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Abstract: The changes of spatial pattern in energy consumption have an impact on global 

climate change. Based on the spatial autocorrelation analysis and the auto-regression model 

of spatial statistics, this study has explored the spatial disparities and driving forces in 

energy consumption changes in China. The results show that the global spatial 

autocorrelation of energy consumption change in China is significant during the period 

1990–2010, and the trend of spatial clustering of energy consumption change is weakened. 

The regions with higher energy consumption change are significantly distributed in the 

developed coastal areas in China, while those with lower energy consumption change are 

significantly distributed in the less developed western regions in China. Energy 

consumption change in China is mainly caused by transportation industry and non-labor 

intensive industry. Rapid economic development and higher industrialization rate are the 

main causes for faster changes in energy consumption in China. The results also indicate 

that spatial autoregressive model can reveal more influencing factors of energy 

consumption changes in China, in contrast with standard linear model. At last, this study 

has put forward the corresponding measures or policies for dealing with the growing trend 

of energy consumption in China. 

Keywords: energy consumption; sustainable development; spatial autocorrelation; spatial 

autoregressive model 
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1. Introduction 

The changes in energy consumption have obvious impacted on the pattern of carbon dioxide 

emission and then on the process of global climatic change [1,2]. Furthermore, China is a country with 

huge amounts of energy consumption because of its rapid urbanization and industrialization [3–7]. 

With China’s rapid economic development, energy consumption shows a rapid growth trend [3,8–10]. 

How to maintain higher economic growth and lower energy consumption is the great concern in China. 

Currently some studies on the energies in China are mostly concerned with the distribution of energy 

industry in China, sustainable development strategy and construction of energy safety systems and  

so on [3,11]. The behavior of energy consumption is affected by the economic environment and spatial 

distance-related migration costs, which has strong geographical features [12]. There is no enough 

attention to the spatial spillover of energy consumption and its influencing factors. So it is important to 

explore the characteristics, rules and spatial pattern of energy consumption change in China. However, 

it is mostly supposed that the relationship between spatial entities is independent when the traditional 

methods are adopted to measure the spatial disparities of regional changes in energy consumption.  

In addition, the effect of the spatial correlation had not been focused on enough. Therefore, it is 

difficult to reflect the global disparities and local spatial heterogeneity in regional changes in energy 

consumption. Some scholars have begun to find that spatial effect on energy consumption behavior 

cannot be ignored, and have conducted some empirical tests [9,12,13]. Their studies show the 

provincial regional economic development and energy efficiency have obvious spatial correlation and 

cluster in the geographical space, the latter is influenced by its own economic development and the 

energy efficiency of neighbor region [13]. Meanwhile, other studies also show that there is statistically 

significant spatial panel autocorrelation for Chinese provincial economic growth and energy 

consumption [14,15]. 

Spatial analysis is statistically important because it enhances the inference accuracy, and at the 

same time it reduces estimated bias with paying enough attention to consider spatial proximity and 

dependence. Spatial autocorrelation, defined as the situation in which the value of a variable at a 

location is related to the values of the same variable at the locations nearby, is a statistic method being 

used to describe spatial interaction of regional social economic phenomena [16–20]. Exploratory 

spatial data analysis (ESDA), an extension of exploratory data analysis (EDA), is used to detect spatial 

properties of data and spatial patterns in data, then to formulate hypotheses based on, or which are 

about, the geography of the data and to assess spatial models [18,21]. Through the description and 

visualization of spatial information, exploratory spatial data analysis (ESDA) is to explore the spatial 

agglomeration and anomaly and to reveal the activation mechanism of research object. With it putting 

forward quantitative measurement of spatial relationship, which is the spatial weight matrix, 

exploratory spatial data analysis (ESDA) provides a new way to quantity the regional spatial 

disparities, and it contributes a lot to the highlight of the potentially interesting features in the data and 

the facilitation of the discovery spatial process [19]. 

Spatial autocorrelation, the measurement of clustering degree in the spatial domain, serves as the 

proxy for the correlation of same variables in the different spatial position [22]. Spatial dependence is 

described by the indicators including Moran’s I, Geary’C, which is classified into global and local 

indicators [23]. Global indicators are used to verify space model of some social economic phenomena 
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in the whole study area, while local indicators are used to reflect the correlated degree of the certain 

social economic phenomena or attribute between the sub-region unite and its’ surrounding ones [24]. 

