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Abstract: Regional sustainability encourages a re-examination of development programs 

in the context of environmental, social and economic policies and practices. However, 

sustainability remains a broadly defined concept that has been applied to mean everything 

from environmental protection, social cohesion, economic growth, neighborhood design, 

alternative energy, and green building design. To guide sustainability initiatives and assess 

progress toward more sustainable development patterns, a need exists to place this concept 

into a functional decision-centric context where change can be evaluated and the 

exploitation of resources better understood. Accepting the premise that sustainable 

development defines a set of conditions and trends in a given system that can continue 

indefinitely without contributing to environmental degradation, answers to four critical 

questions that direct sustainability over the long-term must be addressed: (1) What is the 

present state of the environmental system, (2) Is that pattern sustainable, (3) Are there 

indications that the environmental system is degrading, and (4) Can that information be 

incorporated into policy decisions to guide the future? Answers to these questions hinge on 

the development of tractable indices that can be employed to support the long-term 

monitoring required to assess sustainability goals and a means to measure those indices. In 

this paper, a solution based on the application of remote sensing technology is introduced 

focused on the development of land use intensity indices derived from earth-observation 

satellite data. Placed into a monitoring design, this approach is evaluated in a change 

detection role at the watershed scale. 

Keywords: sustainability assessment; remote sensing; development intensity; landscape 

metrics; environmental monitoring; principal components analysis 
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1. Introduction 

While the concept of sustainable development is comparatively simple to understand, achieving 

sustainability within the context of the urban landscape is a more complex and uncertain activity [1]. 

Definitions abound characterizing sustainability as a level of human consumption or activity that can 

continue into the future without engendering environmental decline, and in each example, 

sustainability implies that a balance between the conflicting ideals of economic growth and 

environmental viability can be maintained [2,3]. This balancing process also assumes a poorly 

articulated temporal dimension over which components of the environmental system remain 

unperturbed while human welfare is enhanced. Time, in this equation, represents an indirect 

determinant of sustainability. However, its role and implications have not been widely examined. In 

practical terms, time rests at the center of sustainable development agendas, feeding back into the 

decision making arena as human actions are directed to meet sustainability goals. Persevering 

biological diversity, maintaining water quality, preventing soil degradation together with the remaining 

targets of what is means to develop “sustainably” can remain elusive when policy fails to integrate the 

temporal dimension into an evaluative framework. 

Consideration of developmental sustainability over the long-term focuses attention on the vexing 

issues of measurement and assessment as well as the more complex questions that surround geographic 

and temporal scale [4]. Policy instruments that establish specific sustainability goals require well 

defined means to track progress and modify directives as regional development unfolds. Incorporating 

a monitoring requirement as an on-going element of sustainability policies, while crucial, remains a 

challenge due the recognition that: (1) sustainability represents a contested and value-laden ideal with 

characterizations that defy universal agreement [5,6], and (2) tractable sustainability metrics that 

integrate easily into the decision-making process remain largely conceptual in nature [7–9]. Moving 

the concept of sustainable development from the “theoretical” to the practical requires systematic 

temporal data collection that supports an accessible methodology whose products communicate 

decision-relevant information. In this paper, a methodology is presented that assists the assessment of 

development trajectories based on the analysis of data acquired from earth observation satellites. 

Through the application of remote sensing technologies, the spatio-temporal dynamics indicative of 

sustainability trends can be revealed and a series of decision products can be assembled to review and 

direct development directives. 

2. The Assessment Question 

In any decision making process, there is an implicit need to evaluate the ramifications of a choice 

before that choice is made. Examining the scope and consequence of an action as it unfolds is a 

familiar activity in the analysis of environmental impact [10]. This form of pro-active thinking, while 

understood in the context of environmental impact assessment, is far more complex when applied to 

the broadly defined concept of sustainability [11]. Complexity has contributed to the introduction of a 

range of assessment methods that target sustainability at a mix of global, national and regional scales, 

employing criteria ranging from the economic, social, and technological to the purely ecological [12,13]. 

Evaluating progress toward sustainability goals under these contrasting and often conflicting criteria, 
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and across spatial scales that frustrate easy comparison, introduces a level of confusion that risks 

casting sustainability as essentially a political ideal with little scientific support [14,15]. For 

assessment to continue in a meaningful way, two important issues must be resolved: (1) questions 

regarding measurement, scale and definition, and (2) clarification of the specific target(s) of assessment. 

Currently, sustainability assessment has been explained as (1) a tool to assist policy makers in 

selecting actions that contribute effectively toward realizing a sustainable society [16], or (2) a means 

to ensure that plans make an optimal contribution to sustainable development policies [17]. 

