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Abstract: Despite the unprecedented rate of urbanization throughout the world, human 

society is still facing the challenge of coordinating urban socioeconomic development and 

ecological conservation. In this article, we integrated socioeconomic data and spatial metrics 

to investigate the coupling relationship between intensive land use (ILU) system and 

landscape ecological security (LES) system for urban sustainable development, and to 

determine how these systems interact with each other. The values of ILU and LES were first 

calculated according to two evaluation subsystems under the pressure-state-response (PSR) 

framework. A coupling model was then established to analyze the coupling relationship 

within these two subsystems. The results showed that the levels of both subsystems were 

generally increasing, but there were several fluctuation changes in LES. The interaction in 

each system was time lagged; urban land use/cover change (LUCC) and ecosystem 

transformation were determined by political business cycles and influenced by specific 

factors. The coupling relationship underwent a coordinated development mode from  

1992–2012. From the findings we concluded that the coupling system maintained a stable 

condition and underwent evolving threshold values. The integrated ILU and LES system was 
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a coupling system in which subsystems were related to each other and internal elements  

had mutual effects. Finally, it was suggested that our results provided a multi-level 

interdisciplinary perspective on linking socioeconomic-ecological systems. The implications 

for urban sustainable development were also discussed. 

Keywords: intensive land use; landscape metrics; landscape ecological security; 

socioeconomic-ecological system; coupling relationship; sustainable urbanization 

 

1. Introduction 

Since the industrial revolution, especially following World War II, countries throughout the world 

have become increasingly urbanized [1]. Urbanization is a social and spatial process that is related to the 

transformation of land and population from rural areas to urban areas. The population in urban areas has 

exploded since 1950, from 746 million to 3.9 billion in 2014, accounting for 54% of the world’s 

population [2]. Urban land use/land cover (LULC) has experienced densification, expansion/sprawling, 

and shrinkage patterns under rapid urbanization [3]. Highly fragmented landscapes have been created 

by being overlaid with various new elements and structures, resulting in a loss of identity and functional 

homogeneity [4]. The continuously growing population and changing landscapes have levied increasing 

demands on resources and energy, posing severe challenges for ensuring human welfare while 

preventing an increasing loss of soil, habitats, resources, and biodiversity in urban ecosystems [5]. 

The landscape in our paper is conceived as ecosystems nested in a hierarchy of spatial scales [6]. The 

landscape ecosystem includes geographic, volumetric, layered segments of earth [7,8], and provides a 

range of benefits to sustain human livelihoods and improve the quality of life through urban ecosystem 

services [9–11]. They are commonly divided into four categories: provisioning services, regulating 

services, habitat or supporting services and cultural services [10,12]. The Condition and Trends Working 

Group of Millennium Ecosystem Assessment reported that 60% of ecosystem services are being 

degraded or used unsustainably [13]. For example, dense transportation networks results in increased air 

pollution [14], anthropogenic sealing of soils leads to urban heat island effects [15,16], and the loss of 

green space causes public health issues [17,18]. Therefore, discovering the effects of urban land use on 

the ecosystems and quantifying the relationships between urban land dynamics and landscape ecological 

security are important for effective urban planning and environmental protection policy making for 

sustainable urban development [19]. 

Modern urban development and planning pay attention to smart growth [20,21], compact 

development [22,23], and multifunctional intensive land use [24–27]. They are regarded as the 

connotation of intensive land use [28]. More researches on evaluating intensive land use (ILU) degree 

have been conducted since ILU issue became a key work of China’s land resource management 

departments in 2006. However, the evaluation only focused on the socioeconomic outcome of land use. 

There is an increasing awareness of the need to improve the efficiency of urban land use without 

incurring expenses in the protection of ecosystems [29]. 

Rapid urban growth, as the most obvious land transformation, contributes to heterogeneous 

landscapes of high spatial-temporal diversities. Urban landscape ecology has explored the links and 
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relationships among the ecosystems and species that make up this complex matrix and the associated 

human activities [30,31]. The environmental and ecological problems of the landscape changes resulting 

from urbanization are significant [32,33]. The study of Su et al. (2012) [34] reported that landscape 

fragmentation, configuration, and diversity could significantly impair the provision of ecosystem 

services. However, to date, less attention has been paid to the impact of urban land use on the ecological 

security. Increasing concerns on urban landscape ecological security (LES) have become the priority 

development strategies for reconfiguration of urban socioeconomic-ecological systems to help secure 

their material and ecological reproduction [35]. 

Given the importance of urban land use and its long-term multiple effects on landscape ecosystem, 

research on evaluating the effects of ILU and LES has been greatly emphasized [36]. Then, a demand 

oriented approach of implementing the sustainability concept is considered to support urban land use 

and landscape ecosystem. The search for sustainable urbanization can therefore be pursued in two 

dimensions [37]: first, focusing on the ILU of urban socioeconomic systems, which means enhancing 

the efficiency and optimizing the allocation of land use for sustainable socioeconomic development [38]; 

and second, considering measures to avoid reducing the quality of urban ecosystems and remaining  

LES [39–41]. Still, the consequent merging of these two interest-oriented approaches has taken place 

only to a minor extent. Therefore, coupling ILU and LES becomes important and could bring an 

achievement in balancing socioeconomic systems and ecological systems in urban areas. The 

combination of approaches to coupling ILU and LES and identifying the coupling relationship between 

ILU and LES could provide practical application for urban sustainability. 

