputs as follows: 
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(1)

0
x
ms  Slack variables (potential reduction) of inputs; 

1 0
g
rs  Slack variables (potential enhancement) of good outputs; 

2 0
b
rs  Slack variables (potential enhancement) of bad outputs; 

Subscript “0” The decision-making unit whose efficiency is being estimated in the model; 

Zn A non-negative multiplier vector for construction linear programming. 

Model (1) is an SBM model with undesirable outputs and can be solved using the linear 
transformed model [10]. If * 1   (which indicates that all slacks variables are 0), the DMU is efficient 

in the presence of undesirable outputs.  

The environmental efficiency (EE) for region i at time t can be defined as the ratio of target 

pollution output to actual pollution output. EE can be measured using the following equation: 

EE (i, t) = 
Target pollution output ( , )

Actual pollution output ( , )

i t

i t
  

= 
Target SO  output( )1 Target COD output( )2( )

2 Actual SO  output( ) Actual COD output( )2

i,t i,t

i,t i,t
  

(2)

Thus, the target pollution (SO2, COD) output for each region can be calculated from Model (1) and 

is defined as: 

2 2 2Target SO  output = Actual SO  outputt ( , )  SO  output slack( , )i t i t  (3)

Target COD output = Actual COD outputt ( , )  COD output slack( , )i t i t  (4)

If Slack (i,t) = 0, which indicates that the gap between the actual frontier and target frontier does not 

exist, the DMU is efficient. 
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3.2. Metafrontier SBM Model 

Cooper et al. [23] incorporated the undesirable output into the SBM framework. O’Donnell et al. [18] 

introduced the metafrontier approach based on DEA. We now combine the concept of the metafrontier 

DEA approach with that of the undesirable outputs-SBM model to develop several indices of metafrontier 

environmental efficiency (MEEE) and investigate the regional heterogeneity of China. For this purpose, 

as shown in Figure 1, we define two frontier technologies: metafrontier and group frontier technologies. 

 

Figure 1. Metafrontier and group frontier. 

Suppose that K groups show some technological heterogeneities. In such a case, the provinces in 

certain groups may not access other groups’ technologies due to their own technological, resource,  

and other environmental constraints. Like Zhang et al. [24], we define the group frontier technology  
of group k as {( , , ) :  can produce ( , )}kT x y b x y b , k = 1, 2,… K. Assume that Tk is nonparametric 

production technology. Then, the group frontier environmental efficiency for specific group k (GEEEk) 

using Models (1) and (2) can be defined as follows: 

GEEE (i, t) = 
Group-frontier target pollution output ( , )

Actual pollution output ( , )

i t

i t
 (5)

Unlike the case of group frontier technology, we construct a metafrontier technology that can envelop 
all group frontier technologies. Thus, the metafrontier can be defined as }...{ 21 Km TTTT  . 
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k
nz  is a nonnegative multiplier vector for constructing metafrontier technologies. Model (6) 

indicates that the metafrontier needs data from all provinces across all groups. All group frontier 

technologies are covered by the production possibility set of metafrontier technologies. Combining 

Model (6) and analysis by O’Donnell et al. [18], in order to make the metafrontier smooth, we impose 

the convexity constraint of VRS assumption, as shown in Model (6). 

Combining the SBM Model (1) and the metafrontier technology Model (6), we propose the MSBM 

model. We also incorporate global environmental technology into the MSBM model to improve the 

discriminating power and comparability of intertemporal observations. The global MSBM can be 

measured by solving the following DEA model: 
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(7)

After solving Model (7) using the linear transformed model, the optimal solutions under 

metafrontier technologies can be obtained. Thus, we develop the Metafrontier Environmental 

Efficiency (MEEE) index for environmental performance as follows: 

MEEE (i, t) = Metafrontier target pollution output ( , )

Actual pollution output ( , )

i t

i t
  

= 
2

2

Metafrontier Target SO  output( )1 Metafrontier Target COD output( )
( )

2 Real SO  output( ) Real COD output( )

i,t i,t

i,t i,t
  

(8)

The traditional method uses the same technology to measure efficiency. However, if the observation 

lies under different technology, the result will be biased. The advantage of the metafrontier approach is 

to access the efficiency of all observations across different groups under different technologies; in 

addition, it can estimate the technology gap of each group.  

