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Abstract: In the area of production planning and control, the aggregate production planning (APP)
problem represents a great challenge for decision makers in production-inventory systems. Tradeoff
between inventory-capacity is known as the APP problem. To address it, static and dynamic models
have been proposed, which in general have several shortcomings. It is the premise of this paper
that the main drawback of these proposals is, that they do not take into account the dynamic nature
of the APP. For this reason, we propose the use of an Optimal Control (OC) formulation via the
approach of energy-based and Hamiltonian-present value. The main contribution of this paper is the
mathematical model which integrates a second order dynamical system coupled with a first order
system, incorporating production rate, inventory level, and capacity as well with the associated cost
by work force in the same formulation. Also, a novel result in relation with the Hamiltonian-present
value in the OC formulation is that it reduces the inventory level compared with the pure energy
based approach for APP. A set of simulations are provided which verifies the theoretical contribution
of this work.

Keywords: aggregate production planning; capacity; inventory; optimal control;
Hamiltonian-present value

1. Introduction

Nowadays one of the most important challenges faced by business is the adjustment of firm
resources in order to satisfy market requirements subjected to fluctuations over time, namely costs,
prices, existences, demands, etc. [1]. In the case of facing fluctuating, hard-to-predict demand, several
companies around the world have the conflicting goals of (1) limiting the buildup in finished goods
inventory; and (2) minimizing changes in the capacity level. Traditionally, the most economical
solution to absorb fluctuations in demand is a mix of two alternatives [2,3]:

‚ Adjust the capacity level (hiring/firing labor force, working overtime/undertime,
subcontracting, etc.); this is known as the chase alternative [4,5]: track the expected monthly
sales and compute the corresponding capacity requirements.

‚ Use of inventories (excess of SKUs, backlog of orders, or lost sales); this is known as the
level plan: maintain a steady production rate over the entire year, using finished goods
(smoothing/anticipation) stocks to absorb ongoing differences between output and sales.
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This problem—known as the aggregate planning problem—can be stated as follows [6–9]:

‚ determine simultaneously the production rate P, inventory level β, and capacity levels C,
‚ for meeting a fluctuating demand (a set of forecasts),
‚ at each period of a finite planning time horizon in days (t = 1,2,..., N),
‚ for a given set of production resources,
‚ involving one product or a family of similar items (with small differences so that considering the

problem from an aggregate viewpoint is justified),
‚ while minimizing total relevant costs (i.e., payroll, hiring/layoffs, overtime/undertime,

inventory/shortage, etc.),
‚ and subject to non-constant, time varying constraints.

Aggregate production planning (APP, or workforce planning, production and employment
smoothing, capacity and production planning), deals with matching capacity (via adjustment of
production load, inventory, and employment levels) to changing demand, over a finite planning
horizon, in order to achieve long-run profitability. By converting monthly sales forecasts, inventory
levels, labor inputs, and production rates—of a single entity with characteristics representative
of an entire product group—to a convenient aggregate load/capacity format (such as standard
hours), a production plan is generated [10]: this involves a tradeoff between penalties for carrying
inventory and varying the capacity level incurs the minimum total marginal cost over a calendar year.
Because of this, the aggregate planning process has an economic importance due to the decisions
involved (regarding the capacity and inventory levels necessary to meet anticipated demand over
the planning period), as they impact the company’s performance, i.e., profit maximization. This in
turn requires complete and accurate information about: machine capacity, labor utilization, levels
(inventory, safety stock, manpower adjustment, subcontract, storage), time (regular/overtime), costs
(production, inventory, overtime/idle time, subcontracts, shortage, lost sales, break down, backorder,
hiring/firing/training). With this idea on mind, the next section presents a discussion of APP in
production-inventory systems, while Section 3 introduces the research statement of APP as a control
engineering problem in the context of optimal control theory. In Section 4, the stability analysis
and mathematical modeling of APP is present. In order to show the validity and usefulness of the
proposed formulation, results are presented in Section 5. Finally, Section 6 shows the conclusions
derived from the case study plus future research venues.

2. APP in Production-Inventory Systems

2.1. Decision Science Approaches to the Aggregate Planning Problem

Models that have been used to solve the APP problem include: linear decision rule (for long-term
strategic APP decisions), transportation model, dynamic programming, lot sizing model, linear
programming (the most widely accepted method like in ([11]), , heuristics [12], simulation [13],
goal programming [14], micro spreadsheet analysis [15], multi-objective optimization [16], fuzzy
formulation models [17,18], genetic algorithms (GAs) [19], and multiple criteria mixed integer
programming [20]. Based on Holt et al., in [2], in the area of models for planning/scheduling
production-inventory systems, two types of models can be identified:

‚ Static models which are based on a finite planning horizon, considering deterministic demand.
In this scenario, the receding planning horizon is bigger than the period by period plan.

‚ Dynamic models which consider a indefinite planning horizon, with a proper forecasting in
demand; this based on the context that period by period decisions are based on a receding
forecast over a planned time horizon.

where most of the existing aggregate planning models found in the literature [21]:
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‚ Try to minimize an objective function representing “total relevant costs” (like production,
inventory, shortage costs) over the fixed planning horizon.

‚ The usual constraints employed are inventory and capacity constraints, and are formulated to a
single-objective function in linear programming [22].

A review of the literature over the past 20 years, in the area production planning modeling,
shows the following: a taxonomy of the mathematical models used in aggregate planning; a literature
review in aggregate, disaggregate, scheduling, and sequencing methods by feature, model, objectives,
decision variables, and solution method; the achievements in optimal control methods—based on
the maximum Pontryagin´s principle theory—that allowed analytical investigation of aggregate
production planning systems to be carried out in order to gain an insight into their optimal behavior;
and the literature in aggregate production planning models that have been introduced in the last
four decades; the different planning models used in the production arena—from the supply chain
level down to the manufacturing resource and capacity—as well the different approaches followed
(namely conceptual, analytical, etc.) are summarized in [23]. In recent years, it has become evident
that many researchers and practitioners are increasingly aware of addressing:

‚ Real-life situations of management and decisions with the presence of multiple objectives;
by developing goal programming optimization models.