Categorizations of sustainability assessment tools reveal an array of approaches with a range of  

targets [18]. In the majority of examples, assessment relies on the development and subsequent 

application of a sustainability index; a summary measure that attempts to communicate a salient 

quality of a system relative to its capacity to function “sustainably”. As illustrated in the literature, 

these indices are as diverse and contested as the definition of sustainability [9,15]. A listing of the 

more commonly cited sustainability indices has been compiled by Böhringer and Jochem [15]. 

Although the indices listed are not extensive, they demonstrate the difficulty of capturing the “root” 

characteristics that inform the concept of sustainability, further underscoring the larger matter of scale 

as it relates to the spatial and temporal dimensions that connect actions to the performance of both 

development policies and environmental outcomes [19,20]. 

2.1. Adopting a Regional Focus 

When assessing sustainable development, it becomes necessary to determine where: (1) ecological 

functioning and human activities intersect with pronounced intensity [21] and (2) maintaining balance 

between ecological functioning and human actions is critical to resolving conflict when development 

trends induce adverse environmental patterns [22]. Recently, the regional focus that been advocated as 

the most appropriate scale for sustainability analysis and assessment [12,23]. At the regional scale, the 

complex interactions between ecological, social and economic phenomena are more closely linked 

within a landscape unit that can be delineated on the basis of anthropocentric criteria (i.e., a 

watershed). Operating at this scale of analysis, indicator variability in a landscape subject to 

anthropocentric influences serves as an integrative signal of sustainability. Here, for example, the 

removal of a biological community, modification of a habitat, alteration in patch size of a land use 

parcel evidence unsustainable development and become a detriment to ecological stability. At this 

level of regional analysis, development trends that contribute to deviations in the degree of naturalness 

within the watershed unit, together with geometric patterns known to alter the distribution of energy, 

resources and species diversity should force a reconsideration of existing programs and guide 

management activities toward more sustainable arrangements. Realizing sustainability at the regional 

scale concentrates attention to the development and implementation of a tractable method of 

assessment that can encourage well-informed and timely reactions to changing landscape conditions. 

As suggested by Graymore et al., such a method not only supplies information regarding the status of 

the system of interest, but is also holistic, quantifiable, policy relevant and simple to understand [24]. 

Presenting accessible information derived from easily obtained data that can address the spatial and 

temporal requirements for regional assessment introduces the remote sensing solution. 
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2.2. The Earth-Observation Alternative 

The role of earth observation satellites in environmental analysis is well documented [24]. Remote 

sensing technology represents a well understood means of collecting earth-surface data without direct 

contact and its capacity to support sustainability assessment has been examined with promising 

conclusions [25–28]. The remote sensing alternative that earth observation systems represent 

concentrate focus on three central features of remote sensing science: (1) the capacity to derive unique 

measurements of landscape properties based on the analysis of electromagnetic energy reflected or 

emitted by objects at the surface, (2) a predictable repeat measurement cycle that enables orbital 

instruments to revisit a region of interest and monitor its status, and (3) an archival capacity that 

facilitates the storage and retrieval of surface measurements for time-sequenced analysis. By 

capitalizing on these system attributes, opportunities exist to exploit remote sensing and integrate this 

technology into an operational sustainability assessment program [29]. 

Integrating remote sensing with sustainability assessment hinges on the selection and application of 

scientifically sound indices. Such measures must aptly characterize landscape conditions and 

communicate relevant information regarding progress toward or away from sustainable development 

patterns [15]. Therefore, a useful index should not only quickly inform a target audience, but also 

reduce the complexity of a specific condition to those qualities or trends that clearly explain its 

disposition [24]. Several of the more critical attributes that influence the development of an indicator 

derived from remotely sensed data include: 

 General Relevance—consideration of relevance helps to determine how well the indicator 

characterizes the environment and facilitates definition of process and change. 

 Conceptual Integrity—integrity speaks to the overarching rationale, which may be theoretical or 

practical, which supports and justifies the use of the indicator. 

 Reliability—focus on reliability centers around the question of how successful using the 

indicator will be now and over time, and the level of explanation that can be delivered based on 

its use. 

 Scale Appropriateness—scale directs our attention to the ability of the indicator to detect the 

desired environmental quality at the appropriate temporal and spatial scale as dictated by the 

problem or purpose. 

 Statistical Sensitivity—sensitivity relates to the level of measurement precision and accuracy that 

can obtained from the indicator as well as the level of confidence that can be ascribed to the 

results it produces when applied. 

 Robustness—focusing on the potential for the indicator to produce consistent results under a 

range of external conditions and environmental perturbations, robustness directs selection to look 

critically at those factors that influence its capacity to deliver useful measures of  

the environment. 