3.3. Decomposition of MEEE 

In line with O’Donnell et al. [18], environmental efficiency under metafrontier technologies can  

be divided into within-group environmental efficiency and the metatechnology ratio (MTR) shown  

in Figure 1. Within-group environmental efficiency measures the relative environmental efficiency of 

observations under specific group frontier technologies. MTR represents the technology gap ratio between 
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the frontier technologies for different groups relative to the metafrontier technology; MTR = 1 implies 

that no technology gap exists between group frontier technology and metafrontier technology. The 

higher the MTR, the closer the group frontier technology to the metafrontier technology. 

The Metafrontier Environmental Efficiency (MEEE) index can be broken down into a within-group 

energy efficiency index and an MTR index. The formulation can be expressed as follows: 

MEEE = GEEE × MTR (9)

Next, we define the technology gap pertaining to environmental efficiency (TGEE) for each group  

as follows: 

TGEE = 1 − MTR (10)

The TGEE measures the technology gap in environmental efficiency between group frontier 

technology and metafrontier technology. The higher the TGEE, the further the distance between the 

group frontier technology and the metafrontier technology, while TGEE = 0 indicates that no 

technology gap exists between the two technologies. 

4. Empirical Findings 

4.1. Data and Materials 

We first collected the data for the inputs and outputs described in our framework. The data 

consisted of 29 provinces and cities in mainland China. We assumed that the production model 

involves three kinds of input: one output and two undesirable outputs. The input data include capital 

stock (K), labor population (L) and energy consumption (E). Almost all the literature on energy or 

environmental efficiency measurement uses the three inputs. Population data has a strong relationship 

with labor data, thus it is not suitable to use labor and population together in the model.  

The capital stocks were procured from Wu [25], while the data after 2006 were estimated using the 

perpetual inventory method. Labor population was from the total number of employees. The energy 

consumption includes all energy sources that can be selected as the energy input, such as coal, oil, and 

gas. The energy consumption of all types is calculated as tons of standard coal (TSC). The real GDP, 

based on the constant year 2000, is used as the desirable output. For the undesirable output, we use 

SO2 emissions and COD to measure environmental energy efficiency. The pollutants data were sourced 

from the National Environment Statistical Yearbook (2001–2012) [26]. The GDP, capital stock, and 

labor population were sourced from the National Statistical Yearbook (2001–2012) and converted to 

2000 constant prices with deflator [27].  

Table 1 shows the descriptive statistics of input and output data. Table 2 shows the input-output 

correlation matrix, which indicates a significant correlation between input and output. 
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Table 1. Descriptive statistics of variables, 2001–2011. 

Variable Unit N Mean StDev Min Max 

K 109 Won 348 8479.4 8417.9 337.7 55,055.9 
L 103 Persons 348 18,172.4 12,586.9 1296.2 53,448.9 
E 104 TSC 348 9838.9 10,540.1 520.4 159,165.0 

GDP 108 Yuan 348 6931.5 6530.5 263.6 39,550.9 
SO2 104 Tons 348 76.6 50.6 2.0 214.1 

COD 104 Tons 348 46.2 29.2 3.2 124.6 

Notes: K capital; L number of employees; E energy use. 

Table 2. Input-output correlation matrix.  

Variables GDP COD SO2 K L E 

GDP 1.000      
COD 0.544 *** 1.000     
SO2 0.451 *** 0.663 *** 1.000    
K 0.942 *** 0.478 *** 0.486 *** 1.000   
L 0.738 *** 0.832 *** 0.715 *** 0.688 *** 1.000  
E 0.856 *** 0.573 *** 0.726 *** 0.896 ** 0.769 *** 1.000 

*** 1% level, ** 5% level. 

4.2. Regional Heterogeneities in China 

In order to calculate the MEEE index to measure environmental efficiency, we classified the groups 

and determined the group members. Depending on the traditional classifications of Chinese regions,  

the 29 regions were divided into three groups: eastern area, central area, and western area. 