The core urban area of Hangzhou, a highly urbanized area in southeastern China, was used as a case 

study. In this paper, ILU and LES evaluation systems were established under the pressure-state-response 

(PSR) framework and integrated socioeconomic data with spatial metrics to explore the urban 

socioeconomic-ecological system changes and their coupling relationship during 1992–2012. The ILU 

system and LES system were coupled into one compound system supported by a coupling model. 

Specifically, landscape metrics that are commonly used in landscape ecology analysis were integrated 

as indicators of the state criterion level for assessing LES degree. The metrics were calculated based on 

the interpreted multi-temporal remotely sensed imagery from 1992 to 2012. The overall goal of this 

study was to improve the understanding of the coupling relationship between ILU and LES, which 

represent socioeconomic systems and ecological systems in urban areas, respectively. In addition, the 

paper aimed to contribute to fundamental knowledge for identifying potential ecological impacts and 

decision-making toward sustainable urbanization. 

2. Materials and Methods 

2.1. Study Area 

This study focused on the core urban area of Hangzhou, which we defined as Hangzhou City  

(Figure 1). Since early 1992, Hangzhou City has undergone a tremendous land transformation from an 

agricultural area to an urban area. By the end of 2012, its local gross domestic product per capita was 

approximately 15,826 US dollars. The permanent population of Hangzhou City rose from 1.36 million 

in 1992 to 2.32 million in 2012, and the built-up area has increased from 90.00 km2 to 295.08 km2 since 
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1992. The transformation of spatial structures and relocation of urban elements have greatly impacted 

the city’s ecological environment. 

 

Figure 1. Location of the study area: the core urban area of Hangzhou. 

2.2. Data Sources and Pre-Processing 

Natural science data and socioeconomic data were selected for this study. Remotely sensed data to be 

pre-processed were used to retrieve urban LULC information. Five data sets of multispectral Landsat 

MSS/TM/ETM+ images with ancillary data were interpreted to calculate landscape metrics, which were 

used for LES state evaluations. Socioeconomic data, e.g., statistical yearbooks, government work reports 

and ecological conservation-related planning and research reports were integrated to assess the degree 

of ILU and LES. 

Land use/cover changes (LUCC) information for the study area was interpreted from Landsat images 

acquired on 7 June 1992; 4 May 1997; 11 June 2002; 8 May 2007; and 19 July 2013, with maximum 

likelihood-based supervised classification by ENVI 5.0. The SLC-off products of Landsat 7 in 2012 did 

not meet our needs; therefore, we used Landsat 8 images in 2013 as a replacement. A classification 

scheme of four land types (urban land, water, cropland, and forest) was categorized for the following 

reasons. First, the selected four types represented the dominant landscape ecosystem and reflected the 

land use intensity in our study area; second, the resolution of Landsat images is limited for more detailed 

land types [42]; and third, the calculation of ecosystem service values (ESV) for the LES state level was 

based on specific value coefficients for LULC types in China (see more detailed information in  

Section 2.3.1.1). The overall classification accuracy of the five images is 85.12, 84.24, 87.33, 82.24, and 

90.28, respectively, which meets the classification requirements, and their Kappa coefficients are 0.833, 

0.827, 0.865, 0.811, and 0.834, respectively. The interpreted land use data were then transferred to a  

30 m × 30 m raster grid cell in ArcGIS 10.0 (Figure 2). Each cell is considered a homogenous unit for 

any given factor. The grid maps were then used to calculate the landscape metrics using Fragstats 4.2. 
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Figure 2. Land use/land cover change maps of Hangzhou City from 1992–2012. 

2.3. Model Description and Methodology 

2.3.1. Evaluation Systems for ILU and LES 

The paper applied a PSR framework, which was first proposed by Rapport and Friend in 1979 and 

later fully developed by the Organization for Economic Cooperation and Development (OECD) against 

the background of encountering environmental issues in their economic context. The PSR framework 

could be highly capable of showing information to end users in a causal way by differentiating between 

causes, effects, and human responses to control the extent of anthropogenic impacts on nature [43–46], 

which contributes linkages among human activities (the Pressure), the state of the environment (the 

State), and the societal and economic responses (the Response) to environmental changes [47]. The 

framework is a hierarchical and holistic model in which indicators of social, economic, environmental, 

and ecological characteristics can be adopted. 

In this paper, we applied the PSR framework for evaluating ILU (the socioeconomic system) and LES 

(the ecological system). According to the PSR model, the evaluation system consists of three levels: the 

objective level, criterion level, and indicator level. The objective level is the expected evaluation output, 

that is, the ILU degree level and LES degree level. The criterion level, which aims to present the criteria 

for objective derivation, consists of three important components: pressure, state, and response. The 

indicator level is composed of all indicators describing pressure, state, and response at the criterion level. 

The hierarchical framework of the PSR model allows the evaluation system to be clearly understood and 

easily implemented. 