A variety of indices that summarize landscape conditions using remotely sensed data have been 

introduced. These measures range from vegetation transforms and landscape metrics to customized 

band ratios and statistical approximations [24]. The key to selecting an index relevant to the 

assessment of sustainability relates exclusively on its relationship to one or more quantifiable 



Sustainability 2014, 6 2071 

 

 

properties of the landscape that can be measured remotely. Relevance, in this context, is largely a 

function of how well that index can be connected by theory or practice to established environmental 

principles and resolved by a sensor instrument. The selected index, therefore, forms a fundamental 

spatial and temporal expression of the relationship between human activity and ecological balance. In 

this study, the concept of “intensity” was chosen to frame the analysis and a suite of ecological 

principles were identified that could demonstrate modifications of the landscape in a manner relevant 

to the general definition of sustainability. Evidence suggests that the intensity of human dominated 

landscape affects ecological processes of natural communities in observable ways and the more intense 

the activity, the greater the effect on those natural processes [30]. A fully developed land use system 

may display few functional natural ecological components, whereas the less developed land use system 

will possess ecological processes that remain largely intact [30]. Employing “intensity” as the 

assessment target, a set of measures can be identified to quantify distinctive patterns indicative of 

intensity shifts and associated deviations in ecological stability that may result [31–33]. To conform to 

the research design, the measures selected must be descriptive quantities that are: 

 Derived from standard remote sensing data products 

 Supported by empirical evidence to correlate with understood environmental processes, and 

 Amenable to statistical analysis 

These requirements narrow the list of applicable indices to metrics that not only summarize critical 

environmental conditions, but also serve as effective surrogates for human impact and activity. For this 

analysis, five measures were identified that fulfilled all requirements: 

 Normalized Difference Vegetation Index (NDVI)—NDVI remains a widely used vegetation 

transform in the study of environmental process and change [34]. The index is a slope-based 

measure that combines the visible and near-infrared channels of a multispectral sensor to characterize 

the state and abundance of green vegetative cover and biomass. NDVI was designed to produce a 

measure that separates green vegetation from its soil background according to the relation: 

NDVI = (NIR − RED)/(NIR + RED) (1) 

The result of the calculation produces values ranging from −1.0 to 1.0 where 0 represents the 

approximate value of no vegetation and negative values indicate non-vegetated surfaces [24,35]. 

 Impervious Surface—Artificial structures such as pavements, roads, roof tops that are covered by 

materials impenetrable to waters are indicative of the built-environment and the replacement of 

natural cover with urban surface. The degree of surface area that defines an impervious state 

serves as a useful indicator of development intensity and human induced modification of the 

landscape. Impervious surface has also been shown to induce hydrologic changes and impact 

water quality [36,37]. In this study, impervious surface was estimated based on land cover and 

NVDI using Boolean overlay and reclassification methods. High density urban cover and NDVI 

categories indicative of non-vegetated surface where selected from their respective raster layers. 

High density urban was reassigned the value of 1 and NDVI categories below −0.30 were 

reassigned values of 1 producing a simple 0 or 1 Boolean relationship that was combined into an 

impervious surface layer through GIS overlay. 
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 Fragmentation—As applied in this study, fragmentation explains the breaking up of a habitat or 

land use types into small parcels. As a spatial process, fragmentation is a contributing factor in 

land transformation stemming either from natural processes or as a consequence of human 

activity. In either instance, fragmentation can produce a range of ecological effects including 

loss of habitat area [38]. The Fragmentation Index identifies areas which have a high number 

patches in and strong decreasing area. The formula is represented by the following equation: 

F = (n − 1)/(c − 1) (2) 

where n = number of different classes present in the kernel and c = number of cells considered. 

 Diversity—As a landscape metric, this measure is one means to evaluate the relative number of 

parcels (patches) present in the landscape. In this study diversity was determined by the relation 

Diversity = ( p × ln(p)) (3) 

where  is the summation of all land types in the study area, p is the proportion of each land type in the 

spatial unit of measure (pixel) and ln is the natural logarithm. 

 Dominance—Serving as an expression of landscape stability, dominance describes the pattern 

explained by the most abundant land type [39]. In this study dominance is used to characterize 

the relative degree of environmental complexity according to: 

Dominance = ln S +  pk × ln pk (4) 

where S is the number of habitat types, pk proportion of area in habitat k. 

Individually, each measure provides a means to integrate landscape ecological concepts into an 

environmental expression. Furthermore, as an applied metric they summarize the spatial dimension of 

landscape conditions in a manner sensitive to the requirements of sustainability assessment. As these 

indicators coalesce into a monitoring design through the use of earth-observational satellite data, they 

contribute to an adaptive management paradigm. As data feeds decision making and policy review, the 

continuing and dynamic nature of sustainability planning can be supported. The features of that 

monitoring design are introduced in the following section. 