Geographical closeness was used as the criterion for categorizing the groups. The eastern area contains 

the most developed regions in China; it is composed of 11 regions (e.g., Beijing, Tianjin, Hebei, 

Shandong, and Guangdong). The eastern area possesses the best infrastructure in China and accounts 

for half of China’s GDP; thus, almost half of China’s foreign trading, modern service industries, 

energy usage, and pollution emissions are produced by the eastern area. The central area is composed of 

nine inland regions (e.g., Shanxi, Neimenggu, Jilin, and Heilongjiang). This area has had a good 

foundation of intensive heavy industry since 1979. Like the eastern area, it is also very industrial, but it 

also has the characteristic of foreign direct investment (FDI), technological development, and lower 

management. The western area is composed of 10 regions (e.g., Shanxi, Gansu, Qinghai, and Inner 

Mongolia). Although the western area has good natural resources, more than half of the territory, and 

lower population density, this area is nonetheless the least developed of the areas. Thus, the three areas 

show heterogeneities in their level of development. 

4.3. Group Frontier Environmental Efficiency 

The group frontier environmental efficiency (GEEE) is calculated for each region based on models (1), 

(3), and (4), which are estimated under group technologies based on data only for specific regions. As 

shown in Figure 2 and Table 3, the average GEEE of each province is about 0.589. Some provinces in 
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different areas have a GEEE value of unity, indicating that these provinces represent the best practices 

under within-group technologies. However, in general, most of the provinces show worse performance 

within their group technologies. 
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Figure 2. Trends of the group frontier environmental efficiency. 

Table 3. Group frontier environmental efficiency (GEEE) of regions.  

Province Area 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 

Beijing E 0.565 0.637  0.697  0.837 0.867 0.983 0.999 0.770 0.927  1.000  0.889 1.000 

Fujian E 1.000 1.000  1.000  0.762 0.755 0.647 0.693 1.000 1.000  0.941  1.000 1.000 

Hainan E 0.605 0.494  0.671  1.000 1.000 0.789 0.855 1.000 1.000  0.966  1.000 1.000 

Guangdong E 1.000 1.000  1.000  0.994 0.881 0.914 0.871 1.000 1.000  1.000  1.000 1.000 

Hebei  E 0.148 0.164  0.177  0.184 0.195 0.209 0.221 0.250 0.297  0.340  0.387 0.441 

Jiangsu E 0.316 0.282  0.308  0.292 0.285 0.281 0.358 0.456 0.564  0.681  0.799 1.000 

Liaoning E 0.417 0.573  1.000  1.000 0.661 0.382 0.362 0.352 0.420  0.462  0.414 0.470 

Shandong E 0.151 0.172  0.195  0.212 0.247 0.268 0.325 0.418 0.521  0.637  0.800 1.000 

Shanghai E 0.345 0.370  0.395  0.421 0.490 0.489 0.548 0.816 1.000  0.895  0.926 1.000 

Tianjin E 0.333 0.546  0.582  0.491 0.575 1.000 0.613 1.000 0.782  0.893  0.989 1.000 

Zhejiang E 0.590 0.498  0.488  0.442 0.395 0.366 0.387 0.462 0.540  0.641  0.754 0.846 

Anhui C 1.000 1.000  1.000  1.000 1.000 1.000 0.901 1.000 1.000  0.975  1.000 1.000 

Henan C 0.459 0.483  0.490  0.495 0.468 0.437 0.458 0.537 0.649  0.761  0.897 1.000 

Heilongjiang C 0.937 0.956  1.000  1.000 1.000 1.000 1.000 1.000 1.000  0.988  1.000 1.000 

Hubei C 0.534 0.570  0.586  0.578 0.571 0.580 0.583 0.645 0.704  0.763  0.886 1.000 

Hunan C 0.553 0.538  0.520  0.479 0.477 0.458 0.447 0.474 0.516  0.566  0.671 1.000 

Jiling C 1.000 1.000  1.000  1.000 0.996 1.000 0.825 1.000 0.944  0.948  1.000 1.000 

Jiangxi C 1.000 1.000  1.000  0.811 0.736 0.690 0.682 0.713 0.775  0.838  0.934 1.000 

Shanxi C 1.000 1.000  1.000  0.601 0.581 0.575 0.588 0.620 0.630  0.636  0.649 1.000 

Gansu W 0.250 0.285  0.272  0.239 0.255 0.235 0.257 0.285 0.312  0.336  1.000 1.000 

Guangxi W 0.094 0.120  0.132  0.115 0.114 0.127 0.159 0.204 0.257  0.320  0.397 0.465 

Guizhou W 0.120 0.136  0.143  0.141 0.147 0.154 0.160 0.177 0.197  0.218  0.235 0.246 

Neimenggu W 0.166 0.168  0.191  0.160 0.184 0.206 0.259 0.342 0.430  0.570  0.794 1.000 
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Table 3. Cont.  