‚ Variations over time; by developing multi-period optimization models.
‚ Novel optimization methods as convex optimization in [24].

Even though all of the APP models cited in the literature have shown good performance in the
academic field that have not in practical life, according to [25] the following reasons that apply are:

‚ Current models do not capture the real world approaches in APP scenarios.
‚ The hypothesis in which items are homogeneous and are aggregated.
‚ The hypothesis that workforce has the same competence.
‚ In the mathematical modeling, the following areas are not considered, such as: human resources,

marketing, and finance.
‚ The information provided by industry is not proper in the context of sales forecasting and

cost information.
‚ Complex mathematical modeling and analysis of the APP process.

Furthermore, in [26] the following reasons apply:

‚ The hypothesis that uniform rates are assumed for different items, which do not capture the
scenario for producing various items.

‚ There is an absence of interest from managers to adapt mathematical methods and
proper techniques.

‚ The cost related to the collection and quantification of data in order to apply the
above techniques.

‚ The real cost functions in organizations are not well established by actual techniques.

Each of the last mentioned issued can be grouped as follows:

‚ Regarding the modeling approach; based on [27], decision makers such as operations researchers
and other mathematical decision builders and its application in real scenarios are far from
business practice.

‚ Regarding the aggregation approach; even though it intends to (1) simplify/facilitate the myriad
of calculations, and (2) to reduce the solving time of a large problem, it presents some issues [28]:
aggregation does not result in a better optimal solution; it probably compromises optimality and
may even result in an infeasible solution; it usually results in a better attained solution within a
fixed solution time.
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‚ Regarding the use of mathematical models; comments in journals indicate that because a
worrying gap exists between theory and practice, as mathematical (optimizing) models have
not had a significant impact on industry operations management practices managers find
mathematical methods too daunting; the cost assumptions used in models are over-simplified
and unrealistic; simplified/inflexible assumptions which limit their industrial applicability;
cannot cope with calendar variations (i.e., holidays), and the revision of distant, and therefore,
speculative forecasts cause instability in the schedules; broader concepts in the area of
employment policy and inventory practices need to be introduced.

Summarizing: due to the highly complex constraints of the APP problem, exact optimal
solutions provided by traditional optimization methods may very possibly be meaningless. It is
true that a number of artificial intelligence approaches—combined with mathematical programming
models—have been used to solve the APP problem, but little attention has been given to the
consideration that marks the difference between a pure academic treatment of the APP problem
and a result with real-life, practical implications: the simultaneous combination of many constraints
affecting the quality of the APP. Based on this, in its simplest form the production planning paradigm
describes firm operating in a market facing external demand which it tries to meet by utilizing
a limited set of production resources that has limited ability to generate output in a given time
period [29]. In this context, the application of optimal control approaches presents a suitable
mathematical tool with the intention to model and analyze the APP problem in a short time horizon,
which is our case of analysis. Also, it is important to establish that optimal control is a dynamic
optimization problem which can handle several decision variables and a control law in order to set
up the conditions for a decision maker in the production planning context.

2.2. The Dynamic Nature of APP

The previous sections can be summarized as follows: an economical solution (for companies)
to deal with a fluctuating demand is a mix between the chase alternative (hire/fire capacity) and
level plan (inventory excess/shortages) strategies. This involves an inventory-capacity tradeoff,
and is known as the aggregate planning problem: determine what must be the production rate,
inventory and capacity levels necessary to minimize inventory holding, shortages, and production
switching costs subject to time varying constraints. To address this problem, static and dynamic
models—which try to minimize a linear programming objective function subject to inventory and
capacity constraints—have been proposed. More recently, and in order to reflect more realistic
situations, models with multiple objectives and variations over time, have been developed. As
mentioned before, the proposed approaches have several shortcomings: they are over-simplified
and unrealistic, attained solutions may be even impractical and infeasible, the use of speculative
forecasts causes instability in the obtained schedules, etc. However, it is the premise of this paper
that the main drawback of these proposals is, that they do not take into account the dynamic nature
of the aggregate planning problem: the excessive inventory and production costs due to the use of
speculative forecasts, is worsened by a poor understanding of the time lags between the ordering
of goods and receipt into stock [30,31]. In fact, a production system designed to deal with the APP
problem should have as objectives:

‚ to buffer the production system from the customer; with a minimum reasonable inventory that
absorbs the high frequency content in demand and allows having a level schedule. In this way,
the variability of customer demand is reduced/avoided as switching production levels up and
down frequently may be very expensive in practice [32].

‚ to buffer the customer from supply time lags; by selling goods straight off the shelf. In this way
high customer service levels can be achieved, which can only be accomplished when the dynamic
behavior of its constituent parts (i.e., materials/information flow, operations performed,
resources/decision, rules/performance measures used) has been taken into account [33].
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‚ Demand patterns; after a ramp increase there is a continuing freefall in inventory levels, after
a step increase there is a permanent inventory deficit. So demand—without some form of
averaging—results in excessive fluctuations in production rates (which are supposed to be
absorbed by the inventory buffers).

‚ Lead times; the amount of inventory holding that is needed to satisfy a customer service level is
dependent on the uncertainties in both demand and lead times.

‚ Inventory levels; trying to correct all the inventory discrepancy in a single time period, when
in fact it may take many more time periods, provokes excessive (overshoots and undershoots
around the target level).