Because global Moran’s I cannot be used to explore spatial association mode of energy consumption 

change between neighboring area, and local spatial autocorrelation coefficient acts as the optional 

measuring index [24]. Exploratory spatial data analysis (ESDA) and spatial autoregressive model are 

now widely applied to many fields including the economic development disparities, spatial structure  

of urban development, agricultural development, eco-risk analysis, land use change and energy 

intensity [17,25–29]. 

The economic relationship between adjacent regions in China is very obvious, especially frequent 

mobility of labor, capital and other factors between neighboring provinces [13]. The trades, the spatial 

associated relationship of industrials, and the spillover of environmental public policy between regions 

have made the spatial effects of energy consumption obvious from the influence of adjacent regions.  

In addition, some independent variables including economic growth and population growth also 

reflects positive spatial correlation. Therefore, spatial auto-regression should be considered in 

analyzing the influencing factors of energy consumption change in China. The local indicators of 

spatial association (LISA) clustering plot is used to measure the local spatial heterogeneous and to 

diagnosis the hot spot and cold spot of spatial clustering about energy consumption change in the local 

space. This is useful for governments to put forward the targeted policies for energy use in China. 

The main purposes of this study are: (1) to explore the spatial correlation and spatial heterogeneity 

of energy consumption change in China; (2) to find the main influencing factors of energy 

consumption change in China; (3) and to test the superiority of spatial autoregressive model by 

comparison with the traditional linear regressive model. 

2. Materials and Methods 

2.1. Data 

Energy consumption data and social-economical data at the province level in this study were 

derived from the Chinese energy statistics yearbook and the Chinese statistics yearbook from 1991 to 

2011, respectively. With the missing data of energy consumption in the Tibet province, Taiwan, Hong 

Kong and Macao, the final number of spatial analysis unit totals 30 in this study. In this paper 2000 

was the year used as the breakpoint, the study period are divided into two periods 1990–2000 and  

2000–2010. This is mainly because 2000 is not only the starting point of China’s 10th five-year plan, 

but also the key year of China’s rapid economic development and energy consumption change. 

2.2. Methods 

2.2.1. Global Spatial Autocorrelation 

Global spatial autocorrelation can be used to measure the global correlation and disparity degree of 

some social economic phenomena. Statistic indices measuring global spatial autocorrelation include 

Moran’s I, Geary’s C and Getis’s G [20,24]. In this study, the Moran’s I and Getis’s G are used to 
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measure global spatial autocorrelation of energy consumption change in China. Moran’s I can be 

expressed by the formula below: 
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where ix  is the observed value of certain attribute in the spatial unit i; jx  is the observed value of 

certain attribute in the spatial unit j; 
_

x  is the mean value of regional variables; S
2 

is the mean square 

deviation; Wij is the spatial weight value, which is expressed by the n dimensional matrix W (n × n). 

The matrix is a standardized, which can be realized by spatial distance and topology. 

The Getis’s G statistic of overall spatial association is given as: 
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where xi and xj are attribute values for features i and j, and wi, j is the spatial weight between feature  

i and j. 

The significance level of Moran’s I is commonly tested by the standardized ZI-Score. Its equation is 

as follows: 
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where E (I) is the expected value of Moran’s I; and V (I) is the variance of Moran’s I. 

The significance level of Getis’s G is commonly tested by the standardized ZG-Score. Its equation is 

as follows: 
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where E (G) is the expected value of Getis’s G; and V (G) is the variance of Getis’s G. 

The null hypothesis H0 refers to the spatial correlation of energy consumption change do not exist. 

With a significance level of 0.05, if the absolute value of ZI-Score or ZG-Score is more than 1.96, the 

null hypothesis H0 can be rejected. It is assumed that the n spatial attribute values are not spatially 

auto-correlated. It shows that significant correlation is observed between the variances. 

2.2.2. Local Spatial Autocorrelation 

The local indicators of spatial association (LISA) are a series of indices decomposed directly by 

global spatial autocorrelation indicator. It is expressed by the distribution state of local heterogeneity 

and can be used to measure the spatial disparities degree between the regional i and its peri-regions. 