Province Area 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 

Ningxia W 1.000 0.177  0.237  0.238 0.339 0.189 0.192 0.205 0.224  0.250  0.264 0.283 

Qinghai W 1.000 1.000  1.000  1.000 0.709 0.418 0.415 0.425 0.448  0.459  1.000 1.000 

Shaanxi W 0.163 0.171  0.184  0.183 0.187 0.192 0.229 0.297 0.382  0.485  0.210 0.211 

Sichuan W 0.157 0.187  0.220  0.248 0.295 0.356 0.430 0.632 0.766  1.000  1.000 1.000 

Xinjiang W 0.250 0.265  0.277  0.265 0.220 0.222 0.225 0.237 0.251  0.279  0.122 0.115 

Yunnan W 0.234 0.253  0.268  0.257 0.267 0.278 0.308 0.379 0.464  0.555  0.643 0.699 

Eastern area  0.497 0.521  0.592  0.603 0.577 0.575 0.567 0.684 0.732  0.769  0.814 0.887 

Central area  0.810 0.818  0.825  0.746 0.729 0.717 0.685 0.749 0.777  0.809  0.880 1.000 

Western area  0.343 0.276  0.292  0.284 0.271 0.238 0.263 0.318 0.373  0.447  0.567 0.602 

China  0.530 0.519  0.553  0.533 0.514 0.498 0.495 0.576 0.621  0.669  0.747 0.820 

The central area performs best compared with other groups, and the lowest GEEE value is for the 

western area. In sum, the results for the GEEE based on the within-group comparison indicate that the 

regions show relatively moderate environmental efficiency and the environmental efficiency under 

different group technologies is heterogeneous. 

4.4. Metafrontier Environmental Efficiency 

To test whether these two groups are operating under the same environmental production 

technology, the non-parametric Mann–Whitney test is employed with the SBM efficiency result using 

the pooled data. The result shows that the null hypothesis of a single technology is rejected at a 1% 

significance level, showing the necessity of constructing group frontiers separately for each group 

using the metafrontier technology. That is to say, the level of environmental efficiency measured under 

one frontier cannot be compared with that for another frontier because of regional heterogeneous 

technologies. Therefore, we introduce the environmental efficiency (MEEE) measured under 

metafrontier technology, as shown in Table 4. As expected, the average MEEE for regions is lower 

than GEEE, indicating the existence of a technology gap between the metafrontier and group frontiers. 

For instance, with respect to the average MEEE from 2000–2011, the MEEE varied from 0.138 to 

0.962 (average = 0.399), indicating that all provinces together showed an average increase of 60.1% in 

environmental efficiency under global metafrontier technologies. There is a huge potential 

improvement of MEEE after effective policies are taken. 

As shown in Table 4, the eastern regions are more efficient, showing the highest MEEE values.  

On the other hand, the western regions show poor environmental performance, with average MEEE 

values of 0.275. The average MEEE of the central area lies between the other areas. This conclusion 

confirms the Porter Hypothesis (Porter & van der Linde, 1995), which states that appropriate 

environmental regulation can encourage more innovation to improve productivity. Furthermore, this 

conclusion also provides evidence in favor of the environmental Kuznets curve hypothesis, which posits 

that environmental improvements occur after a certain level of economic development. 
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Table 4. Metafrontier environmental efficiency (MEEE) of regions. 

