

Sustainability 2014, 6, 8079-8091; doi:10.3390/su6118079

sustainability
ISSN 2071-1050

www.mdpi.com/journal/sustainability

Article

Efficiency Sustainability Resource Visual Simulator for Clustered
Desktop Virtualization Based on Cloud Infrastructure

Jong Hyuk Park 1, Hyun-Woo Kim 2 and Young-Sik Jeong 2,*

1 Department of Computer Science and Engineering, Seoul National University of Science

and Technology, Seoul 139-743, Korea; E-Mail: Koreajhpark1@seoultech.ac.kr
2 Department of Multimedia Engineering, Dongguk University, Seoul 100-715, Korea;

E-Mail: hwkim@dongguk.edu

* Author to whom correspondence should be addressed; E-Mail: ysjeong@dongguk.edu;

Tel.: +82-2-2260-3374; Fax: +82-2-2260-8898.

External Editor: Jason C. Hung

Received: 3 October 2014; in revised form: 3 November 2014 / Accepted: 5 November 2014 /

Published: 14 November 2014

Abstract: Following IT innovations, manual operations have been automated, improving

the overall quality of life. This has been possible because an organic topology has been

formed among many diverse smart devices grafted onto real life. To provide services to these

smart devices, enterprises or users use the cloud. Cloud services are divided into

infrastructure as a service (IaaS), platform as a service (PaaS) and software as a service

(SaaS). SaaS is operated on PaaS, and PaaS is operated on IaaS. Since IaaS is the foundation

of all services, algorithms for the efficient operation of virtualized resources are required.

Among these algorithms, desktop resource virtualization is used for high resource

availability when existing desktop PCs are unavailable. For this high resource availability,

clustering for hierarchical structures is important. In addition, since many clustering

algorithms show different percentages of the main resources depending on the desktop PC

distribution rates and environments, selecting appropriate algorithms is very important.

If diverse attempts are made to find algorithms suitable for the operating environments’

desktop resource virtualization, huge costs are incurred for the related power, time and labor.

Therefore, in the present paper, a desktop resource virtualization clustering simulator

(DRV-CS), a clustering simulator for selecting clusters of desktop virtualization clusters to

be maintained sustainably, is proposed. The DRV-CS provides simulations, so that

clustering algorithms can be selected and elements can be properly applied in different

desktop PC environments through the DRV-CS.

OPEN ACCESS

Sustainability 2014, 6 8080

Keywords: desktop resource virtualization; clustering; clustering simulator; cloud computing;

infrastructure as a service; clustering visualization

1. Introduction

Recently, due to innovative IT computing technologies, manual operations that required huge

amounts of labor have been automated. In addition, the enhanced performance and convenient portability of

diverse smart devices (for instance, digital cameras, smart TV, smartphones and tablet PCs) have

increased leisure time and work efficiency. This has been possible because an organic topology has been

formed among many diverse smart devices grafted onto real life. These smart devices use cloud services

because of limited resources (for instance, CPU performance, memory size and storage size). In general,

cloud services are divided into infrastructure as a service (IaaS), platform as a service (PaaS) and software

as a service (SaaS), according to the services provided [1–5]. These cloud services are provided to users

internally using virtualization. Desktop resource virtualization enables cloud services using the

virtualization of many existing desktop PCs. For the high availability and sustainability of these desktop PC

resources, clustering for hierarchical structures is very important [6–13]. Therefore, many algorithms have

been developed, such as centroid-based clustering [14], distribution-based clustering [15], density-based

clustering [16] and connectivity-based clustering [17]. However, selecting optimized algorithms

according to the environment is very difficult. In addition, directly testing the definitions and ratios of

elements for clustering requires a great amount of time. For this reason, in the present paper, a desktop

resource virtualization clustering simulator (DRV-CS), an efficient simulator for selecting desktop

virtualization clusters to be maintained sustainably, is proposed. The DRV-CS provides simulations by

reading XML-based host information for efficient host clustering. With the simulator, the applicability

to clustering algorithms can be tested by visualizing clustering operation processes as two-dimensional

(2D) or 3D views. The simulator also provides interfaces that can be added by users, so that diverse

clustering algorithms can be simulated and clustering algorithms can be selected.

The present paper is composed as follows. In Section 2, previous studies on the visualization of and

simulators for resource management, scheduling, clustering, etc., are examined. In Section 3, 2D and 3D

configuration methods for simulating the DRV-CS are discussed. In Section 4, the design of the

DRV-CS is explained, and in Section 5, the implementation of the DRV-CS is explained. In Section 6,

simulation operation speeds are evaluated according to the number of desktop PCs. Finally, Section 7 is

composed of a summary of the overall conclusions and comments on future studies.

2. Related Works

Studies on the visualization of and simulators for resource management, scheduling, clustering, etc.,

were examined as follows. The growing hierarchical self-organizing map (GHSOM) [18] investigated

the visualization of cellular manufacturing systems based on self-organizing maps (SOMs) for the

clustering of similar manufacturing parts and machines for producing those parts. For visualization,

criteria for convergence, calculation time and quantization errors for the implementation of GHSOM

Sustainability 2014, 6 8081

algorithms were considered. Since this method is fixed in the present paper, user-setting interfaces for

visualizing diverse experiments are provided.