3. Methodology 

It has been argued that sustainability identifies a goal that no one yet knows how to achieve [40].  

A complicating factor in the process of planning and assessing sustainable development is largely a 

consequent of the heuristic nature of the problem. Incremental improvements toward a desired future 

state area realized through a combination of observing and responding to changes [41,42]. Monitoring 

becomes a pivotal activity in that process, and timely, cost-effective approaches are needed to make 

progress toward a sustainable system. The assessment and monitoring methodology developed in this 

study relies on the application of moderate-resolution data acquired from the Landsat system of 

satellites to feed a watershed-level assessment program. To demonstrate this approach, a time-sequence 

data set consisting of decadal Landsat 5 Thematic Mapper imagery was obtained beginning in 1989 

and culminating in 2011. The Landsat 5 Thematic Mapper is a sun-synchronous satellite with a 16 day 

repeat interval. The sensor collects reflected electromagnetic radiation in 5 spectral bands with 30 meter 
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spatial resolution and one and thermal channel with a spatial resolution of 120 meters. Landsat 5 was 

decommissioned on 5 June 2013 and replaced with Landsat 8, which became operational in mid-April of 

that same year. A Landsat image covers a geographic area of approximately 128 square kilometers that 

are organized in path and row scenes and index based on an identification numbering system that 

identifies image path/row location and time of year. The images used for this study are listed in Table 1. 

Table 1. Landsat TM imagery used for analysis. 

Image Date Scene ID 

17 May 1989 LT50190321989137XXX02 

2 May 2001 8LT50190322001122XXX02 

30 May 2011 6LT50190322011150EDC00 

Anniversary dates during the leaf-on season were selected for a central Ohio location delineated by 

the Upper Scioto River watershed (Figure 1). Landsat overpass dates meeting a 0%–10% cloud-free 

requirement fell within May of each time slice, however perfect 10-year time increments were not 

possible which necessitated selecting the best available image. The satellite scenes for Path 19, Row 32 

were converted to radiance values, geometrically registered to the 1989 base year and subjected to a 

dark-object subtraction. Dark-object subtraction was performed to remove any contaminating 

influences of the atmosphere. These pre-processing procedures insured that the imagery was a 

standardized as possible to permit change over time comparisons. Finally, a watershed mask consisting 

of the digital outline of the study area boundary was applied to each image set to preserve only the data 

that fell within the Upper Scioto River watershed for analysis. The watershed serves as an ideal natural 

delimiting feature for analysis and is a well understood organizing spatial unit for environmental 

assessment [43]. The Upper Scioto River watershed in Ohio exemplifies a landscape in transition. 

Comprising 1160 square kilometers, the watershed includes sections of nine counties that display a 

range of land covers and use patterns ranging from remnant forest and extensive agriculture to densely 

urbanized landscapes. Land development and urban growth pressures have been actively re-shaping 

the watershed over the last 20 years which has encouraged local jurisdictions to formulate urban 

growth management plans to accommodate projected population increases [44]. The interplay between 

population driven land use pressures and the desire to incorporate sustainability principles into the 

policy making process provides a realistic backdrop against which a monitoring and assessment 

methodology can be tested. 

Analysis followed a three phase procedure (Figure 2). The initial phase centered on the calculation 

of the selected landscape metrics. For each time step in the study, the five landscape indices were 

derived from the imagery. To produce the landscape measures an unsupervised image classification 

procedure was used to create a sequence of land cover surfaces for the study area. The general method 

for generating the land cover data was based on a procedure adapted from Mundia and Aniya [45]. 

Unsupervised image classification employs a cluster analysis logic to identify natural groupings of 

pixels in the image based on their radiance values. The natural clusters are then interpreted and placed 

into informational classes that describe the land cover categories of interest. For this study, the method 

of K-means classification was selected. Initially, a 15 class solution was used to seed the process and 

following a post classification assessment of the clustering results, the initial K-means solution was 
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refined by combining natural classes into to seven land cover (informational) categories. The final land 

cover classes were consistently applied across all image dates (High Density Urban, Medium Density 

Urban, Low Density Urban, Active Cropland, Bare Soil, Vegetated/Forest, Water). Because land cover 

forms the basis for the calculation of the landscape metrics used in this study, establishing the overall 

accuracy of the classification results frames the boundaries of confidence and error inherent to the 

interpretation of landscape patterns and change. Classification accuracy was determined using a 

procedure focused primarily on the 2011 land cover surface. Using land use maps published by the 

Mid-Ohio Regional Planning Commission together with aerial photographs acquired from the National 

Aerial Photography Program produced within 2 years of the 2011 date, a random sampling method 

was employed to collect 300 points across the study area. Random points were selected based on 

latitude and longitude expressed as decimal degrees and entered into an error matrix for calculation. 