3. Research Statement

3.1. Control Engineering & Production/Inventory Control

In [34] the author presents a series of reasons for using control engineering techniques
in production/inventory control, i.e., the use of standard forms, the block diagram format,
standard techniques that enable important performance metrics to be calculated without recourse
to simulation, there are a number of techniques for transferring problems from one domain into
another, etc. Authors like [35–39] present in-detail reviews of control engineering applications to
production/inventory control. One of these applications that deserves to be mentioned apart—due
to the number of research studies based on it—is the APIOBPCS concept. APIOBPCS stands
for Automatic Pipeline, Inventory and Order Based Production Control System, and it is a
well-established (both industrially and theoretically) production scheduling/control system model
which operates on a knowledge of customer demand, inventory level, and unfilled orders, and
that it provides an acceptable trade-off between production smoothing and a high level of stock
turnover. The ordering policy/production algorithm of APIOBPCS is representative of work in [40].
Most of the APIOBPCS research has been undertaken using both control theory mathematics and
system dynamics (SD), the most representative works in SD are present in [41] where it is applied
to APP via transfer function approach; in [42] applying SD for production-inventory systems;
in [43] a production-inventory system for APP described by differential equations via control
oriented approaches; and in [44] where the SD approach is extended in production-inventory in
remanufacturing. Based on this, APIOBPCS models are usually expressed in a continuous control
form, but there is a discrete version available as well. In any case, the APIOBPCS simulation models
may be used confidently as a benchmark to demonstrate performance enhancement for a wide range
of practical scenarios [45].

3.2. Order-Up-To (OUT) and Smoothing Policies

As inventories should have a stabilizing effect on material flow patterns, a minimum reasonable
inventory is necessary to absorb the variations in demand and allow a level schedule. The level
scheduling problem (LSP), or production smoothing problem (PSP), refers to the problem of finding
level schedules where:

‚ production of a given product is constant over time or,
‚ the cumulative production amount of a product is proportional to time or,
‚ the items should be dispersed over the schedule as uniformly as possible, with a minimal total

deviation from the final level of operations.

Setting a takt-paced production results in a leveled production/production smoothing (key to
establish the strategic/market pull), which is a simple matter of buffering—with either a time backlog
or inventory—the production line from demand variability. The tradeoff between stocks and schedule
stability is reflected in the master production schedule. On the other hand, a replenishment strategy
that strives to bring the inventory position up to a predetermined target level is called an OUT
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policy. These kind of policies are very popular both in research as in practice since they are known to
minimize inventory holding and shortage costs. Dejonckheere, et al. [39] presents two shortcomings
of OUT policies are:

1. Generation of a bullwhip effect.
2. If production is not flexible and costs are excessive, a not optimal option is present.

Regarding point 1; the bullwhip effect has largely been analyzed by the OR, system dynamics,
and control theory communities, where two popular approaches are: the statistical inventory control
approach and the control engineering approach. Most of the research developed analyzing bullwhip
effect considered supply chain systems. However, from the point of view of production-inventory
systems the bullwhip effect has been studied in [46] where it applies autoregressive models to achieve
multiple steps demand; in [47] an adaptive base-stock policy to determine order quantities; and
in [48] explores the inventory stability in the context of a seasonal supply chain. In the case of the
first approach: steady-state models based on steady-state conditions—like deterministic, stochastic,
economic game-theoretic, and simulation models—are insufficient and therefore, unable to describe,
analyze, and find remedies for problems like the bullwhip effect. In the case of the second approach:
the bullwhip effect can be avoided by smoothing the ordering pattern—a problem known in the
literature as the “production smoothing problem”—which means that it is possible to dampen order
fluctuations even in environments where decision makers have to rely on forecasts.

Regarding point 2; the total costs of a perfectly controlled system—defined as a system that
faithfully tracks some reference or target signal [49], is composed by costs associated with perfectly
tracking the target (i.e., traditional fixed and variable costs), and costs associated with not being
in perfect control of a system (i.e., under produce/over produce costs, and excessive/insufficient
inventory costs). As there is trade-off to be made between OUT policies’ minimum inventory holding
plus shortage costs, and smoothing policies’ minimum production switching costs, when the cost
structure is altered, there is a need to identify a set of values (related to the production rate, and
inventory/capacity levels) that reduce the sum of total costs [50].

3.3. The Aggregate Planning Problem as an Optimal Control Problem

Fact #1: the aggregated planning problem has to do with finding an optimal set of parameters’
values that minimizes a set of costs, facing a varying demand and within a finite planning time
horizon; fact #2: the control engineering approach allows to analyze, design and simulate dynamic
models; fact #3: in order to dampen order fluctuations and avoid the bullwhip effect (generated
by OUT policies), a smoothing policy is required. When viewed together, these facts suggest (1)
the understanding of the aggregated planning problem as an optimization problem; and (2) the
use of control engineering-based tool capable of dealing with dynamic systems that allows the
characterization of damping strategies. With this idea on mind, we state the research proposal of
this paper as the formulation of APP as an optimization problem, applying OC techniques via an
energy-based formulation for the dynamical system which describes the behavior and nature of
the problem.