The Hot Spot Analysis tool calculates the Getis-Ord Gi
*
 statistic for each feature in a dataset. The 

resultant Z score tells you where features with either high or low values cluster spatially. This tool 

works by looking at each feature within the context of neighboring features. A feature with a high 

value is interesting, but may not be a statistically significant hot spot. To be a statistically significant 

hot spot, a feature will have a high value and be surrounded by other features with high values as well. 

The local sum for a feature and its neighbors is compared proportionally to the sum of all features; 
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when the local sum is much different than the expected local sum, and that difference is too large to be 

the result of random chance, a statistically significant Z score results. The Getis-Ord local statistic Gi
*
 

is given as: 
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where xj is the attribute value for feature j, wi,j is the spatial weight between feature i and j, n is equal 

to the total number of features. 

The *

iG  statistic is a Z-score so no further calculations are required. The Gi
*
 statistic returned for 

each feature in the dataset is a Z score. For statistically significant positive Z scores, the larger the Z 

score is, the more intense the clustering of high values (hot spot). For statistically significant negative 

Z scores, the smaller the Z score is, the more intense the clustering of low values (cold spot). 

Moran’s I scatter plot can visually reflect spatial autocorrelation [20]. Given certain significant 

level, we can obtain the LISA clustering map by combining the Moran’s I scatter plot. The LISA 

clustering plot can measure local spatial heterogeneous state and diagnosis hot spot and cold spot of 

spatial clustering about energy consumption change in the local space. 

2.2.3. Spatial Autoregressive Model 

According to the spatial correlations between the dependent variable and the independent variables, 

the most general formulation of the spatial autoregressive model is Equation (6) [22,24]. 

0),(

),0(~

2

1









iiii hh

N

w

xywy









 (6) 

where y  is a (n × 1) vector representing the dependent variable, X  is a (n × k) matrix representing the 

k − 1 independent variables,  is a (k × 1) vector of error terms presumed to have a covariance 

structure,  is the coefficients of spatial lag variable w1y,  is a (n × 1) vector of random error terms, 

W2 is a (n × n) “weights” matrix reflecting the spatial trends of the residual, N is the normal 

distribution,  is the covariance matrix,  is an exogenous variable,  is the coefficient of spatial 

autoregressive structure 2w . 

Based on the general formulation of the spatial autoregressive model, we can derive the spatial lag 

model and spatial error model. Spatial lag model takes into account the spatial correlation between 

dependent variables. The spatial lag model is Equation (7). 

  xwyy  (7) 

Spatial error model reflects the error process through the covariance of different. Spatial error 

model is Equation (8). 
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Traditional goodness of fit index R
2
 is not suitable for spatial regression model. Instead, a so-called 

goodness of fit index pseudo R
2
 can be computed. In the spatial statistics, the pseudo R

2
 is defined as 

the ratio of the variance of the predicted values over the variance of the observed values for the 

dependent variable [20,22]. In the standard regression model, unlike in the spatial lag model and 

spatial error model, this variance ratio is equivalent of the R
2
 [20,22]. The goodness of fit indicators 

for spatial regression models based on maximum likelihood estimation include the Akaike Information 

Criterion (AIC), the maximized log likelihood (LIK) and the Schwartz Criterion [18]. The model with 

the lowest AIC, or with the highest LIK or with lowest SC has the best goodness-of-fit [19,23]. 

3. Results and Discussion 

3.1. Analysis of Global Spatial Disparities 

The GIS9.3 and OpenGeoDa softwares are used to conduct the exploratory spatial data analysis 

(ESDA) in this study. Based on the GIS9.3 and OpenGeoDa softwares, we have got the results about 

Global Moran’s I, Getis’s G and their statistic test of energy consumption change in China during the 

period 1990–2009 (see Figures 1 and 2). From Figure 1, the Getis’s G or Global Moran’s I of energy 

consumption during the period 1990–2000 is 0.01, 0.24, respectively. The test of significance shows 

that the regional distribution of energy consumption change in China during the period 1990–2000 is 

significantly clustering (see Figure 1). 

Figure 1. Getis’s G, Global Moran’s I and their statistic test of energy consumption change 

in China during the period 1990–2000. 