Classification accuracies of the final land cover surfaces obtained by this method fell within the 86%–90% 

range across the data set. Classification accuracy was highest for Medium Density and Low Density 

urban cover while High Density urban cover and Bare Soil where subject to misclassification. Post 

classification clumping and merging were used to correct classification error maintaining an overall 

accuracy rate of 89% Confined by the 30 meter spatial resolution of the Landsat TM imagery, the 89% 

land cover accuracy produced from the K-means procedure was sufficient to the purposes of this study. 

Landscape metrics were then calculated using a 5 pixel by 5 pixel moving window from the land cover 

data set for each time step in the study using the Idrisi Selva geospatial analysis system. 

Figure 1. Upper Scioto River Watershed. 
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Figure 2. General methodology and work flow. 

 

Phase two of this study concentrated on the formulation of a composite sustainability index from 

the intermediate descriptions of landscape condition produced in phase one. Producing a summary 

measure that could communicate policy-relevant information regarding the relationship between 

development and environment employed the method of Principal Components Analysis (PCA). 

Principal Components Analysis is a commonly used technique to compress data by truncating a set of 

variables, leaving out those which are of the least importance to the information stored in the data. The 

process is referred to as dimensionality reduction, where a vector containing the original data is 

reduced to a compressed vector of new, uncorrelated, underlying components. In this study, principal 

components analysis (PCA) was used to extract from the set of sensor-derived landscape variables a 

reduced set of components that accounts for most of the variance in the original data set. The results 

produce a linear combination of the p variables that form a summary index of “regional sustainability” 

determined by the interpretation of the pattern by-which the original variable contribute to the new 

component structure. 

The final phase of analysis focused on evaluating the spatial and temporal variations in “regional 

sustainability”. Numerous methods have been developed to examine the pattern of change in remotely 

sensed data [46–48]. Based on the goals of this study, the method of cross-image comparison was 

selected. Cross-image comparison is a GIS-variant of contingency table analysis. In a contingency 

table, values within each category have no intrinsic numerical value, but associations can still be 

detected. Accordingly, an association means that the distribution of frequencies across the levels of 

one category differs depending upon the particular level of another category. A significant association 

simply means that the values of one variable vary systematically (i.e., at a level greater than chance) 

with values of the other variable. When there is no association between variables, they are described as 

being independent. Thus, independence in a two-way table means that there is no association between 

the row and column variables. When applied to mapped data, categories can be examined across time 

and changes between dates can be summarized. To facilitate cross-image comparisons the factor scores 

of the observations (pixels) produced from Principal Components Analysis for the “regional 
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sustainability” variables were assembled into three ordinal categories (High, Medium, and Low) based 

on natural breaks in the data. 

4. Results and Discussion 

Producing quantitative expressions of regional sustainability has become a focal point of  

research [49]. The results of this study, employing remotely sensed data to derive measures relevant to 

the task of sustainability monitoring, are promising. Principal components analysis identified two 

latent structures from the data set with eigenvalues approximately 1.00 or greater consistently across 

the analytical time horizon. Beginning with the 1989 baseline year, correlations among the variables 

describe emerging relationships that separate ecological measure from the single metric that explains 

human activity (Tables 2–4). 

Table 2. Correlation matrix for 1989 data. 

Variable Diversity Dominance Fragmented NDVI Impervious Urban 

Diversity 1 0.723407 0.976255 0.891674 0.261840 

Dominance 0.723407 1 0.794081 0.802705 0.207362 

Fragmented 0.976255 0.794081 1 0.862341 0.251453 

NDVI 0.891674 0.802705 0.862341 1 0.198566 

Impervious Urban 0.261840 0.207362 0.251453 0.198566 1 

Table 3. Correlation matrix for 2001 data. 

Variable Diversity Dominance Fragmented NDVI Impervious Urban 

Diversity 1 0.702498 0.971592 0.865368 0.272676 

Dominance 0.702498 1 0.794488 0.800350 0.359469 

Fragmented 0.794488 0.971592 1 0.840738 0.274762 

NDVI 0.800350 0.865368 0.840738 1 0.345045 

Impervious Urban 0.359469 0.272676 0.274762 0.345045 1 

Table 4. Correlation matrix for 2011 data. 