4. Stability and Mathematical Modeling for APP

4.1. Mathematical Modeling of APP

Based on a previous work [51], and [52] which applies second-order differential equation
analogizing production system with mechanical vibration systems, here the approach is to propose
an energy based analogy to obtain the dynamic equation for APP in production-inventory
systems. In order to develop a consistent energy based analogy for APP, the following energy
based function for APP, where EAPP is the total energy of the APP system which is proposed:

EAPP “
1
2

C
‚

P
2
`

P
ş

Po
W pPq dP. Considering the Kinetic and Potential energy, where the Kinetic energy
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is such as: T “
1
2

C
‚

P
2
, and the potential energy is calculated as: V “

1
2

WP2, where in our analysis

W pPq “ WP. The Lagrangian is:

L
ˆ

P,
‚

P
˙

“ T´V “
1
2

C
‚

P
2
´

1
2

WP2 (1)

Calculating the Lagrangian equation is:

d
dt

˜

BL

B
‚

P

¸

´

ˆ

dL
dP

˙

“ φ (2)

From where, for stability purposes, the damping is of the form: φ “ ´pβ ptq ´αq
‚

P. Finally, for
purposes of APP, the equation of the system is the following model:

C
d2P
dt2 ` pβptq ´αq

dP
dt
`WP “ dptq (3)

Equation (3) presents:

P—Production rate level
C—Capacity: in this research paper by capacity we mean the limitation on the amount of output
that can be produced in a given time interval by a production resource.
d(t)—Demand
W—Work force level in a time horizon (in days)
βptq—Inventory level (Damping coefficient)
α—Economic Order Quantity (EOQ)

In order to achieve an understanding about the α parameter (EOQ) in the formulation, please
refer to the Appendix. The Damping factor in Equation (3) has the characteristic to be a function over
time, Lipschitz and it requires convergence in a scalar value. Regarding to a Production-Inventory
system, the inventory level βptq presents an ODE form, as presented in [53], in this paper the approach
is of the form:

dβ
dt
“

´

1´
α

C

¯

β ptq `
´α

C

¯

P ptq ´ d ptq (4)

4.2. Optimal Control Basic Concepts and Notation

Optimal control theory has as its objective the maximization of the return from, or the
minimization of the cost of, the operation of physical, social, and economic processes [54]. Based
on this, in this work the interest is to apply Optimal Control approaches to problems in APP with
dynamics in production-inventory level taking into account a contribution of the EOQ.

4.2.1. Optimal Control Formulation for APP: Continuous Inventory Policy

An optimal control is defined as an admissible control which minimizes an objective function.
Given a dynamic system with initial condition x0, and which evolves in time according to
‚
x “ f px, u, tq, the objective is to find control vector which is admissible and achieves a minimum
for the cost functional. The optimal control problem is:

min
uptq

J “

t1
ż

t0

F px, u, tq dt` S rx pt1qs (5a)

s.t.
‚
x “ f px, u, tq , x pt0q “ x0, u ptq P <m (5b)
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4.2.2. Optimal Control for APP with a Discount Factor: A Hamiltonian “Present Value”

In economics, several problems in OC present a discount factor e´δt. In this work, this discount
factor is applied to production-inventory systems, as the ratio between the EOQ and Capacity. Based
on this, the optimal control problem is of the form:

min
uptq

J “

t1
ż

t0

W px, u, tq e´δtdt (6a)

s.t.
‚
x “ f px, u, tq , x pt0q “ x0, u ptq P <m (6b)

From where the Hamiltonian is:

H px, u, λ, tq “ W px, u, tq e´δt ` λ f px, u, tq (7)

Defining the Hamiltonian “Present value” by:

H “ He´δt “ W px, u, tq ` λeδt f px, u, tq (8)

Considering the relation: m ptq “ λ ptq eδt, after some manipulation, a detailed discussion is
on [55], the Hamiltonian “Present value” is:

H px, u, m, tq “ G px, u, tq `m f px, u, tq (9)

The interest is to apply both Optimal Control formulations to the dynamic system from
Equations (3) and (4), which results are provided in the following section.

4.2.3. Stability Analysis for APP Problem

Theorem 1. (LaSalle‘s Invariance Principle)

Let f pxq be a locally Lipschitz function defined over a domain D Ă <n and Ω Ă D be a compact

set that is positively invariant with respect to
‚
x “ f pxq. Let V pxq be a continuously differentiable

function defined over D such that
‚

V pxq ď 0 in Ω. Let E be the set of all points in Ω where
‚

V pxq “ 0,
and M be the largest invariant set in E. Then every solution starting in Ω approaches M as t Ñ8 .

In order to apply Theorem 1, for stability purposes, in the dynamical system conformed by
Equations (3) and (4), the input (demand function) is of the form: d ptq “ 0. From which, the
dynamical system has the form:

‚
x1 “ x2 (10)

‚
x2 “ ´

1
C
px3 ´αq x2 ´

K
C

x1 (11)

‚
x3 “

´

1´
α

C

¯

x3 `
α

C
x1 (12)

Considering that: x1 “ P, x2 “
‚

P and x3 “ β, with an equilibrium point in px1, x2, x3q “ p0, 0, 0q
from Equations (10)–(12). To probe stability, a Lyapunov candidate function is proposed such as:

V px1, x2, x3q “
1
2
px1 ´ x3q

2
`

1
2

x2
2 (13)

Corollary 2. ([56]) Let x = 0 be an equilibrium point for
‚
x “ f pxq. Let V : D Ñ R be a

continuously differentiable positive definite function on a domain D containing the origin x = 0, such

that
‚

V pxq ď 0 in D. Let S “
"

x P D|
‚

V pxq “ 0
*

and suppose that no solution can stay identically

in S, other than the trivial solution. Then, the origin is asymptotically stable. Applying the condition
‚

V ď 0 to Equation (13):
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‚

V “ x1
‚
x1 ´ x1

‚
x3 ´

‚
x1x3 ` x3

‚
x3 ` x2

‚
x2 (14)

After some algebraic manipulation Equation (14) is of the form:

‚

V “ px1 ´ x3q
”

‚
x1 ´

‚
x3

ı

` x2
‚
x2 (15)

Substituting Equations (10)–(12) in Equation (15):

‚

V “ x1x2 ´
´

1´
α

C

¯

x1x3 ´
α

C
x2

1 ´ x2x3 `
´

1´
α

C

¯

x2
3 `

α

C
x1x3 ´

1
C

x2
2x3 `

α

C
x2

2 ´
K
C

x1x2 (16)

Grouping terms and factorizing in Equation(16):

‚

V “
ˆ

1´
K
C

˙

x1x2 `

ˆ

2α
C
´ 1

˙

x1x3 ´ x2x3 ´
α

C
x2

1 `
´

1´
α

C

¯

x2
3 ´

1
C

x2
2 rx3 ´αs (17)

The following condition must be satisfied in Equation (17) for stability purposes: α “
K
2

. From
which we have:

‚

V “ ´
α

C
x2

1 ´
1
C

x2
2 rx3 ´αs `

´

1´
α

C

¯

x2
3 ´ x2x3 (18)

Considering that x1, x2, x3 ą 0 and |x|2 “ |x2| |x3|.