2.3.1.1. Development of the Evaluation System 

There is no universal set of indicators that should apply to all regions or countries. In principle, the 

selection of indicators for evaluation should be policy-relevant, understandable, easily available, and 

measurable [48]. The indices in this article were purposely selected to be complementary rather than 

redundant with each other, and the whole set reflects most aspects of the evaluation. In establishing the 

evaluation system for ILU (Table 1) and LES (Table 3), we referred to the results of previous ILU [49] 

and LES [50–54] related research. 
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(1) Evaluation system for ILU 

The index system for evaluating the degree of ILU has already been fully developed by many 

researchers [55,56]. In this paper, population density (X1) and urban land expansion elasticity (X2) were 

selected as pressure indicators, which represent the effects of human activities on urban land use. The 

built-up area per person (X3), structure area per person (X4), fiscal revenue per square meter (X5), and 

output value of secondary and tertiary industry per square meter (X6) were selected as state indicators, 

which represent the physical and economic intensity of land use. The investment in fixed assets per 

square meter (X7) and employees per square meter (X8) were selected as response indicators, which 

represent the human-induced responses of intensive land use. 

In particular, the indicator urban land expansion elasticity (X2) was developed by the Chinese 

Academy of Urban Planning and Design (CAUPD) to assess the relationship between urban land and 

urban population growth. This indicator is expressed in Equation (1) [57]. 

ܺଶ ൌ ALሺiሻ/APሺiሻ (1)

where AL (i) is the annual rate of urban land growth of city i, and AP (i) is the annual rate of urban 

population growth of city i. 

Table 1. Evaluation system f (L) for urban intensive land use (ILU). 

Objective 

Level 
Criterion Level Indicator Level Unit Description 

ILU System 

f (L) (1.00) 

Pressure (0.09) 
X1: Population density (0.02) p/km2 Effects of human activities 

on urban land use. X2: Urban land expansion elasticity (0.07) N/A 

State (0.70) 

X3: Built-up area per person (0.12) p/m2 

The physical and economic 

intensity of land use 

X4: Structure area per person (0.15) p/m2 

X5: Fiscal revenue per square meter (0.03) Yuan/m2 

X6: Output value of secondary and tertiary 

industry per square meter (0.40) 
Yuan/m2 

Response (0.21) 

X7: Investment in fixed assets per square 

meter (0.19) 
Yuan/m2 Human-induced response 

to intensive land use 
X8: Employees per square meter (0.02) p/m2 

Continuous data were acquired from Hangzhou statistical yearbooks from 1992 to 2012 [58].  

(2) Evaluation system for LES 

Based on the PSR framework, an index system for the LES was suggested with three dimensions and 

seven factors (Table 3). 

Dramatic LUCC under rapid urbanization have transformed the configuration of landscape patterns, 

leading to the degeneration of urban ecosystem services. In urban areas, construction areas have been 

the main factor that exerts pressure on the ecological security. Therefore, we selected the city 

development intensity index (Y1), which is commonly used to characterize the status of the intensity of 

human activity in urban areas [41], as the pressure indicator of LES. The intensity index for each block 

was calculated by using Equation (2). 

ଵܻ ൌ ௜ (2)ܣܶ/௜ܮܥ
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where TAi is the total area of city i and CLi is the urban construction land in city i in a specific  

monitoring period. 

Landscape structure, function, and resilience were defined as the foundational traits of landscape 

ecosystem [12]. In consideration of the variability of statistical robustness in the historical data and the 

difficulty of acquiring historical data in our research area, LULC data from remotely sensed images were 

more consistent, objective and easily accessible compared to socioeconomic data. Six landscape metrics 

that have been generally applied for analyzing the related features of ecosystems [41] were therefore 

included in the state index. The contagion index (CONTAG) (Y2), Shannon’s diversity index (SHDI) 

(Y3), and the landscape shape index (LSI) (Y4) were selected for characterizing landscape structure 

security; ESV (Y5) was adopted as an indicator for landscape function security and was calculated 

according to the percentage of landscape (PLAND) metric. The splitting index (SPLIT) (Y6) was 

regarded as the indicator for landscape ecological resilience. All the landscape metrics were calculated 

at landscape scale. 

It is known that most ecosystems on the earth have been converted to another type of land cover, 

which can be characterized by land use type [9]. Costanza’s [59] ecosystem service values assessment 

model was applied to calculate the indicator Y5 (ESV) according to Equation (3). 

ହܻ ൌ ∑ሺܣ௞ ൈ ௞ሻ (3)ܥܸ

where ESV denotes the total values of ecosystem services, and Ak and VCk represent the area and value 

coefficients for proxy biome type “k”, respectively. The proxy biomes were not perfectly matched with 

the LULC types in most cases [60]. Xie [61] revised Costanza’s ecosystem services assessment model 

and classified ecosystem service values into nine categories for the terrestrial systems of China. The 

ESV of every hectare of each land use category was then assigned based on the nearest equivalent 

ecosystems. There were few grassland regions and unused areas in Hangzhou’s core urban area 

(grassland and unused land occupied less than 0.05% of the total area from 1992 to 2012); therefore, the 

land use category was reclassified into urban land, water, cropland, and forest. We referred to the 

comparable ecosystem service research results for Hangzhou City [62], where our study area was 

contained. The adjusted value coefficients for four LULC categories are shown in Table 2. ESVs were 

then calculated according to Equation (3). 

Table 2. Ecosystem service value coefficients for land use/cover type Unit: Yuan/hm2. 