  

As can be seen from Figure 2, we conclude that the Getis’s G or Global Moran’s I of energy 

consumption during the period 2000–2010 is 0.19, 0.2, respectively. The test of significance also 

shows that regional distribution of energy consumption change in China during the period 1990–2010 

is significantly clustering (see Figure 2). 

Under the 95% confidence interval, the Moran’s I value of energy consumption in China is 

significantly positive from 1990 to 2010. This means that high and low energy consumption change in 

the research area is the same as that of its surrounding provinces. From Figures 1 and 2, we can 

conclude that the global Moran’s I value decreased from 0.24 during the period 1990–2000 to 0.2 

during the period 2000–2010, which means that the clustering trend of energy consumption change in 

China is weakened. 
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Figure 2. Getis’s G, Global Moran’s I and their statistic test of energy consumption change 

in China during the period 2000–2010. 

  

3.2. Analysis of Local Spatial Disparities 

3.2.1. Analysis of Local Moran’s Ii 

In order to explore the local spatial disparities of energy consumption change from 1990 to 2009 in 

China, we use the OpenGeoda software to obtain the results of local Moran’s I and its significant test 

during 1990–2000, during 2000–2010, and during 1990–2010 (see Table 1). 

Table 1. Related parameters of local Moran’s I for energy consumption change in China 

from 1990 to 2010. 

Time stage Minimum Maximum Mean Moran’s Ii (+) Moran’s Ii (−) Range 

1990–2000 −1.0771 1.9914 0.2178 74.1935 25.8065 3.0685 

2000–2010 −0.4994 2.7136 0.1822 51.6129 48.3871 3.2130 

1990–2010 −0.5502 2.8206 0.2164 58.0650 41.9350 2.2704 

As can be seen from Table 1, the local Moran’s I value of each province in China is [−0.5502, 2.8206] 

during 1990–2010. The negative value of local Moran’s I shows that the spatial heterogeneity of 

energy consumption. Range of local Moran’s I value of each province in China is 3.0685 during  

1990–2000. The maximum of local Moran’s I value is 1.9914 during 1990–2000 and 2.7136 during 

1990–2000, which appeared in the Shandong Province. The minimum of local Moran’s I value is 

−1.0771 during 1990–2000 and located in the Guangdong Province. But the minimum of local 

Moran’s I value during 2000–2010 located in the Anhui Province. Table 1 also shows that there are 

significantly heterogeneous for energy consumption change during 1990–2010 and during 2000–2010 

respectively. The changing rates of local Moran’s I value show the upward and downward trend 

respectively. From Table 1, we can also conclude that spatial aggregation of energy consumption 

change at province-level is weakened and spatial heterogeneity is enhanced. 

3.2.2. Analysis of Spatial Association Clustering and Distribution Features Based on Local Moran’s Ii 

If variable Z and spatial variable Wz at each research unit are calculated to be used as the lateral axis 

and longitudinal axis, we can get the Moran scatter plot of energy consumption. In other words, 

standardized value (Std-Iclc) of research observation is used as the lateral axis, and spatial lagged value 
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(Lag-Iclc) as the longitudinal axis. Moran scatter plot of energy consumption change is composed of 

local Moran’s Ii at each province in China (see Figure 3). 

Figure 3. Moran scatter plot of energy consumption at province in China during 1990–2010. 

  

When the Std-Iclc value is positive in the Moran scatter plot, it means research unit belongs to those 

regions with faster energy consumption change. Otherwise it belongs to those areas with slow energy 

consumption changes. Those areas with positive Std-Iclc value account for 40% at the whole time stage 

(see Table 2). Those areas with positive Std-Iclc value is both 40% during 1990–2000 and during  

2000–2010 and, which means that there is no change about the number of those areas with faster 

energy consumption change in the view of spatial association at the whole time stage. The Lag-Iclc 

value is positive in the Moran scatter plot, which means surrounding regions of research unit belonged 

to those regions with faster energy consumption change. While the number of those areas with positive 

Lag-Iclc value remains 63% at the whole time stage, the number of those regions with positive Lag-Iclc 

value increased from 50% during 1990–2000 to 63% during 2000–2010, which means a number of 

surrounding regions of research unit with faster energy consumption change increased in the view of 

spatial association. 