‚

V “ ´
α

C
x2

1 ´
1
C

x2
2 rx3 ´αs ´

´α

C
´ 1

¯

x2
3 ´ |x|

2 (19)

From Equation (19), in order to satisfy
‚

V ď 0, a necessary and sufficient condition is to achieve:
x3 ą α with α ą C.

5. Results and Discussion

5.1. Energy Based Optimal Control Formulation: Continuous Inventory Policy Approach

Consider the following energy based-Optimal Control problem:

min
u

t f
ż

o

1
2

u2dt, s.t.
‚
x1 “ x2 (20a)

‚
x2 “ ´

ˆ

x3 ´α

C

˙

x2 ´
K
C

x1 `
1
C

u,
‚
x3 “

´

1´
α

C

¯

x3 `
α

C
x1 ´ u (20b)

Calculating the Hamiltonian from:

H px, u, λ, tq “ F px, u, λ, tq ` λ f px, u, λ, tq (21)

Applying first condition from Pontryagin Maximum Principle:
‚

λi “ ´
BH
Bxi

(22)

We achieve the following set of ODE, which are the co-states:

‚

λ1 “
K
C
λ2 ´

α

C
λ3 (23)

‚

λ2 “ ´

ˆ

λ1 ´
px3 ´αq

C
λ2

˙

(24)

‚

λ3 “ ´

ˆ

´
λ2x2

C
`

´

1´
α

C

¯

λ3

˙

(25)
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H “
1
2

u2 ` λ1x2 ` λ2

ˆ

´

ˆ

x3 ´α

C

˙

x2 ´
K
C

x1 `
1
C

u
˙

` λ3

´´

1´
α

C

¯

x3 `
α

C
x1 ´ u

¯

(26)

Applying the second condition from Pontryagin Maximum Principle:

BH
Bu

“ u`
λ˚2
C
´ λ˚3 (27)

and
B2H
Bu2 “ 1 ą 0 thus we have a minimum. Finally, substituting u “ λ˚3 ´

λ˚2
C

in the set of states and
co-states the following simulations are achieved.

In order to present a discussion over the previous results, Figure 1 establishes the production
rate behavior over time which has the characteristic of a maximum and minimum level over the
horizon presented. Figure 2 presents a maximum level in the same time horizon this is based on the
formulation of the first order differential equation which characterizes it. Figure 3 relates that the
demand level increase conforms with the time horizon increases.
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C

•  − α
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 (25) 
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5.2. Energy Based-Optimal Control with a Discount Factor: A Hamiltonian “Present Value”

Based on a previous work, in [57] which applies a discount factor in the performance index, this
approach considers the following problem with a discount factor

min
u

t f
ż

o

1
2

´

u2 ` x2
1

¯

e
´p

α

C
qt

dt, s.t.
‚
x1 “ x2 (28a)

‚
x2 “ ´

ˆ

x3 ´α

C

˙

x2 ´
K
C

x1 `
1
C

u,
‚
x3 “

´

1´
α

C

¯

x3 `
α

C
x1 ´ u (28b)

The first condition for the Hamiltonian-Present value, which are the co-states:

‚
m “ ´

BH
Bx
`

´α

C

¯

m (29)

where the Hamiltonian as the form:

H “
1
2

´

x2
1 ` u2

¯

`m1x2 `m2

ˆ

´

ˆ

x3 ´α

C

˙

x2 ´
K
C

x1 `
1
C

u
˙

`m3

´´

1´
α

C

¯

x3 `
α

C
x1 ´ u

¯

(30)

The following set of ODE, are for the co-states:

‚
m1 “ x1 `

K
C

m2 `
α

C
m3 `

α

C
m1 (31)

‚
m2 “ ´

ˆ

m1 ´
px3 ´αq

C
m2

˙

`
α

C
m2 (32)

‚
m3 “ ´

´

´
m2x2

C
`

´

1´
α

C

¯

m3

¯

`
α

C
m3 (33)

Applying the second condition from Pontryagin Maximum Principle:

BH
Bu

“ u`
m˚2
C
´m˚3 (34)

16334



Sustainability 2015, 7, 16324–16339

and
B2H
Bu2 “ 1 ą 0 thus we have a minimum. Substituting u “ m˚3 ´

m˚2
C

in the set of states and
co-states, after some manipulation, the following simulations are achieved.

The introduction of the Hamiltonian present value produces a lower a higher production rate
level in the dynamics, based on Figure 4 and a lower inventory level (almost half of the energy based
inventory level from Section 5.1) which is present in Figure 5. Finally, the demand level increases
conform with time horizon increases as is shown in Figure 6.
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Figure 5. Inventory level for APP (Hamiltonian-present value, time scale in days). 
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Figure 6. Demand level for APP (Hamiltonian-present value, time scale in days).