Province Area 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 

Beijing E 0.527  0.607  0.694  0.802 0.861 0.978 0.994 0.752 0.908  1.000  0.884 1.000 

Fujian E 0.467  0.537  0.625  0.440 0.448 0.380 0.416 0.615 0.745  0.746  0.888 0.939 

Hainan E 0.365  0.363  0.460  0.524 1.000 0.656 0.796 1.000 1.000  0.963  1.000 1.000 

Guangdong E 1.000  1.000  1.000  0.990 0.874 0.902 0.866 0.907 1.000  1.000  1.000 1.000 

Hebei  E 0.142  0.158  0.170  0.175 0.187 0.200 0.212 0.240 0.287  0.331  0.377 0.441 

Jiangsu E 0.222  0.218  0.246  0.261 0.277 0.281 0.358 0.456 0.564  0.681  0.799 1.000 

Liaoning E 0.164  0.184  0.214  0.253 0.290 0.228 0.235 0.260 0.311  0.363  0.414 0.470 

Shandong E 0.144  0.165  0.187  0.203 0.237 0.258 0.325 0.418 0.521  0.637  0.800 1.000 

Shanghai E 0.343  0.369  0.394  0.419 0.479 0.489 0.540 0.616 0.736  0.891  0.925 1.000 

Tianjin E 0.285  0.458  0.531  0.490 0.566 0.541 0.600 0.679 0.765  0.851  0.978 1.000 

Zhejiang E 0.265  0.292  0.308  0.313 0.330 0.341 0.380 0.453 0.540  0.641  0.754 0.846 

Anhui C 0.260  0.280  0.301  0.295 0.317 0.328 0.372 0.573 0.687  0.779  1.000 1.000 

Henan C 0.189  0.207  0.187  0.193 0.193 0.185 0.205 0.237 0.278  0.318  0.373 0.437 

Heilongjiang C 0.304  0.322  0.346  0.313 0.352 0.363 0.494 1.000 1.000  0.577  0.630 0.698 

Hubei C 0.195  0.212  0.218  0.216 0.216 0.227 0.237 0.277 0.317  0.359  0.411 0.466 

Hunan C 0.168  0.177  0.189  0.163 0.169 0.172 0.191 0.234 0.267  0.286  0.305 0.322 

Jiling C 0.239  0.280  0.311  0.324 0.343 0.279 0.286 0.321 0.373  0.420  0.466 0.512 

Jiangxi C 0.236  0.255  0.288  0.235 0.221 0.212 0.218 0.238 0.271  0.299  0.337 0.368 

Shanxi C 0.130  0.139  0.151  0.143 0.148 0.155 0.167 0.191 0.210  0.226  0.252 0.280 

Gansu W 0.250  0.285  0.272  0.239 0.255 0.235 0.257 0.285 0.312  0.336  0.667 0.586 

Guangxi W 0.094  0.120  0.132  0.115 0.114 0.112 0.120 0.134 0.152  0.168  0.192 0.200 

Guizhou W 0.120  0.136  0.143  0.141 0.147 0.154 0.160 0.177 0.197  0.218  0.233 0.232 

Neimenggu W 0.166  0.168  0.191  0.160 0.184 0.189 0.204 0.237 0.269  0.302  0.346 0.376 

Ningxia W 0.183  0.177  0.237  0.238 0.339 0.189 0.192 0.205 0.224  0.250  0.264 0.283 

Qinghai W 1.000  1.000  1.000  1.000 0.709 0.418 0.415 0.425 0.448  0.459  1.000 1.000 

Shaanxi W 0.163  0.171  0.184  0.183 0.187 0.187 0.194 0.220 0.251  0.291  0.210 0.211 

Sichuan W 0.106  0.120  0.112  0.115 0.125 0.141 0.153 0.180 0.206  0.237  0.273 0.323 

Xinjiang W 0.250  0.265  0.277  0.265 0.220 0.222 0.225 0.237 0.251  0.260  0.122 0.115 

Yunnan W 0.234  0.253  0.268  0.257 0.267 0.270 0.274 0.298 0.331  0.360  0.391 0.402 

Eastern area  0.357  0.395  0.439  0.443 0.505 0.478 0.520 0.582 0.671  0.737  0.802 0.881 

Central area  0.215  0.234  0.249  0.235 0.245 0.240 0.271 0.384 0.425  0.408  0.472 0.510 

Western area  0.257  0.269  0.281  0.271 0.255 0.212 0.219 0.240 0.264  0.288  0.370 0.373 

China  0.283  0.307  0.332  0.326 0.347 0.320 0.348 0.409 0.463  0.491  0.562 0.604 

Figure 3 shows MEEE trends under metafrontier technologies from the group perspective. Before 

2005, the eastern area had the highest MEEE, followed by the western area and central area. After 

2005, the eastern area was followed by the central area and western area. From the MEEE trends, it is 

clear that the year 2005 was a key turning point of MEEE. That is, environmental efficiency 

significantly increased. One possible explanation might be the policy changes. Before 2005, with the 

development of industries and infrastructure, industrialization and urbanization were the main factors 

driving of China’s economic growth. Thus, the consumption of energy and resource were very high in 

that period. 
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Figure 3. Trends of the metafrontier environmental efficiency. 