According to the composite attribute of the Std-Iclc index and Lag-Iclc one, four area types of energy 

consumption change were divided by positive or negative spatial association (see Table 2). The four 

area types are High–High type of positive correlation (H–H), Low-Low type of positive correlation  

(L–L), Low-High type of negative correlation (L–H) and High-Low type of negative correlation (H–L). 

As can be seen from Table 2, those regions belonging to High-High type account for 40% during 

the period 1990–2010, which include Jiangsu Province, Hebei Province and Shandong Province, where 

there is rapid development of urbanization and industrialization, and regions belonging to Low–Low 

type account for 30% during 1990–2010, which include Qinghai Province, Xinjiang Province and 

Ningxia Province with the slow development of urbanization and industrialization. 
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Table 2. Related parameters and disparities type of standardized variable Z for energy 

consumption change at province level in China (%). 

Time 

Stage 

Std-Iclc 

> 0 

Std-Iclc 

< 0 

Lag-Iclc 

> 0 

Lag-Iclc 

< 0 
H–H H–L L–L L–H 

Ratio Ratio Ratio Ratio 
Comparison 

Ratio 
Ratio 

Comparison 

Ratio 
Ratio 

Comparison 

Ratio 
Ratio 

Comparison 

Ratio 
Ratio 

1990–

2000 
40.00 60.00 50.00 50.00 S+L+ 30.00 S+L− 10.00 S−L− 26.67 S−L+ 23.33 

2000–

2010 
40.00 60.00 63.33 36.67 S+L+ 23.33 S+L− 16.67 S−L− 16.67 S−L+ 33.33 

1990–

2010 
40.00 60.00 63.33 36.67 S+L+ 23.33 S+L− 16.67 S−L− 30.00 S−L+ 30.00 

Notes: S+—Std-Iclc > 0, S−—Std-Iclc < 0, L+—Lag-Iclc > 0，L−—Lag-Icl. 

In order to effectively explore more spatial characteristics of energy consumption change in China 

during 1990–2010, LISA clustering map of two time stages were formed by matching the proper type 

to corresponding spatial location of each province during 1990–2000 and during 2000–2010  

(see Figures 4 and 5). 

From Figures 4 and 5, we conclude that the regions belonging to H–H type have positive spatial 

autocorrelation, where Std-Iclc > 0 and Lag-Iclc > 0. This indicates the local spatial disparities of energy 

consumption change are smaller and stronger for local homogeneity in the research unit while the 

changes of energy consumption in their surrounding units are relatively higher. Table 2 shows that the 

proportion of those regions, which are located in the coastal area with high-level economic 

development in China, decreased from 30% during 1990–2000 to 23% during 2000–2010. Among 

them, Jiangsu Province plays a significant role during the two periods. The higher standard of 

economic development and industrialization in those regions are the main causes for higher energy  

consumption changes. 

Figures 4 and 5 also show that those regions belonging to L–L type have also positive spatial 

autocorrelation, where Std-Iclc < 0 and Lag-Iclc < 0. This means that the local spatial disparities of 

energy consumption change are smaller and stronger in local homogeneity in the research units and 

relatively slow in their surrounding units. The number of those type regions decreased from 12 during 

1999–2000 to 8 during 2000–2010. The ratio of energy consumption change in L–L type area is lower 

than average. 26.67% type region is lower than average level during 1999–2000. All provinces are 

significantly distributed in the north-western regions with low-level development of economy in 

China. Xinjiang Province particularly, has significantly positive relationship during 1990–2009 and 

during 2000–2010. 

The regions belonging to the L–H type have a negative spatial autocorrelation, where Std-Iclc < 0 

and Lag-Iclc > 0(see Figures 4 and 5). This means that local spatial disparities of energy consumption 

change are smaller in local heterogeneity in the research unit and higher in their surrounding units. 

Energy consumption changes in the research unit are relatively slow, which forms a cold spot of the 

local heterogeneity. The number in the L-H type is 6 during 1990–2000 and 12 during 2000–2010. 

Those regions are significantly located in Jiangxi Province and Hainan Province during 1990–2000 

and during 2000–2010. Anhui province forms a cold spot of the local heterogeneity due to the higher 
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energy consumption in its surrounding provinces including Zhejiang province, Jiangsu province and 

Shandong province. 