6. Conclusions

This research work presents an Optimal Control formulation for APP problems via the approach
of Energy-Based and Hamiltonian-Present value. Stability analysis via LaSalle invariance principle
establishes a condition in the inventory level which considers the EOQ parameter. The main
contribution of this paper is the mathematical model which integrates a second order dynamical
system coupled with a first order dynamical system which incorporates production rate, inventory
level, and capacity as well with the associated cost of the work force in the same formulation.

Simulations show conforming with the increased production rate, inventory level achieves
a maximum level when that demand level grows. A novel result in relation with the
Hamiltonian-present value in the Optimal Control formulation is that it reduces the inventory level
compared with the pure energy based approach for APP. Simulations show conforming with the
increased production rate, inventory level achieves a maximum level when that demand level grows.

Further work presents the idea of integrating the associated cost with dynamics, and to extend
the case studies in the cost functional. Also the interest is to extend the mathematical model,
in discrete formulation, to apply Model Predictive Control (MPC). Future research will consider
the use of robust optimal control, another way of dealing with uncertainty, where a deterministic
uncertain-but-bounded quantity is used (i.e., future demand can be bounded between lower and
upper limits, without needing to define the probability of occurrence of each possible event within
these limits), and the constraints regarding the operation of the system. Our intention is to extend
this work with the application of MPC strategies via a suitable dynamic system which integrates
dynamics in the inventory level. A practical real life problem which addresses this approach is our
interest as well.
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Appendix

EOQ is a simple model which is used, when manufacturers have reduced stock levels in time
and are replenished of new units. In this case, the basic EOQ pαq, model is:

α “

c

2aW
h

where:

W = Setup cost for ordering one batch
h = Holding cost per unit per unit of time held in inventory
a = Known constant demand rate of units per unit of time

References

1. Moreno, M.S.; Montagna, J.M. A multiperiod model for production planning and design in a multiproduct
batch environment. Math. Comput. Model. 2009, 49, 1372–1385. [CrossRef]

2. Holt, J.A. PDF versus LP: An empirical aggregate planning comparison. J. Oper. Manag. 1983, 3, 141–147.
[CrossRef]

3. Foote, B.L.; Ravlndran, A.; Lashine, S. Computational feasibility of multi-criteria models of production,
planning and scheduling. J. Comput. Ind. Eng. 1988, 15, 129–138. [CrossRef]

4. Buxey, G. Strategy not tactics drives aggregate planning. Int. J. Prod. Econ. 2003, 85, 331–346. [CrossRef]
5. Buxey, G. Aggregate planning for seasonal demand: Reconciling theory with practice. Int. J. Oper.

Prod. Manag. 2005, 25, 1083–1100. [CrossRef]
6. Taubert, W.H. A search decision rule for the aggregate scheduling problem. Manag. Sci. 1968, 14, 343–359.

[CrossRef]
7. Schroeder, R.G.; Larson, P.D. A Reformulation of the aggregate planning problem. J. Oper. Manag. 1986, 6,

245–256. [CrossRef]
8. Nam, S.; Logendram, R. Modified production switching heuristics for aggregate production planning.

Comput. Oper. Res. 1995, 22, 531–541. [CrossRef]
9. Da Silva, C.G.; Figueira, J.; Lisboa, J.; Barman, S. An interactive decision support system for an aggregate

production planning model based on multiple criteria mixed integer linear programming. Omega 2006, 34,
167–177. [CrossRef]

10. Buxey, G. Production Planning Under Seasonal Demand: A Case Study Perspective. Omega 1988, 16,
447–455. [CrossRef]

11. Wang, R.C.; Liang, T.F. Applying possibilistic linear programming to aggregate production planning. Int. J.
Prod. Econ. 2005, 98, 328–341. [CrossRef]

12. Tadei, R.; Trubian, J.L.; Avendaño, F.; Croce, D.; Menga, G. Aggregate planning and scheduling in the food
industry: A case study. Eur. J. Oper. Res. 1995, 87, 564–573. [CrossRef]

13. Gansterer, M. Aggregate planning and forecasting in make-to-order production systems. Int. J. Prod. Econ.
2015, 170, 521–528. [CrossRef]

14. Leung, S.C.H.; Wu, Y.; Lai, K.K. Multi-site aggregate production planning with multiple objectives: A goal
programming approach. Prod. Plan. Control 2003, 14, 425–436. [CrossRef]

15. Chien, Y.I.; Cunningham, W.J. Incorporating production planning in business planning: A linked
spreadsheet approach. Prod. Plan. Control 2000, 11, 299–307. [CrossRef]

16. Al-e-hashem, S.M.J.; Malekly, H.; Aryanezhad, M.B. A multi-objective robust optimization model for
multi-product multi-site aggregate production planning in a supply chain under uncertainty. Int. J.
Prod. Econ. 2011, 134, 28–42. [CrossRef]

17. Wang, R.C.; Fang, H.H. Aggregate production planning with multiple objectives in a fuzzy environment.
Eur. J. Oper. Res. 2001, 133, 521–536. [CrossRef]

16337

http://dx.doi.org/10.1016/j.mcm.2008.11.004
http://dx.doi.org/10.1016/0272-6963(83)90018-9
http://dx.doi.org/10.1016/0360-8352(88)90075-7
http://dx.doi.org/10.1016/S0925-5273(03)00120-8
http://dx.doi.org/10.1108/01443570510626907
http://dx.doi.org/10.1287/mnsc.14.6.B343
http://dx.doi.org/10.1016/0272-6963(86)90001-X
http://dx.doi.org/10.1016/0305-0548(94)00034-6
http://dx.doi.org/10.1016/j.omega.2004.08.007
http://dx.doi.org/10.1016/0305-0483(88)90018-7
http://dx.doi.org/10.1016/j.ijpe.2004.09.011
http://dx.doi.org/10.1016/0377-2217(95)00230-8
http://dx.doi.org/10.1016/j.ijpe.2015.06.001
http://dx.doi.org/10.1080/0953728031000154264
http://dx.doi.org/10.1080/095372800232261
http://dx.doi.org/10.1016/j.ijpe.2011.01.027
http://dx.doi.org/10.1016/S0377-2217(00)00196-X