Looking deeper, a possible interpretation might be found in the paradigm shift in Chinese policies. 

Before 2005, energy- and pollution-intensive industries and infrastructure development, which require 

vast amounts of energy and generate considerable emissions, were the main factors driving China’s 

economic growth. After 2005, because of the better implementation of the 11th Five-Year Plan  

(2006–2010), which includes sustainable development policies, stricter environmental regulations, and 

the policy of technology innovation in environmental production, led to environmental efficiency 

improvements. The MEEE of the eastern area shows a sustained increasing trend from 2000–2011, 

especially after 2005, whereas the MEEEs of the central and western areas show a slow growth trend. 

The main reason for this result is that eastern areas have more economic foundation and government 

management to implement the policy of sustainable growth, but the central and western areas did not 

have the same conditions. In order to better understand these regional heterogeneities of China, we 

analyzed the technology gap pertaining to environmental efficiency in the following section. 

4.5. Meta-Technology Gap Ratio 

Table 5 shows the TGEE based on Equation (10) for each province. The eastern area shows the 

lowest average TGEE value, indicating that it has the smallest technology gap relative to the other 

areas. For instance, the average TGEE for the eastern area in 2011 was 0.123, indicating that this area 

can improve its environmental efficiency by 12.3% when it can access metafrontier technologies. That 

means that the efficiency of the eastern area under group frontier technology is 87.7% of that under 

metafrontier technology. The average TGEE for the central and western areas is about 0.598 and 

0.142, respectively, indicating a relatively large technology gap between the two technologies for these  

areas. The average TGEE for some provinces is unity in some years, indicating the “best practice” 

environmental performance under two technologies, and there is no technology gap between the two 

technologies in these years. 



Sustainability 2015, 7 4016 

 

 

Table 5. TGEE of environmental efficiency for regions. 

Province Area 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 

Beijing E 0.067  0.047  0.004  0.043 0.006 0.004  0.006 0.024 0.021  0.000  0.006 0.000 

Fujian E 0.533  0.463  0.375  0.424 0.407 0.413  0.400 0.385 0.255  0.207  0.112 0.061 

Hainan E 0.397  0.266  0.315  0.476 0.000 0.169  0.070 0.000 0.000  0.003  0.000 0.000 

Guangdong E 0.000  0.000  0.000  0.004 0.009 0.013  0.006 0.093 0.000  0.000  0.000 0.000 

Hebei E 0.038  0.039  0.038  0.047 0.044 0.044  0.042 0.038 0.032  0.028  0.026 0.000 

Jiangsu E 0.297  0.227  0.203  0.107 0.027 0.000  0.000 0.000 0.000  0.000  0.000 0.000 

Liaoning E 0.607  0.679  0.786  0.747 0.560 0.404  0.351 0.260 0.259  0.215  0.000 0.000 

Shandong E 0.043  0.046  0.039  0.042 0.038 0.037  0.000 0.000 0.000  0.000  0.000 0.000 

Shanghai E 0.005  0.001  0.003  0.004 0.021 0.001  0.016 0.245 0.264  0.004  0.001 0.000 

Tianjin E 0.142  0.160  0.087  0.002 0.016 0.459  0.022 0.321 0.021  0.047  0.011 0.000 

Zhejiang E 0.551  0.413  0.369  0.291 0.166 0.069  0.018 0.020 0.000  0.000  0.000 0.000 

Anhui C 0.740  0.720  0.699  0.705 0.683 0.672  0.587 0.427 0.313  0.201  0.000 0.000 

Henan C 0.587  0.572  0.618  0.610 0.588 0.577  0.553 0.559 0.572  0.582  0.584 0.563 