Figure 4. LISA clustering of energy consumption change in China during the period  

1990–2000. 

 

Figure 5. LISA clustering of energy consumption change in China during the period  

2000–2010. 

 



Sustainability 2014, 6 2274 

 

 

The regions belonging to the H–L type have a negative spatial autocorrelation, where Std-Iclc > 0 

and Lag-Iclc < 0. This means that the local spatial disparities of energy consumption change are larger 

and stronger in local heterogeneity in the research unit and slower in their surrounding units. Energy 

consumption changes in the research unit are relatively slow, which forms a hot spot of the local 

heterogeneity. The ratio of energy consumption changes in the H–L type is higher than average. The 

number in the H–L type is 3 during 1990–2000 and 5 during 2000–2010. 

3.3. Influencing Factors of Energy Consumption Change 

Studies show that energy demand is dominated by the level of economic development, pricing, 

change of industry structure, population growth, technological progress, the level of urbanization and 

other factors [12,14]. General empirical studies usually assume energy consumption and energy 

demand are equal [12,14]. In order to explore the influencing factors of energy consumption change 

during 2000–2009 in China, six independent variables were selected into the standard regression 

model. Before conducting the regression analysis, we made a preliminary diagnosis between 

independent variables. The coefficient of determination R
2
 between the independent variables is in the 

range of 0.12 to 0.71, lower than the critical value of 0.8 [30]. Therefore, all the independent variables 

can be incorporated into the regression model. 

Moran’s I values and the results of their statistic test of six independent variables in the regression 

model are listed in Table 3. As can be seen from Table 3, all the variables, except the independent 

variables Industrialized rate, have demonstrated a significantly positive spatial autocorrelation. This 

indicates that the driving forces of China’s energy consumption changes also showed a positively 

spatial autocorrelation. Among them, the significance levels of independent variable GDP growth rate 

and percentage of transportation industry production value change are the largest. Therefore, the 

spatial spillover of independent variables should be considered in analyzing the influencing factors of 

energy consumption in China. 

Table 3. Moran’s I values and their statistic test of independent variables of regression model. 

Independent Variable Moran’s I E (I) Mean SD ZI-score 

Population growth rate 0.3476 * −0.0345 −0.0326 0.1127 3.3904 

GDP growth rate 0.4580 ** −0.0345 −0.0363 0.1160 4.2456 

Urbanization rate 0.3781 * −0.0345 −0.0319 0.1145 3.6035 

Industrialized rate 0.0022 −0.0345 −0.0264 0.1133 0.3239 

Percentage of industry production value change 0.2073 * −0.0345 −0.0302 0.0997 2.4252 

Percentage of transportation industry 

production value change 
0.4439 ** −0.0345 −0.0337 0.1135 4.2149 

* p < 0.05, ** p < 0.001. 

The Akaike Information Criterion (AIC), maximized log likelihood (LIK) and Schwartz Criterion [18] 

are given for the comparison with three spatial models. The LIK of the spatial lag model is higher than 

the LIK of standard linear model and spatial error model (see Table 4). The spatial lag model (SLM) 

has the best goodness-of-fit compared with the other two models because of its lowest AIC, highest 

LIK, or lowest SC (Table 4). At the significant level (p < 0.05), the spatial lag model has passed the 
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Likelihood Ratio Test. Thus, the spatial lag model (SLM) is better than the linear regression model and 

the spatial error model (SEM) for analyzing the factors that affect energy consumption in China. 

The results of three regression models for energy consumption change in China during 2000–2010 

are listed in Table 5. The output results contain the goodness-of-fit (R
2
 or Pseudo R

2
), estimated 

coefficient, standard error, t-test value or z-test value and associated probability. As can be seen from 

Table 5, almost all the independent variables in the spatial lag model were tested significance level  

(p < 0.05), indicating that the spatial lag model is superior to spatial error model. 

Table 4. Statistical tests of three regression models. 