Sustainability 2015, 7, 16324–16339

18. Tang, J.; Wang, D.; Fung, R. Fuzzy formulation for multi-product aggregate production planning.
Prod. Plan. Control 2000, 11, 670–676. [CrossRef]

19. Fahimnia, B.; Luong, L.; Marian, R. Genetic algorithm optimization of an integrated aggregate
production-distribution plan in supply chains. Int. J. Prod. Res. 2012, 50, 81–96. [CrossRef]

20. Sillekens, T.; Koberstein, A.; Suhl, L. Aggregate production planning in the automotive industry with
special consideration of workforce flexibility. Int. J. Prod. Res. 2011, 49, 5055–5078. [CrossRef]

21. Kim, B.; Kim, S. Extended model for a hybrid production planning approach. Int. J. Prod. Econ. 2001, 73,
165–173. [CrossRef]

22. Leung, S.C.H.; Chan, S.S.W. A goal programming model for aggregate production planning with resource
utilization constraint. Comput. Ind. Eng. 2009, 56, 1053–1064. [CrossRef]

23. Mula, J.; Poler, R.; García-Sabater, J.P.; Lario, F.C. Models for production planning under uncertainty: A
review. Int. J. Prod. Econ. 2006, 103, 271–285. [CrossRef]

24. Bushuev, M. Convex optimization for aggregate production planning. Int. J. Prod. Res. 2014, 52, 1050–1058.
[CrossRef]

25. García, J.P.; Maheut, J.; García, J. A decision support system for aggregate production planning based on
MILP: A case study from the automative industry. In Proceedings of the International Conference on
Computers & Industrial Engineering (CIE), Troyes, France, 6–9 July 2009; pp. 366–371.

26. Tavakkoli, R.; Safaei, N. An evolutionary algorithm for a single-item resource-constrained Aggregate
Production Planning problem. In Proceedings of the IEEE International Conference on Evolutionary
Computation, Vancouver, BC, Canada, 16–21 July 2006; pp. 2851–2858.

27. Vergin, R.C. Production scheduling under seasonal demand. J. Ind. Eng. 1966, 17, 260–266.
28. Das, S.K.; Sarin, S.C. An integrated approach to solving the master aggregate scheduling problem. Int. J.

Prod. Econ. 1994, 34, 167–178. [CrossRef]
29. Wienke, M. Aggegate Models for Transient Production Planning. Ph.D. Thesis, Arizona State University,

Tempe, AZ, USA, 2015.
30. Disney, S.M.; Naim, M.M.; Towill, D.R. Dynamic simulation modelling for lean logistics. Int. J. Phys. Distrib.

Logist. Manag. 1997, 27, 174–196. [CrossRef]
31. Disney, S.M.; Naim, M.M.; Towill, D.R. Genetic algorithm optimization of a class of inventory control

system. Int. J. Prod. Econ. 2000, 68, 259–278. [CrossRef]
32. Dejonckheere, J.; Disney, S.M.; Lambrecht, M.R.; Towill, D.R. Measuring and avoiding the bullwhip effect:

A control theoretic approach. Eur. J. Oper. Res. 2003, 147, 567–590. [CrossRef]
33. Tang, O.; Naim, M.M. The impact of information transparency on the dynamic behavior of a hybrid

manufacturing/remanufacturing system. Int. J. Prod. Res. 2004, 42, 4135–4152. [CrossRef]
34. Disney, S.M.; Towill, D.R. A discrete transfer function model to determine the dynamic stability of a vendor

managed inventory supply chain. Int. J. Prod. Res. 2002, 40, 179–204. [CrossRef]
35. Axsater, S. Control theory concepts in production and inventory control. Int. J. Syst. Sci. 1985, 16, 161–169.

[CrossRef]
36. Edghill, J.S.; Towill, D.R. The use of systems dynamics in manufacturing systems. Trans. Inst. Meas. Control

1989, 11, 208–216. [CrossRef]
37. Riddalls, C.E.; Bennett, S. The stability of supply chains. Int. J. Prod. Res. 2002, 40, 459–475. [CrossRef]
38. Ortega, M.; Lin, L. Control theory applications to the production–inventory problem: A review. Int. J.

Prod. Res. 2004, 42, 2303–2322. [CrossRef]
39. Dejonckheere, J.; Disney, S.M.; Lambrecht, M.R.; Towill, D.R. The impact of information enrichment on the

Bullwhip effect in supply chains: A control engineering perspective. Eur. J. Oper. Res. 2004, 153, 727–750.
[CrossRef]

40. Sterman, J. Business Dynamics: Systems Thinking and Modeling for a Complex World; McGraw-Hill: New York,
NY, USA, 2000.