 Cropland Forest Water Urban land 

Gas regulation 885.0 3097.0 0 0 
Climate regulation 1575.2 2389.1 407 0 
Water reservation 1062.1 2831.5 18,033.2 0 

Soil formation and protection 2584.0 3450.9 8.8 0 
Waste treatment 2902.7 1159.2 16,086.6 0 

Biodiversity conservation 1256.4 2884.6 2203.3 0 
Food production 1770.0 88.5 88.5 0 
Raw materials 177.2 2300.6 8.8 0 

Recreation and culture 18.6 1132.6 3840.2 0 

Total 12,231.2 19,334 40,676.4 0 
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At the landscape response level, the degree of the implementation of ecological conservation was 

selected. Zoning and construction land regulation have been common policy instruments in China’s land 

use planning and are designed to regulate construction land against agricultural, forest, and conservation 

reserve lands. This paper integrated the percentage of landscape, zoning and regulation areas for 

ecological conservation with ancillary data, such as ecological function zoning planning, wetland 

conservation planning, and ecological city planning, as a comprehensive approach to evaluating the 

degree of implementation of ecological conservation. We consulted local researchers and urban 

administrators with the Delphi method [63]. 

2.3.1.2. Multi-Criteria Evaluation 

The standard deviation of a standardized method was adopted to make the data more comparable 

within the required standardization of indicators and data lines. 

In the ILU system, we applied the entropy method to determine the weights of indicators. The entropy 

method was an objective weights assignment method for fuzzy synthetic evaluation [64], which was first 

applied in thermodynamics and then was introduced into the information management discipline by 

Shannon (1948) [65] for the expression of information or uncertainty. At present, the entropy method 

has been applied in urban ecosystems research regarding issues such as water management, energy 

utilization, landscape analysis, and the quality of economic growth [66–69]. Previous studies have 

demonstrated that this method can be used effectively for performance evaluation based on a group of 

indicators by properly determining the weightings of evaluation indicators [70]. In particular, Chinese 

scholars have conducted many intensive land use studies [71,72] using the entropy method when the 

government put forward the ILU issue since 2006. Meanwhile, all data for the indicators in ILU systems 

are collected by official statistical yearbooks. In this context, we applied the entropy method and referred 

to research results of the fully developed indicators of ILU systems (Table 1). 

In the LES system, we applied Delphi and analytic hierarchy process (AHP) to determine the weights 

of indicators in the LES system. Delphi and AHP are subjective weighting methods. Weights are mainly 

determined by the experts’ knowledge and experience. Because the evaluation indices of LES system 

were from a combination of landscape metrics, socioeconomic data, and fuzzy information, evaluation 

required a comprehensive understanding of the connotation and denotation of the LES system. Thus, we 

consulted with landscape ecologists and economic geographers to create an integrated Delphi and AHP 

method for weights assignment (Table 3). 

A multi-criteria evaluation (MCE) method has been demonstrated to be applicable for evaluating 

spatial criteria with standardized data [73] for decision-making analysis regarding land use suitability [41]. 

We integrated MCE and the weighted linear combination (WLC) method to calculate the values of ILU 

and LES for the entire research area [74]. These values were calculated according to Equation (4): 

Sൌ ଵݎ ∑ ௜ܹ ௜ܲ
௡
௜ୀଵ ൅ ଶݎ ∑ ௝ܹ ௝ܲ

௡
௝ୀଵ ൅ ଷݎ ∑ ௞ܹ ௞ܲ

௡
௞ୀଵ  (4) 

where S is the score for each system; r represents the weight of pressure, state, and response at the 

criterion level; W is the weight of each indicator; and P is the normalized value of each indicator. 
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Table 3. Evaluation system f (E) for urban landscape ecological security (LES). 

Objective 
Level 

Criterion Level Indicator Level Unit Description 

LES 
system f(E) 

(1.00) 

Pressure (0.20) Y1: City development intensity (0.20) N/A 
Effects on landscape 
in urban areas 

State (0.50) 

Y2: Contagion index (0.11) N/A 
Indicating landscape 
structure security 

Y3: Shannon’s diversity index (0.26) N/A 

Y4: Landscape shape index (0.03) N/A 

Y5: Ecosystem service values (0.40) Yuan/hm2 

Calculated by 
PLAND; Indicating 
landscape function 
security 

Y6: Splitting index (0.20) N/A 
Indicating landscape 
ecological resilience 

Response (0.30) 
Y8: Implementation degree of 

ecological conservation (0.30) 
N/A 

Human-induced 
response to 
landscape ecosystem 

Data for Y1 and Y5 were acquired from interpreted LULC information (1992, 1997, 2002, 2007, 2012),  

and supplementary data between 1992 and 2012 were collected from official land use data [75]; discrete data 

(1992, 1997, 2002, 2007, 2012) of Y2, Y3, Y4, and Y6 were transformed for continuous data (1993–1996,  

1998–2001, 2003–2006, 2008–2011) according to the support vector machine algorithm [76]. Data for Y8  

were integrated from government work reports [77], other ecological conservation planning, and research 

reports [78] with the Delphi method. 

2.3.2. The Coupling Model for Analyzing Compound Socioeconomic-Ecological Systems 

Coupling is a concept from electronics physics [79] that describes the degree of interaction within 

systems or between elements. Researchers have coupled city systems and ecological systems to analyze 

the dynamic development process in which socioeconomic factors and ecological elements are mutually 

symbiotic or restrained [80,81]. We developed a framework for analyzing socioeconomic-ecological 

systems (Figure 3) that consists of two sub models, including a coupling coordination model (CCM) and 

a dynamic coupling model (DCM). 