Heilongjiang C 0.675  0.663  0.654  0.687 0.648 0.637  0.506 0.000 0.000  0.416  0.370 0.302 

Hubei C 0.635  0.627  0.628  0.626 0.622 0.608  0.593 0.571 0.550  0.530  0.537 0.534 

Hunan C 0.697  0.671  0.637  0.660 0.646 0.623  0.573 0.507 0.483  0.494  0.545 0.678 

Jiling C 0.761  0.720  0.689  0.676 0.655 0.721  0.654 0.679 0.605  0.557  0.534 0.488 

Jiangxi C 0.764  0.745  0.712  0.710 0.700 0.693  0.680 0.666 0.650  0.644  0.639 0.632 

Shanxi C 0.870  0.861  0.849  0.761 0.744 0.730  0.715 0.693 0.667  0.645  0.611 0.720 

Gansu W 0.000  0.000  0.000  0.000 0.000 0.000  0.000 0.000 0.000  0.000  0.333 0.414 

Guangxi W 0.000  0.000  0.000  0.000 0.000 0.118  0.243 0.343 0.409  0.474  0.518 0.570 

Guizhou W 0.000  0.000  0.000  0.000 0.000 0.000  0.000 0.000 0.000  0.000  0.008 0.054 

Neimenggu W 0.000  0.000  0.000  0.000 0.000 0.084  0.211 0.307 0.375  0.470  0.564 0.624 

Ningxia W 0.817  0.000  0.000  0.000 0.000 0.000  0.000 0.000 0.000  0.000  0.000 0.000 

Qinghai W 0.000  0.000  0.000  0.000 0.000 0.000  0.000 0.000 0.000  0.000  0.000 0.000 

Shaanxi W 0.000  0.000  0.000  0.000 0.000 0.023  0.151 0.259 0.343  0.401  0.000 0.000 

Sichuan W 0.324  0.359  0.489  0.535 0.575 0.605  0.645 0.714 0.731  0.763  0.727 0.677 

Xinjiang W 0.000  0.000  0.000  0.000 0.000 0.000  0.000 0.000 0.000  0.068  0.000 0.000 

Yunnan W 0.000  0.000  0.000  0.000 0.000 0.028  0.111 0.214 0.286  0.351  0.392 0.425 

Eastern area  0.244  0.213  0.202  0.199 0.118 0.147  0.085 0.126 0.078  0.046  0.014 0.006 

Central area  0.716  0.697  0.686  0.679 0.661 0.658  0.608 0.513 0.480  0.509  0.477 0.490 

Western area  0.114  0.036  0.047  0.054 0.055 0.086  0.136 0.184 0.214  0.253  0.254 0.276 

China  0.329  0.286  0.282  0.281 0.246 0.267  0.247 0.253 0.236  0.245  0.225 0.232 

Figure 4 allows us to investigate the dynamic trend in the TGEE for each area from 2000 to 2011. 

Before 2005, the western areas showed the smallest technology gap, followed by the eastern and 

western areas. After 2005, the eastern area showed the smallest technology gap, indicating that the 

eastern area successfully reduced the technology gap for sustainable development in recent years. 

Generally, the trend in the technology gap for eastern and central areas continued decreasing 

throughout the analysis period, while the western area continued increasing. 
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Figure 4. Trends of the technology gap in metafrontier performance. 

From the above analysis, it can be seen that the Metafrontier Environmental Efficiency (MEEE) 

index from MSBM is lower than the group frontier environmental efficiency (GEEE) from SBM. This 

finding indicates that the group frontier environmental efficiency tends to overestimate the actual 

environmental efficiency. We employed the Wilcoxon–Mann–Whitney test not only to determine any 

significant differences between MEEE and GEEE, but also to determine any significant differences 

between areas. As shown in Table 6, the results reject the null hypothesis at the 1% level, indicating a 

significant difference between the two environmental efficiency values and a significant difference 

between the eastern and other two areas. 

Table 6. Results of the non-parametric test. 

Test Null Hypothesis (Ho) Statistics p-value 

Wilcoxon–Mann–Whitney Mean(MEEE) = Mean(GEEE) 93 0.0011 
Wilcoxon–Mann–Whitney Mean(MEEE Eastern) = Mean(MEEE Central) 207 0.0011 
Wilcoxon–Mann–Whitney Mean(MEEE Eastern) = Mean(MEEE Western) 220 0.0001 

4.6. Economic Efficiency vs. Environmental Efficiency 

In this sub-section, we examine the differences between economic and environmental efficiency. 