41. Dejonckheere, J.; Disneys, S.M.; Lambrecht, M.; Towill, D.R. The dynamics of aggregate planning.
Prod. Plan. Control 2003, 14, 497–516. [CrossRef]

42. Bijulal, D.; Venkateswaran, J.; Hemachandra, N. Service levels, system cost and stability of
production-inventory control systems. Int. J. Prod. Res. 2011, 49, 7085–7105. [CrossRef]

43. Riddalls, C.E.; Bennett, S. Production-inventory system controller design and supply chain dynamics. Int. J.
Syst. Sci. 2002, 33, 181–195. [CrossRef]

16338

http://dx.doi.org/10.1080/095372800432133
http://dx.doi.org/10.1080/00207543.2011.571447
http://dx.doi.org/10.1080/00207543.2010.524261
http://dx.doi.org/10.1016/S0925-5273(00)00172-9
http://dx.doi.org/10.1016/j.cie.2008.09.017
http://dx.doi.org/10.1016/j.ijpe.2005.09.001
http://dx.doi.org/10.1080/00207543.2013.831998
http://dx.doi.org/10.1016/0925-5273(94)90033-7
http://dx.doi.org/10.1108/09600039710170566
http://dx.doi.org/10.1016/S0925-5273(99)00101-2
http://dx.doi.org/10.1016/S0377-2217(02)00369-7
http://dx.doi.org/10.1080/00207540410001716499
http://dx.doi.org/10.1080/00207540110072975
http://dx.doi.org/10.1080/00207728508926662
http://dx.doi.org/10.1177/014233128901100406
http://dx.doi.org/10.1080/00207540110085629
http://dx.doi.org/10.1080/00207540410001666260
http://dx.doi.org/10.1016/S0377-2217(02)00808-1
http://dx.doi.org/10.1080/09537280310001621967
http://dx.doi.org/10.1080/00207543.2010.538744
http://dx.doi.org/10.1080/00207720110092180


Sustainability 2015, 7, 16324–16339

44. Poles, R. System Dynamics modeling of a production and inventory system for remanufacturing to evaluate
system improvement strategies. Int. J. Prod. Econ. 2013, 144, 189–199. [CrossRef]

45. Mason-Jones, R.; Towill, D.R. Using the Information Decoupling Point to Improve Supply Chain
Performance. Int. J. Logist. Manag. 1999, 10, 13–26. [CrossRef]

46. Chandra, C.; Grabis, J. Application of multi-steps forecasting for restraining the bullwhip effect and
improving inventory performance under autoregressive demand. Eur. J. Oper. Res. 2005, 166, 337–350.
[CrossRef]

47. Agrawal, S.; Sengupta, R.N.; Shanker, K. Impact of information sharing and lead time on bullwhip effect
and on-hand inventory. Eur. J. Oper. Res. 2009, 192, 576–593. [CrossRef]

48. Costantino, F.; di Gravio, G.; Shaban, A.; Tronci, M. Exploring the bullwhip effect and inventory stability in
a seasonal supply chain. Int. J. Eng. Bus. Manag. 2013. [CrossRef]

49. Naim, M.M.; Wikner, J.; Grubbström, R.W. A net present value assessment of make-to-order and
make-to-stock manufacturing systems. Omega 2007, 35, 524–532. [CrossRef]

50. Disney, S.M.; Towill, D.R. A procedure for the optimization of the dynamic response of a Vendor Managed
Inventory system. Comput. Ind. Eng. 2002, 43, 27–58. [CrossRef]

51. Davizón, Y.A.; Soto, R.; Rodríguez, J.J.; Rodríguez-Leal, E.; Martínez-Olvera, C.; Hinojosa, C. Demand
Management Based on Model Predictive Control Techniques. Math. Prob. Eng. 2014. [CrossRef]

52. Zanwar, D.R.; Deshpande, V.S.; Modak, J.P.; Gupta, M.M.; Agrawal, K.N. Determination of mass, damping
coefficient, and stiffness of production system using convolution integral. Int. J. Prod. Res. 2015, 53,
4351–4362. [CrossRef]

53. Warburton, R.D.H.; Hodgson, J.P.E.; Nielsen, E.H. Exact solutions to the supply chain equations for
arbitrary time-dependent demands. Int. J. Prod. Econ. 2014, 151, 195–205. [CrossRef]

54. Kirk, D.E. Optimal Control Theory: An Introduction; Dover Publications: Mineola, NY, USA, 2004.
55. Cerdá, E. Dynamic Optimization; Alfaomega: Madrid, Spain, 2012. (In Spanish)
56. Khalil, H.K. Nonlinear Systems; Prentice Hall: Jamestown, ND, USA, 2002.
57. Feng, L.; Zhang, J.; Tang, W. Optimal Inventory Control and pricing of Perishable items without shortages.

IEEE Trans. Autom. Sci. Eng. 2015. [CrossRef]

© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open
access article distributed under the terms and conditions of the Creative Commons by
Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

16339

http://dx.doi.org/10.1016/j.ijpe.2013.02.003
http://dx.doi.org/10.1108/09574099910805969
http://dx.doi.org/10.1016/j.ejor.2004.02.012
http://dx.doi.org/10.1016/j.ejor.2007.09.015
http://dx.doi.org/10.5772/56833
http://dx.doi.org/10.1016/j.omega.2005.09.006
http://dx.doi.org/10.1016/S0360-8352(02)00061-X
http://dx.doi.org/10.1155/2014/702642
http://dx.doi.org/10.1080/00207543.2014.998787
http://dx.doi.org/10.1016/j.ijpe.2013.10.015
http://dx.doi.org/10.1109/TASE.2015.2425415

	Introduction 
	APP in Production-Inventory Systems 
	Decision Science Approaches to the Aggregate Planning Problem 
	The Dynamic Nature of APP 

	Research Statement 
	Control Engineering & Production/Inventory Control 
	Order-Up-To (OUT) and Smoothing Policies 
	The Aggregate Planning Problem as an Optimal Control Problem 

	Stability and Mathematical Modeling for APP 
	Mathematical Modeling of APP 
	Optimal Control Basic Concepts and Notation 
	Optimal Control Formulation for APP: Continuous Inventory Policy 
	Optimal Control for APP with a Discount Factor: A Hamiltonian “Present Value” 
	Stability Analysis for APP Problem 


	Results and Discussion 
	Energy Based Optimal Control Formulation: Continuous Inventory Policy Approach 
	Energy Based-Optimal Control with a Discount Factor: A Hamiltonian “Present Value” 

	Conclusions 