 

Figure 3. Analytical framework for coupling urban land use and ecological environments. 
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2.3.2.1. The Coupling Coordination Model 

The CCM degree was the indicator used to estimate the coordinated state between the ILU and LES 

systems. The coordination degree was dependent on the dispersion between f (L) and f (E), which 

showed that the coordination degree increases when dispersion decreases. CCM has been developed [82] 

and can be expressed in Equation (5): 

C ൌ ሼሾfሺLሻ ൈ fሺEሻሿ/ ቈ
݂ሺܮሻ ൅ ݂ሺܧሻ

2
቉
ଶ

ሽ௞ (5)

where C is the coordination degree; f (L) and f (E) are the composite score of ILU and LES, respectively; 

k is the adjusted coefficient, which takes the general value of two. The value of C ranges from zero to 

one, with one indicating the most coordinated state. 

2.3.2.2. The Dynamic Coupling Model 

On the basis of synergetic theory, we knew that the development process of the compound 

socioeconomic-ecological system depends on the control variates f (L) and f (E), which would achieve 

orderly development through self-organizing [83]. The DCM degree represented the extent of the 

synergistic effect between ILU and LES, and it indicated the development trend of the compound system. 

The processes of ILU and LES systems were both nonlinear, and the evolution equation is as follows: 

dxሺtሻ/dt ൌ fሺݔଵ, ,ଶݔ … , ௜ሻݔ , i ൌ 1, 2, … , n (6)

where f is the nonlinear function of xi. 

The stability of motion in nonlinear systems mainly depends on the first-order characteristic root [84]. 

Thus, we took the Taylor series expansion at the origin point, and removed the higher-order 

terms	Eሺݔଵ, ,ଶݔ … ,  :௡ሻ. The general function F was shown as followsݔ

F ൌ෍ ௝ܽݔ௝

௡

௝ୀଵ

, ݆ ൌ 1, 2, … , ݊ (7)

where x is the elements of subsystems, and a represents the weight of each element. 

Subsystems f (L) and f (E) were integrated into one compound system according to general system 

theory [85]. The evolution equations of the compound system can be expressed as follows: 

1 2

1 2

A df(L) / dt a f(L) a f(E)

B df(E) / dt b f(L) b f(E)

  
   

 (8)

where A and B are the conditions of evolution for each subsystems. 

The compound system was under the influence of A and B, and the rate of evolution could be 

expressed as follows: 

VA ൌ ;ݐ݀/ܣ݀ ܤܸ ൌ (9) ݐ݀/ܤ݀

Changes in VA and VB in each subsystem resulted in synchronized change to the compound system. 

Thus, we established a rectangular coordinate system to analyze V, where V was the evolution rate of 

the compound system. VA and VB were regarded as the control variates, with V = f (VA, VB). The 
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DCM degree can be analyzed through the condition of V, and the trajectory of V can be shown as an 

oval (Figure 4). V is the angle between VA and VB, which can be calculated as follows: 

ߙ ൌ ݊ܽݐܿݎܽ
ܣܸ
ܤܸ

 (10)

 

Figure 4. The evolution trajectory of the coupling relationship. 

The radian measure of α was transformed into the angle degree for visual analysis. In sum, the 

evolutionary process of coupling relationship can be divided into four modes (Table 4):  

Mode I: Coordinated development. The value of α ranges from 0° to 90°, VA and VB are both in the 

positive direction, and the two subsystems are under synergetic effect. In such mode, the 
ILU system collaborates with the LES system, land is in an intensive use trend, the security 

level is increasing, and the city is under sustainable development. 

Mode II: Restrained degeneration. The value of ߙ ranges from −180° to −90°, VA and VB are both 

in the negative direction, and the two subsystems are under a synergetic effect. However, 

the ILU system and LES system restrain each other. Land is under extensive use and 

damages the LES level; LES is unsafe and brings negative effects on the ILU system. 

Mode III: Extreme parasitism. The value of α  ranges from 90° to 180°, VA is in the positive  

direction, while VB is in the negative, and the two subsystems are under antagonistic  

effects. In such mode, land is under intensive use at the cost of decreasing LES; the urban 

landscape ecosystem would be degenerated and bring adverse effects on the urban 

socioeconomic system. 

Mode IV: Original symbiosis. The value of α ranges from 0° to −90°, VA is in the negative direction, 

while VB is in the positive, and the two subsystems are under antagonistic effect. Since 

human activities are in low frequency, the land use system and landscape ecosystem are in 

their original status. Land is under extensive use without much anthropic development, 

while LES is at a low level and increasing naturally. 
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Table 4. Summary of the coupling relationship modes. 

Effect Mode Direction(VA,VB) Angle degree Radian 

Synergetic 
I: Coordinated development (+, +) 0° < α < 90° (0, 1.57) 
II: Restrained degeneration (−, −) 90° < α < 180° (1.57, 3.14) 

Antagonistic 
III: Extreme parasitism (+, −) −180° < α < −90° (−3.14, −1.57)
IV: Original symbiosis (−, +) −90° < α < 0° (−1.57, 0) 

+ denotes positive effect, − represents negative effect; VA and VB are the evolution rates of the ILU system 

and the LES system, respectively. 