Variable Diversity Dominance Fragmented NDVI Impervious Urban 

Diversity 1 0.660495 0.969890 0.423436 0.874922 

Dominance 0.660495 1 0.771569 0.454202 0.770771 

Fragmented 0.969890 0.771569 1 0.444827 0.852687 

NDVI 0.874922 0.770771 0.852687 1 0.452494 

Impervious Urban 0.423436 0.454202 0.444827 0.452494 1 

Consideration of the eigenvalues derived from the correlation matrices further demonstrates this 

separation. In the 1989 example, two main structures in the data were determined; a component (C 1) 

that accounted for 72% of the variance in the data and component 2 (C 2), explaining a less dominant 

theme, accounting for 17% of the variance. The contribution of the original landscape variables to 

these new structures is given in Tables 5–7. Clearly, Component 1 is defined by the diversity, 

dominance, fragmentation and NDVI metrics. Here, loading patterns exceed 0.85 in all cases. The 
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second component (C 2) is characteristic of the pattern on impervious surface, which loads positively 

on C 2 with a value of 0.94. Similar relationships were revealed across the time horizon (Tables 5–7). 

Table 5. Variance Explained and Eigen-structure for 1989 PCA. 

PCA Component C 1 C 2 C 3 C 4 C 5 

% Variance 72.220918 18.430777 6.290041 2.867761 0.190494 

Eigenvalue 3.611046 0.921539 0.314502 0.143388 0.009525 

Eigenvector 1 0.504174 −0.052883 −0.478352 −0.141023 −0.703068 

Eigenvector 2 0.460339 −0.098888 0.832846 −0.225552 −0.183858 

Eigenvector 3 0.508694 −0.067808 −0.275502 −0.482549 0.654124 

Eigenvector 4 0.173745 0.982881 0.036795 0.046212 0.016359 

Eigenvector 5 0.494914 −0.129503 −0.017105 0.833217 0.209156 

Table 6. Variance Explained and Eigen-structure for 2001 PCA. 

PCA Component C 1 C 2 C 3 C 4 C 5 

%Variance 72.780534 17.388555 6.340500 3.295886 0.194525 

Eigenvalue 3.639027 0.869428 0.317025 0.164794 0.009726 

Eigenvector 1 0.461910 0.014400 −0.816374 −0.265629 −0.222277 

Eigenvector 2 0.492018 −0.198354 0.496694 −0.114981 −0.677236 

Eigenvector 3 0.500570 −0.192417 0.242041 −0.447445 0.673509 

Eigenvector 4 0.490975 −0.067764 −0.051447 0.844703 0.195400 

Eigenvector 5 0.230066 0.958557 0.159995 −0.049905 0.012210 

Table 7. Variance Explained and Eigen-structure for 2011 PCA. 

PCA Component C 1 C 2 C 3 C 4 C 5 

% Variance 74.866979 14.448906 7.330705 3.177811 0.175589 

Eigenvalue 3.743349 0.722445 0.366535 0.158891 0.008779 

Eigenvector 1 0.482566 −0.232354 −0.470455 −0.159927 −0.682815 

Eigenvector 2 0.441761 −0.012334 0.846468 −0.199333 −0.220120 

Eigenvector 3 0.494663 −0.200491 −0.200131 −0.478633 0.667810 

Eigenvector 4 0.307413 0.939835 −0.148628 −0.010582 0.002325 

Eigenvector 5 0.482476 −0.149577 −0.004610 0.839934 0.198328 

Based on these results, the overall variance explained by these two components show a dominant 

component consistently accounting for over 70% of the variance and a secondary trend that defined by 

14%–18% of the variance in the original variables. The pattern of component loading, explaining how 

each variable contributes to these new measures, shows that diversity, dominance, fragmentation and 

NDVI maintain positive loadings on Component 1, with correlations on this new measure ranging 

from 0.87–0.96. Impervious surface, serving as a surrogate for land transformation where vegetated 

areas have been modified by some method of land development, contributed to the pattern defined by 

Component 2. Loading patterns for this variable ranged from 0.94–0.79 across the time period of this 

study (Tables 8–10). 
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Table 8. Pattern of Variable Loading 1989. 

Loading C 1 C 2 C 3 C 4 C 5 

Diversity 0.958070 −0.050766 −0.268262 −0.053400 −0.068616 

Dominance 0.874770 −0.094930 0.467064 −0.085409 −0.017944 

Fragmented 0.966658 −0.065093 −0.154503 −0.182725 0.063839 

NDVI 0.940473 −0.124318 −0.009592 0.315511 0.020413 

Impervious Urban 0.330163 0.943535 0.020635 0.017499 0.001597 

Table 9. Pattern of Variable Loading 2001. 

Loading C 1 C 2 C 3 C 4 C 5 

Diversity 0.938585 −0.184952 0.279663 −0.046676 −0.066790 

Dominance 0.881150 0.013427 −0.459659 −0.107832 −0.021921 

Fragmented 0.954899 −0.179416 0.136281 −0.181640 0.066423 

NDVI 0.936596 −0.063186 −0.028967 0.342906 0.019271 

Impervious Urban 0.438879 0.893788 0.090085 −0.020259 0.001204 

Table 10. Pattern of Variable Loading 2011. 