Model type R
2
 or Pseudo R

2
 LIK AIC SC 

Linear regression model 0.8065 3.7631 6.4737 16.5117 

Spatial lag model (SLM) 0.8425 6.5164 2.9673 14.4392 

Spatial error model (SEM) 0.8075 3.7948 6.4103 16.4482 

Compared with the significance level of the parameters for three models, this study concludes that 

significance level of the parameters increases, and that six variables—Population growth rate, GDP 

growth rate, Urbanization rate, Industrialized rate, Percentage of industry production value change, 

Percentage of transportation industry production value change—have significantly correlated with 

energy consumption change in the spatial lag model (p < 0.05). 

From Table 5, we conclude that the variable Population growth rate has a strongly positive relation 

with energy consumption change in three regression models, which means that those areas with higher 

population growth rate have significantly higher growth of energy consumption. Population growth is 

one of the traditional factors that determine energy demand [12], this conclusion is also shown in Table 5. 

The higher the rate of population growth will increase the demand for energy consumption. In recent 

years, with the continuous improvement of the public’s income and living standards, the living energy 

consumption will grow along with the steady growth of population and per capita energy consumption 

will continue to rise. 

At the 0.05% significance level, Table 5 also shows that the variable GDP growth rate has all 

strongly positive relation with energy consumption change in three regression models. This means the 

higher regional economic development level is, the larger the energy consumption change would be. 

The result proves the above conclusion based on the analysis of local Moran’s Ii. Related studies have 

shown that economic growth and its impact on quality of life are major factors in promoting the 

growth of energy consumption [14]. Our study also supports this conclusion. 

The variable Urbanization rate has strongly negative relation with energy consumption in the 

spatial lag model (see Table 5). This means that those areas with higher urbanization have significantly 

lower energy consumption. This may be because higher urbanized areas pay more attention to the 

impact of efficiency and technological progress on energy consumption. 

From Table 5 (B), we can conclude that the variable Industrialized rate has a strong positive 

relation with energy consumption change in the spatial lag model, which means that those areas with 

higher industrialization have significantly larger energy consumption. The variable Industrialized rate 

reflects the impacts of industrial structure on energy consumption. According to the evolution 

characteristics of China’s regional economic development stage, the industrial structure is another 
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important factor affecting energy consumption demand, especially in the second industrial industry. 

Due to the characteristics of the industry itself, the intensity of its energy consumption is much higher 

than other industries. 

Table 5. Parameters of three different regression models for energy consumption change in 

China during 2000–2010. 

Variable Coefficient Std. Error t Statistic Probability 

(A) Linear regression model R
2
 = 0.8065 

Constant 0.0251 0.2425 0.1034 0.9185 

Population growth rate 0.3109 0.0826 3.7640 0.0010 

GDP growth rate 0.6732 0.2250 2.9924 0.0063 

Urbanization rate −1.1445 0.2193 −5.2181 0.0000 

Industrialized rate 0.3300 0.2028 1.6269 0.1168 

Percentage of industry production 

value change 
0.1439 0.0805 1.7887 0.0863 

Percentage of transportation industry 

production value change 
0.3321 0.1804 1.8407 0.0781 

Variable Coefficient Std. Error  Z-value  Probability 

(B) Spatial lag model Pseudo R
2
 = 0.8425 

ρ −0.3713 0.1427 −2.6011 0.0093 

Constant 0.1942 0.2002 0.9700 0.3321 

Population growth rate 0.3268 0.0656 4.9787 0.0000 

GDP growth rate 0.7766 0.1814 4.2811 0.0000 

Urbanization rate −1.2822 0.1779 −7.2057 0.0000 

Industrialized rate 0.3868 0.1628 2.3763 0.0175 

Percentage of industry production 

value change 
0.1783 0.0654 2.7268 0.0064 

Percentage of transportation industry 

production value change 
0.4302 0.1446 2.9745 0.0029 

Variable Coefficient Std. Error  Z-value  Probability 

(C) Spatial error model Pseudo R
2
 = 0.8075 

 −0.1227 0.2709 −0.4529 0.6506 

Constant 0.0557 0.2122 0.2624 0.7930 

Population growth rate 0.3094 0.0723 4.2819 0.0000 

GDP growth rate 0.6730 0.1960 3.4345 0.0006 

Urbanization rate −1.1609 0.1941 −5.9822 0.0000 

Industrialized rate 0.3287 0.1796 1.8297 0.0673 

Percentage of industry production 

value change 
0.1423 0.0701 2.0294 0.0424 

Percentage of transportation industry 

production value change 
0.3623 0.1589 2.2793 0.0226 

From Table 5 (B), we conclude that the most influencing factor is the variable Percentage of 