3. Results and Discussion 

3.1. Changes in the ILU and LES Systems 

3.1.1. Results of ILU and LES 

The Hangzhou core urban area underwent tremendous changes both in land use and landscape 

ecosystem from 1992 to 2012. Values of ILU and LES were calculated under two PSR-based evaluation 

systems (Figure 5). 

 

Figure 5. Values and development stages of the ILU (intensive land use) and LES (landscape 

ecological security) systems. 

As observed in the change curve of ILU in Figure 5, the values of ILU kept increasing continuously 

throughout the period 1992–2012, reflecting the increasingly intensive land use in our study area. We 

found that values in 2004 changed from negative to positive, which demonstrated that land use patterns 

changed from extensive use (Stage 1) to intensive use (Stage 2). In addition, the slope of the curve in the 

later eleven years (2001–2012) was steeper than it was in the first ten years (1992–2001), which indicated 

that different rates of land use occurred. Two contrasted evolution speeds between the two stages implied 

that more rapid urbanization has taken place in this area since 2001. 

As shown in Figure 5, there were several fluctuation changes in LES. The LES evolution process was 

divided into three stages. In Stage I (1992–1998), the values increased from negative values to positive 

values, demonstrating that the landscape ecosystem was improving during these years. In Stage II  
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(1998–2005), the values continued steadily in the positive section, signifying that LES was in a good 

condition. In Stage III (2005–2012), the values nearly dropped to zero, which illustrated that there was 

degeneration in the landscape ecosystem due to the severe impacts and disturbances from human activities. 

3.1.2. Analysis of ILU and LES Changes 

A detailed analysis was conducted to understand the underlying factors and mechanisms of ILU and 

LES in the Hangzhou core urban area. Figures 6 and 7 reveal the deconstructed information from the 

criterion levels of the ILU and LES systems. 

 

Figure 6. Deconstructed analysis of pressure-state-response (PSR) levels of the ILU system. 

 

Figure 7. Deconstructed analysis of PSR levels of the LES system. 
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The pressure, state, and response values of the ILU system are shown in Figure 6. The ILU system in 

our research area has experienced a shift from extensive use pattern to intensive use pattern during  

1992–2012. As time went on, land was subject to increasingly intensive use. The ILU system was mainly 

driven by factors at the state level. Pressures of ILU had limited impacts on the system, although the 

pressure level itself was sensitive to anthropogenic influences. Land became used more efficiently and 

values increased because more response effects took place. 

The pressure level remained stable and even from 1992 to 2012 in general, revealing that the 

population growth and built-up area expansion were within the capacity of the urban system. However, 

there are two peaks in 1998 and 2001, which are mainly caused by the sudden increase in built-up areas 

after the administrative regional adjustments in 1996 and 2001. It should be noted that the former 

regional adjustment plan was permitted by the central government at the end of 1996, although it was 

not carried out the municipal government until 1998, whereas the latter adjustment was permitted by the 

central government at the beginning of 2001 and was carried out in the same year. 

The state level grew drastically revealing that the city has been suffering from great land use intensity 

during the 21-year period. Encouraged by Hangzhou municipal government, built-up areas, including 

residential land, industrial land, and educational land have been converted from other land categories. 

To date, Hangzhou core urban area has set three Economic and Technological Development Zones 

(Hangzhou Economic and Technological Development Area (1993); Hangzhou Hi-tech Industry 

Development Zone (2002); Hangzhou Qianjiang Economic Development Area (2006)), which contributed 

large amounts of land intensity, population growth, and economic output [86]. 

The response score evolved steadily and grew rapidly after 2004, which implied that land use in the 

research area was changing from extensive to intensive, patterns and that more fixed assets and employee 

were invested in every land use. Although the government has set several Economic and Technological 

Development Zones and college towns, capital and employees would not be invested and attracted until 

fundamental facilities and public services were completed. 

The pressure, state, and response values of the LES system are shown in Figure 7. The urban 

landscape ecosystem has been suffering from continual pressure from city development since 1992. In 

particular, the pressure level was maintained at a low level from 1992 to 2003 but underwent an intense 

increase in pressure from 2003 to 2012. The state of the ecosystem was improving until 2002, when it 

began to decrease to its lowest point in 2008, from which we concluded that the urban landscape 

ecosystem improved in the initial period under human activities, but was degenerated by high pressure 

in the later period. During the period from 1992 to 2003, response values were negative, which indicated 

that there was little response from human society to protect the urban landscape ecosystem, but after 

2003, the local government took its first steps toward ecological conservation and ecosystem protection. 

Construction of Eco-City (2002), Ecological Function Zoning Planning (2008), and Ecological 

Civilization Construction (2011) were put forward by Hangzhou municipal government continually. 

In sum, the landscape system had its own capacity and resilience; it continued to provide high values 

of ecosystem services and was not degraded until it was placed under high external pressure. External 

effects from humans became greater as urbanization developed. Though ecological responses had 

appeared to protect the ecosystem from being destroyed, the landscape ecosystem was degraded under 

accumulated pressure and was difficult to restore. 
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3.2. The Coupling Relationship between ILU and LES 

3.2.1. Results of CCM and DCM within the ILU and LES Integrated System 

The coupling development mode is displayed in Figure 8 for explicit analysis. The coupling 

relationship between ILU and LES in the Hangzhou core urban area was in Mode I (coordinated 

development). The angle degrees ranged from 20.05° to 84.44°, which indicated that land use and 

landscape security were in coordinated development. There was a trend in which the coupling 

relationship would evolve to Mode III (extreme parasitism), which implied that the two subsystems 

would be under antagonistic effects. Land would be intensively used but at the cost of decreasing  

LES; the urban landscape ecosystem would be degraded and bring adverse effects to the urban 

socioeconomic system. 