Loading C 1 C 2 C 3 C 4 C 5 

Diversity 0.933657 −0.197493 −0.284823 −0.063749 −0.063979 

Dominance 0.854708 −0.010483 0.512470 −0.079456 −0.020625 

Fragmented 0.957060 −0.170411 −0.121163 −0.190788 0.062573 

NDVI 0.933482 −0.127136 −0.002791 0.334807 0.018583 

Impervious Urban 0.594775 0.798829 −0.089983 −0.004218 0.000218 

The results of PCA suggest two dominant landscape characteristics within the study area that 

remained consistent over the 1989–2011 time horizon: (1) an ecological integrity condition derived 

from the diversity, dominance, fragmentation and NDVI surfaces, and (2) and development intensity 

condition, a less dominant feature, defined primarily by the presence of impervious surface. These 

components communicate fundamental constructs embedded in the concept of sustainability: 

 A description of integrity that explains the spatial pattern of the natural system and the degree of 

naturalness that can support ecosystem services, and 

 A pattern of intensity defining the pattern of human landscape modification and the degree to 

which ecological services may be compromised. 

Insight regarding the spatial distribution of the resulting regional sustainability metrics can be 

gained by observing the component scores produced via PCA. The component scores document 

quantitatively the value of each observation (pixel) in relation to the new component index expressed 

in units of standard deviation. According to this logic, a positive standard score represents a datum 

above the expected values (mean) while a negative standard score represents a datum below the mean 

for that condition. For example, ecological integrity, displays scores that ranged from −4.0 for 

predominantly water surfaces to 10.0 for homogeneous vegetated cover. Comparing these scores back 

to the original landscape metrics from which ecological integrity was derived shows these regions to 

be dominated by comparatively high values of NDVI and low rates of fragmentation (Figure 3). 
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Development intensity reveals a pattern strongly directed by the form of urban settlement. Areas of 

dense urban development exhibited scores of 4.0 or higher. Vegetated surfaces occupied the range 

below 0.0 with highly pervious land types displaying scores from −1.0 to −3.0 (Figure 4). Careful 

inspection of these results suggest that as land development pressures expand the pattern of 

development intensity in the watershed, a relative contraction in ecological vitality should be observed. 

Extending this relationship forward, as the watershed becomes less stable, policy makers may conclude 

that regional sustainability becomes compromised. 

Figure 3. Component score for ecological integrity: (a) 1989, (b) 2011. 

 

Figure 4. Component score for development intensity: (a) 1989, (b) 2011. 

 

Across the 1989–2011 time horizon, detectable trends in both ecological integrity and development 

intensity evidenced a clear inverse relationship as population growth pressures directed the rate and 

location of land transformation. During this time period, urban expansion within the watershed 
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witnessed rates of population growth from 5% in the north to rates exceeding 30% southward, 

converging on the city of Columbus and radiating along transportation corridors (Mid-Ohio Regional 

Planning Commisson2012). Quantifying the temporal variations in ecological integrity and 

development intensity resulting from population trends was accomplished using cross-image 

tabulation. Using this approach, both the form and significance of the 1989–2011 transition could be 

assessed. The full cross-tabulation matrix evaluating the 1989–2011 transition is given in Table 11. 

Table 11. Ecological Integrity cross tabulation results, 1989 (rows) 2011(columns). 

Ecological 

Vitality Class 

Category 1 

(Low) 
Category 2 

Category 3 

(Moderate) 
Category 4 

Category 5 

(High) 

Category 1 15744 5102 2115 608 18 

Category 2 1287 26,546 86,358 37,911 1136 

Category 3 1664 436,926 1,981,871 1,074,213 31,771 

Category 4 1539 439,211 2,614,321 1,738,913 59,240 

Category 5 25 6487 42,950 31,984 1346 

Chi Square = 90,203,448.0; degrees of freedom = 25; p-level = 0.000; Cramer’s V = 0.5524; Kappa = 0.6854. 

As detailed in Table 11, two shifts in ecological vitality can be noted. The first shift shows a 

dominant transition from areas of moderately high stability to lower vitality categories. A more subtle 

change from the highest stability class to a lower status is also observed. Statistically, when ecological 

integrity is compared between 1989 and 2011 the differences are significant as shown by the Cramer’s 

V index of 0.55 at the p-level of 0.00. Using the overall Kappa statistic as a measure of association, the 

0.68 value suggests only moderate agreement between map categories between these dates. 

Examination of the spatial pattern shows shifts in ecological vitality occurring largely at the periphery 

of the study area following the well understood markings of urban sprawl and infilling (Figure 5). 