The economic efficiency is defined as the efficiency value without considering environmental 

undesirable outputs based on the metafrontier SBM model. To estimate economic efficiency, we use 

capital stock (K), labor (L), and energy consumption (E) as inputs; the real GDP is used as the output. 

Thus, the economic efficiency measures the regional economic performance without considering 

environmental factors. Figure 5 shows the results of average environmental efficiency and economic 

efficiency for China’s regions; economic efficiency is higher than environmental efficiency. These results 

suggest that without incorporating environmental factors, the economic efficiency index overestimates the 

real sustainability efficiency value. 
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Figure 5. Trends of economic efficiency and environmental efficiency. 

From Figure 6, it can be seen that the economic efficiency of the three areas has a U-shaped trend, 

with the turning point at 2006. Before 2006, which is the starting point of the 11th Five-Year Plan, 

China’s economic growth was fueled by energy-intensive heavy industry and infrastructure building, 

which required enormous amounts of energy. Since then, the Chinese government announced the goal of a 

20% reduction in energy intensity between 2006 and 2010. Therefore, the government’s stricter energy 

regulations likely increased the economic efficiency. The eastern area shows the highest economic 

efficiency, while the western area shows the lowest. The eastern area enjoys both high economic 

efficiency and environment efficiency. The Chinese government can thus allocate more of the capital 

derived from economic growth to environmental governance. The western area is well known for its 

rich natural resources, but has lagged well behind the other areas in terms of economic development 

due to its lack of infrastructure. Thus, this area has both the lowest economic efficiency and environmental 

efficiency. These gaps in regional economic and environmental efficiency indicate that the Chinese 

government needs to promote different types of environmental and economic policies for different 

areas to reduce technology gaps, aiming at filling the missing links for sustainable development. 
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Figure 6. Trends of economic efficiency for the three areas. 
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5. Concluding Remarks 

This paper proposed a Metafrontier Environmental Efficiency (MEEE) index based on the slack-based 

metafrontier model. This new approach investigates the change in environmental efficiency, 

incorporating group heterogeneities, slacks, and undesirable outputs into environmental efficiency 

analysis. Global environmental technology is also incorporated into the approach to improve the 

discriminating power of efficiency measurement. We conducted an empirical study of environmental 

efficiency for different Chinese regions for data spanning 2000–2011. The empirical results can be 

summarized as follows. First, most of the provinces showed weak environmental efficiency and 

showed potential to improve environmental efficiency; the current overuse and excessive discharge of 

pollutants are the main cause of inefficiency. Second, the eastern area showed the highest 

environmental efficiency, followed by the central area; the western area showed the worst environmental 

efficiency. Thus, the eastern area represented the best practices under metafrontier technologies. This 

observation was also supported by the environmental Kuznets curve hypothesis and Porter Hypothesis. 

Third, the eastern area showed the best environmental efficiency and all three areas showed an 

increasing trend of environmental efficiency after 2005. This confirms that the implementation of 

sustainable development policy in the 11th Five-Year Plan has had significant effects in all three areas. 

Finally, the eastern area showed the smallest technology gap, followed by the western and central areas. 

After 2005, the eastern area showed the smallest technology gap, whereas no such gap reductions were 

evident in the other areas. This indicates that the western and central areas failed to mitigate the 

technology gap, whereas the eastern area continued to improve. 

The study shows that environmental efficiency shows significant regional heterogeneity in China. 

These findings suggest that the Chinese government should implement and promote heterogeneous 

policies to improve the environmental efficiency of central and western areas, especially the 

sustainable development of western areas. It is necessary for all regions, according to their unique 

economic development and environmental conditions, to increase environmental efficiency. The 

central and western government should enhance their R&D investment to reduce the technology gap 

and allocate a reasonable amount of fixed capital to undertake environmentally friendly industries from 

the eastern area to improve sustainable development. Furthermore, the central government can make 

sustainable development policy in the New Year Plan to enable environmental efficiency and avoid 

serious contamination of the environment. 
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