 

Figure 8. Coupling development mode of the Hangzhou core urban area. 

Although there is only Mode I in our research area over the past 21 years of the study period, there 

were several interesting findings in the changing curves. For a comprehensive analysis, we integrated 

the CCM degree and the DCM degree into one graph, and the values were standardized and are shown 

in Figure 9. As observed, we divided the whole process into three stages: 

In Stage 1 (1992–2002), the CCM degree decreased from 1.00 to 0.52, and the DCM degree ranged 

from 0.35 to 0.97. In this period, the coordination degree was decreasing, which indicated a certain level 

of antagonistic effects between the land use system and the landscape ecosystem. The original and stable 

urban ecosystem became disturbed by human-induced activities as rapid urbanization occurred all across 

China. Land use might bring several negative impacts, but the impacts were within the tolerance of the 

urban ecosystem elasticity. However, the increasing DCM degree reflected that the entire compound 

system experienced a positive trend, and the two subsystems followed under coordinated development. 

In Stage 2 (2002–2007), the CCM degree began to increase from 0.52 to 0.87, and the DCM degree 

ranged from 0.82 to 0.97. Clearly, we found that the CCM began increasing during this period, which 
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implied that the urban ecosystem adapted to the intensive land use after 11 years. In addition, the 

increasing DCM degree indicated that both subsystems were under synergetic effects and collaborating 

together. Urban socioeconomic activities promoted the urban ecological system, and the urban 

ecosystem brought high-value services to human society. 

In Stage 3 (2007–2012), the DCM degree increased from 0.97 to 1.47, which was above 1.00; and 

the CCM degree reached its highest point, 0.99, in 2011. Though the development process was still in a 

coordinated mode, the CCM degree began to decrease in the year 2011, and there seemed to be lightly 

discordant or limiting factors. The DCM degree above 1.00 implied that land was under quite intensive 

use in this period. The development trend seemed to lead the whole compound system into Mode III 

(extreme parasitism). The two subsystems were under antagonistic effects under this scenario, which 

means that land was used at the cost of decreasing LES; meanwhile, the urban landscape ecosystem was 

degraded, with adverse effects, which restricted the development of the land use system. 

 

Figure 9. Coupling coordination model (CCM) and dynamic coupling model (DCM) 

degrees of the compound system. 

3.2.2. Discussion of the Coupling Relationship of the Integrated ILU and LES System 

The coupling system generally maintained a stable condition, but the threshold values in each 

subsystem could evolve [87]. Both the ILU and LES systems had their own stability as systems and were 

not easily affected by external factors. For example, the factors of the ILU system, rather than external 

factors, drove the ILU system. In addition, threshold values existed in both of the subsystems, but they 

could be altered under overloaded or improved forces. It is commonly accepted that in the first period 

of urbanization, land is less developed, and the landscape ecosystem is in its original state. As 

urbanization spreads, land use brings efficiency and benefits to human society, but it is limited by 

technical, economic, and political factors. Similarly, the development of the landscape ecosystem 

provides human value and wealth but is restricted by the resilience, adaptability, and transformability of 

socioeconomic-ecological systems [88]. Both of the subsystems would be affected by overloaded forces, 

and the coupling system would then circulate and evolve through trajectories of different modes.  

The stability and evolution imply that there was potential for the regulation and optimization of the 

coupling system. 
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The ILU and LES integrated system was a coupling system in which subsystems were related to each 

other and internal elements had mutual effects. At the macro level, the intensity of land use was closely 

associated with urban landscape security. For example, in our study case, proper land use improved the 

landscape ecological security level at first, whereas drastic land use caused adverse impacts on LES in 

the later period (Figure 5). This result reflected the correlation between the urban socioeconomic system 

and the urban landscape ecosystem. At the micro level, elements of different subsystems had mutual 

effects. For example, the elements and condition of the urban ecosystem were driven by the physical and 

economic intensity of land use, which led to ecosystem process changes and impacts on the services 

provided by the landscape ecosystem; in addition, the implementation of ecological conservation from 

the LES system regulated land allocation and configuration in the ILU system. It is therefore  

necessary to optimize land use and improve landscape ecosystems to coordinate the coupling system for 

urban sustainability. 

3.3. Methodological Discussion 

Linking urban socioeconomic systems with urban ecosystems for sustainable urbanization is a major 

challenge. It is emphasized that a comprehensive understanding of the spatial dimensions of natural 

resource use has parallels with concepts and data related to ecological dynamics and requires a 

sophisticated understanding of urban ecosystems [89,90]. The methodology employed in this paper 

provided the initial step in the direction of integrating analytical and participatory assessment framework 

for urban sustainability. The research involved integrated evaluation models targeted at the aspects of 

the ILU system that represented the allocation and configuration of land resources and the aspects of the 

LES system as well that reflected urban ecological dynamics. The evaluation models can monitor and 

diagnose the information of states and dynamics both in urban socioeconomic systems and ecological 

systems. However, indicators in the two evaluation systems could still be improved by referring to an 

optimal theoretical background rather than being derived from pragmatic considerations [9]. For 

example, we calculated ecosystem service values by multiplying ecosystem value coefficients by the 

area of different land use types. However, the ecosystem value coefficients were revised at the regional 

level. Determining how to downscale the coefficients more suitably for the local study area should be 

discussed in future studies. 