Figure 5. Spatial pattern of ecological integrity changes 1989–2011. 
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Temporal changes in development intensity over the time period document the transition from low 

density land types to categories describing more dense forms of urban land cover (Figure 6). Although 

the statistical association between the two time periods is stronger (Cramer’s V = 0.73, p-level 0.00), 

the degree of agreement between map categories on a sample by sample basis remained only moderate 

(Kappa = 0.61) (Table 12). 

Table 12. Development Intensity cross tabulation results, 1989 (rows) 2011(columns). 

Development 

Intensity Class 

Category 1 

(Low) 
Category 2 

Category 3 

(Moderate) 
Category 4 

Category 5 

(High) 

Category 1 2,388,730 3,673,077 4979 691,886 1,182,817 

Category 2 644 3191 16,600 110 84 

Category 5 17,6717 235,858 554 66,320 197,737 

Chi Spare = 95,465,440.0; degrees of freedom = 15; p-level = 0.000; Cramer’s V = 0.7336; Kappa = 0.6136. 

Figure 6. Spatial pattern of development intensity changes 1989–2011. 

 

Within the watershed, variations in development intensity correspond with the pattern of urban 

spread, following a general southeast to northwest axis. Locations with the highest levels of 

development intensity were spatially coincident with areas of lowest ecological integrity. This pattern 

was revealed when these two surfaces were subject to simple GIS overlay. The resulting GIS data layer 

serves to document the impact of change in the region, highlighting locations where the conflict 

between intensity increases (urban development and urban spread) and integrity declines (decreasing 

NDVI, diversity and dominance and increasing fragmentation) are evident. (Figure 7). At this regional 

scale, two critical conditions suggest modifications that threaten sustainable development: (1) areas 

where ecological functioning and human activities intersect with pronounced intensity, and (2) areas 

where the balance between ecological functioning and human actions are in opposition. These central 

targets of sustainability assessment are critical to resolving conflict when development trends induce 

adverse environmental patterns. Furthermore, by placing these targets in a spatial context their regional 
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pattern can be “seen” and policy initiatives can be directed specifically at those locations to remediate 

the adverse situation. 

Figure 7. Spatial pattern of potential areas of reduced sustainability. 

 

5. Conclusions 

The concept of sustainability and the challenge of sustainable development have been a focus of 

interest for over two decades. Although the definition of what it means to develop sustainably has been 

expressed in general terms, moving from the conceptual to the practical and casting sustainability as an 

actionable and measurable quantity has proved difficult. In a comparatively short time, numerous 

approaches have been introduced to measure this broad ideal and assess its status at the global, national 

and regional scale. Of the methods introduced, each aim to address the interaction between human 

activities and their environmental outcome to better guide how decisions and policies are made within 

governmental and corporate entities. In the process, each approach has quantified sustainability using 

different criteria with contrasting objectives, producing a confusing mix that frustrates singular 

applications. As progress moves toward implementing sustainability assessment strategies, there is a 

need to ascertain the appropriate spatial and temporal scales at which sustainability, and more 

specifically, sustainable development, is effectively explained. In this paper, an approach to 

sustainability assessment was introduced that relied on the application of data acquired from  

earth-observational satellites in a statistically based procedure to derive functional decision-centric 

measures that communicate the interaction between human development activities and ecological 

process. The goal of this research was to craft a tractable methodology that could be accomplished 

with limited resources and maintained over an extended planning horizon. Through the use of 

landscape metrics derived from land cover surfaces produced using Landsat TM imagery, an index of 

ecological integrity and an index of development intensity where identified though results produced 

from Principal Components Analysis (PCA) at the watershed scale. Development intensity, 

representing a driving force and ecological vitality explaining a consequence, encapsulate two 

important dimensions of sustainable development that suggest policy relevance. 
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The PCA-derived indices were placed into a monitoring design using a retrospective approach to 

examined development trends in the study area for the period 1989 through 2011. Employing GIS-based 

cross-image comparison, regional development trends enabled the assessment of vitality shifts, 

revealing an association between the expansion of urban land pressures and ecological declines over 

the analytical time horizon. When the geographic coincidence of vitality declines and development 

expansion was explored, the spatial pattern of reduced sustainability was observed in a manner that 

could quickly inform decision makers to modify policy directives where adverse change was apparent. 

The results of this investigation and the methodology used to produce the regional measures of 

sustainability are instructive. Although preliminary, the indices obtained and the procedures described 

in this paper suggest that at the watershed scale of analysis, an assessment protocol can be crafted to 

support efforts to monitor human activities and explain, in an ecologically sensitive manner, whether 

development is compromising the long-term sustainability of the local environmental system. Future 

research will concentrate on the predictive value of the PCA-derived indices and their ability to 

generalize to other geographic locations. 
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