industry production value change, which is mainly induced by transportation industry. On the one 

hand, change of vehicle fuel consumption is main driver forces of energy consumption change in 
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China during 2000–2010. On the other hand, the material flows and energy flows between regions 

linked by transportation industry. The increase in the significance levels of the variable Percentage of 

industry production value change in the spatial lag model and spatial error model shows the spatial 

spillover of transportation industry is obvious. 

In this study, when the influencing factors of energy consumption changes in China were analyzed 

by using the classical linear regression model, the effects of spatial autocorrelation were ignored. The 

spatial regression model provides a statistically reasonable solution. Compared to the classical linear 

regression model, there is no spatial autocorrelation of the residuals in the spatial error model, and it 

has a better goodness-of-fit. All the independent variables were tested significance level (p < 0.05) in 

the spatial error model, which can reveal more influencing factors of energy consumption changes  

in China. 

This study did not consider the impact of energy consumption structure and price on the energy 

consumption changes. In future studies, we should pay attention to the impact of energy consumption 

structure on global climate change due to coal and gas has different implications in terms of global 

Climate Change. It should also be focused on the effecting mechanism of energy prices on energy 

consumption in our future research work. 

4. Conclusions 

Traditional methods measuring the regional disparities ignored the factor of geographical position, 

which may not truly reflect the spatial characteristics of regional disparities. ESDA mainly measuring 

spatial association can solve the problem of spatial relationship between regions. It provides the 

stronger support for the quantitative analysis of spatial disparities of energy consumption change. 

Energy consumption changes in China and its driving forces have shown a spatially positive 

correlation. The residuals of standard regression model also showed positive autocorrelation, 

indicating that stand multiple linear regression model failed to consider all the spatial dependencies. 

The regional distribution of energy consumption change has significant clustering characteristics 

during 1990–2010 in China. This means that energy consumption change of research unit and its 

surrounding areas are higher. 

Based on the composite attribute of Std-Iclc value and Lag-Iclc value, Moran’s scatter divides into four 

type regions and two spatial associations. Because the characteristics, causes and spatial disparities of 

energy consumption change in the four type regions are different, the strategies and measures of 

energy consumption should be put forward for each clustering regions in China. 

The results of spatial autoregressive model show that higher industrialization rate and economic 

development level are the main causes for higher energy consumption change. 

According to the conclusions of regression analysis, this study has proposed the following measures 

to deal with the growing trend of energy consumption changes in China. Firstly, during the process of 

China’s rapid urbanization, we should establish diversified energy consumption patterns, and improve 

the quality of the energy use. Secondly, in China’s economically developed eastern provinces, we 

should optimize the industrial structure and reduce the proportion of energy-intensive industries. 

Thirdly, governments need to actively promote the public transport system, reducing the proportion of 

energy consumption in the transportation sector. Energy demand in various regions of China will 
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continue to grow in the coming periods, especially the energy consumption of second industrial, which 

is the most important factor in China’s energy consumption. The emphasis should be placed on energy 

policy in China to reduce the proportion of secondary industry in the national economy structure by 

optimizing adjustment, especially thereby improving industrial energy efficiency through 

technological innovation and other aspects. Second, insisting on population control policy will curb 

faster growth trend of energy demand to some extent. The transformation of economic growth mode 

and the regulation of the price mechanism in the area of energy demand are imperative. Meanwhile, 

the government should develop the spatial differentiated policies and measures of energy supply and 

demand. This study also shows that it needs to focus on the important role of geospatial factors in the 

area of adjustment localization policy for energy consumption behavior. 

This article also shows that ESDA and spatial autoregressive model of spatial statistics are some 

effective methods to measure the spatial pattern and main driving forces of energy consumption 

change and to explore the distribution characteristics, local heterogeneity and homogeneity of many 

spatial social-economical phenomena by the comparison with general clustering analysis. This study 

also indicate that the spatial auto-regression model can reveal more influencing factors of energy 

consumption changes in China, in contrast with standard linear model. 
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