The coupling models developed in this paper provided a holistic view for identifying how to balance 

socioeconomic and ecological environments under rapid urbanization. The CCM degree could diagnose 

whether the two subsystems are developing in a coordinated way; and the DCM degree indicated the 

extent of synergistic effects between ILU and LES, reflecting the development trend of the compound 

system. The four coupling modes (coordinated development, restrained degeneration, extreme parasitism, 

and original symbiosis) described an evolution trajectory for urban socioeconomic-ecological system 

development. Although only one coupling mode in our research area provided explanation for the 

evolution process, from the trajectory we can understand the interaction and evolution process and thus 

contribute fundamental knowledge to decision-making. However, different case studies including the 

other modes could provide a complementary understanding of socioeconomic-ecological systems for 

urban sustainability. In addition, further researches could be conducted to simulate the interactive 



Sustainability 2015, 7 1476 

 

 

relationships under different scenarios of land use and landscape planning. A further system dynamics 

study could help understand the processes and consequences of separate factors and driving mechanisms. 

3.4. Implications for Urban Sustainable Development 

Socioeconomic development and ecological stability are two main considerations in the process of 

urbanization. Particularly in developing countries with large populations, the conflicts and trade-offs 

between these considerations have become a common focus throughout the world [91]. Planning and 

managing urban development for sustainability depend on knowledge of the underlying driving forces, 

mechanism and process [92], which involves spatial patterns of land uses that are socially and 

economically beneficial, as well as the conservation and development of natural resources [90]. City 

planners, economists and resource managers therefore need advanced methods and a comprehensive 

knowledge of the cities under their jurisdiction to make the informed decisions necessary to guide 

sustainable development in rapidly changing urban environments [93]. 

In this paper, two systems were established for evaluating land use level and landscape ecological 

security, which represent urban socioeconomic system and ecological system, respectively. The ILU 

evaluation system was orientated by urban land use planning factors, which were officially collected by 

statistical bureau. The ILU evaluation could thus provide administrative effectiveness and guide urban 

land use planning. The LES evaluation system was consist of landscape metrics and local ecological 

conservation policies. The system could therefore be used to indicate and diagnose the performance and 

problems. The system could also provide sustainable principles of urban development framework for 

local government. Specially, applying landscape metrics in LES, which has been demonstrated great 

contribution on operational efficiency for urban planning [93,94], would likely be useful in addressing 

the ecological dimension of urban land use planning. In addition, policy factors in response levels of the 

LES system were also included. 

Besides, as many urban development policies did not include explicit targets, which made the 

evaluation difficult. Determining whether the polices have been effective in accomplishing their goals 

requires clarity regarding the goals and objectives [95]. This research on coupling relationships between 

intensive land use and landscape ecological security provided a multi-level interdisciplinary perspective 

that linked socioeconomic systems with ecological systems. The interaction between ILU and LES 

systems was detected by coupling models. The evolution trajectory of the coupling system provided 

explicit goals to help frame the operational objectives for local administrators. 

4. Conclusions 

This paper highlighted the coupling relationship between ILU and LES in the Hangzhou core urban 

area for understanding of the synergistic effects, interdependencies and trade-offs between urban 

socioeconomic and ecological systems. Socioeconomic data, landscape ecology concepts, and an 

integrated metrics approach were evaluated under a PSR framework by using a coupling model that 

provided multidimensional analysis to evaluate the coupling degree and to diagnose problems. The 

results of ILU and LES analysis showed that levels of both subsystems were increasing generally, but 

there were several fluctuation changes in LES. The interaction in each system was time lagged, and 

urban LUCC and ecosystem transformations were determined by political business cycles and influenced 
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by specific factors. Economic cycles, the migration of populations, and political movements can lead to 

volatility in urban land use and ecosystems. The division of phases, for example, was strongly related to 

the change in administrative regions that occurs every five years with the reappointment period of 

government that takes place in China. 

From the findings of the coupling results, it was concluded that the coupling system maintained a 

stable condition and underwent evolving threshold values. The ILU and LES integrated system was a 

coupling system in which subsystems were related to each other and internal elements had mutual 

effects. However, Mode II (restrained degeneration), Mode III (extreme parasitism) and Mode IV 

(original symbiosis) did not appear in our research area. As urbanization rapidly spreads throughout the 

world, raising awareness of ILU and LES should be emphasized. In China the government plays the key 

role in the allocation and utilization of land resources and institutionally dominates decision making for 

land use planning, public investments, and ecological conservation for sustainability [95]. However, the 

government expects public participation, such as efforts of non-governmental organizations (NGOs), to 

balance economic development and ecosystem protection. Therefore it is suggested that further detailed 

studies on the comprehensive characterization of the ILU and long-term mechanisms of monitoring and 

forecasting LES should be carried out for decision-making regarding urban sustainable development. 
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