The Veritas Cluster Server (VCS) simulator [19] can be operated only in Windows systems and does not

require additional hardware. This simulator enables users to compose clusters. In addition, it provides

simulations for service groups and resource composition and failover. However, there are difficulties

in the analysis, because the simulator provides command line interface (CLI)-based interfaces and shows

text-based results. Therefore, in the present paper, graphic user interface (GUI)-based interfaces and

visualization for easy analyses are provided.

GridSim [20,21] is a Java-based simulator for scheduling algorithms. GridSim’s resource entity can

express the number of processors of individual resources that are multi-processors, the cost of

processing, the speed of processing and internal process scheduling policies. Although virtual

environments can be easily simulated through GridSim, there are difficulties, since users must write

program source code in order to manipulate the diverse variables necessary for resource analysis and

convert the results into charts, etc. Therefore, in the present paper, visualization is provided for a

GUI-based resource setting, operation processes and results.

ClusterSim [22] is a Java-based parallel discrete-event simulation tool. ClusterSim supports the

clusters’ workload and visual modeling. In addition, the simulator enables users to designate clusters

and can simulate message passing interfaces (MPI) between clusters and parallel job scheduling

algorithms, etc. However, this simulator does not have functions for selecting clusters in desktop PC

resource environments consisting of heterogeneous or homogeneous clusters, and users must manually

designate clusters. Therefore, the algorithm operations for cluster selections cannot be easily understood.

CloudSim [23] supports behavior modeling of the data center, virtual machine (VM), resource

provisioning policies, etc., with cloud system configurations. In addition, CloudSim can allocate VMs

among networks through user-defined interfaces. However, there are difficulties in understanding the

cause of problems and operation processes, because text-based results are derived. In addition, desktop

resource virtualization is not considered in data center configuration. Therefore, in the present paper,

visualization of the host-based clustering operation process is provided for efficient operation of desktop

resources.

3. DRV-CS Scheme

For desktop resource clustering, the DRV-CS receives desktop PC information in the form of XML,

as shown in Figure 1. In addition, for simulations of the clustering of heterogeneous desktop PCs, the

DRV-CS also provides user interfaces that create arbitrary desktop information.

The basic clustering DRV-CS elements are divided into distances and performance, and a detailed

explanation is shown in Table 1.

Sustainability 2014, 6 8082

Figure 1. XML scheme of desktop PC for the desktop resource virtualization clustering

simulator (DRV-CS).

Table 1. DRV-CS’s basic clustering elements.

Clustering Element Content

Distance

- ping: time measurement by ping

- request time: the time to connect individual hosts in which the DRV-CS is operated and the

time to respond to individual hosts in cases where time measurement by ping is impossible

Performance

- dynamic performance factors: idle CPU performance, size or residual memory and storage

- static performance factors: performance of the basic CPU installed, maximum size of the

memory and storage

3.1. Processing of Cluster Scheme

Shown Figure 2 is the overall processing step of clustering with a legacy desktop for an efficient

hierarchy storage scheme.

For starting the processing step, the number of desktops is greater than the number of cluster; an

arbitrary set of clusters should be generated by the given value from the user and system, such as

C = {C1, C2, C3, …, Ck}. Continuously, each cluster includes the new host through the distance, which

is the normalization value by the pair (x-axis value, y-axis value), where, the value is the response time

or the number of hops with the router and the y-axis is the performance based on the CPU, memory and

storage. Finally, it updates the center of each cluster ܥ௜ = ଵு ∑ ሼܥ௜ሽு௛ୀଵ , ݅ = 1, . . , ݇ , where H is the

number of hosts in each cluster and Ci is a host in each cluster group.

Sustainability 2014, 6 8083

Figure 2. Overall processing of the cluster scheme.

3.2. DRV-CS 2D Coordinates

For the 2D simulation, the DRV-CS shows distance (for instance, hop count of the router, request

time, etc.) on the x-axis and performance (for instance, CPU, memory and storage) on the y-axis using

the host’s information, as shown in Figure 3.

Figure 3. DRV-CS 2D coordinates.

The x-axis is normalized as follows.

(1) First, among the hosts for the clustering simulation, determine the ℎݐݏ݋୫ୟ୶	_ௗ௜௦௧௔௡௖௘	where the

highest measured value is based on the number of hops of the router or the response time.

(2) Calculate by Equation (1)

Sustainability 2014, 6 8084

ℎݐݏ݋ ௫ܰ_௩௔௟௨௘ = ℎݐݏ݋ ௗܰ௜௦௡௧௔௖௘ℎݐݏ݋୫ୟ୶ _ௗ௜௦௧௔௡௖௘ × 100 (1)

where ℎݐݏ݋ ௫ܰ_௩௔௟௨௘ is x-axis value of nth host, ℎݐݏ݋ ௗܰ௜௦௡௧௔௖௘ the distance of nth host and ℎݐݏ݋୫ୟ୶	_ௗ௜௦௧௔௡௖௘ the maximum distance of the host among all hosts.

(3) Implement the process under Step 2 for n hosts to calculate the x-axis coordinate value

normalized for all hosts.

The y-axis is normalized as follows.

(1) First, determine the ℎݐݏ݋୫ୟ୶	_௖௣௨, ℎݐݏ݋୫ୟ୶	_୫ୣ୫୭୰୷, ℎݐݏ݋୫ୟ୶	_ୱ୲୭୰ୟ୥ୣ, which are the hosts with the

highest measured values with the CPU, memory and storage that show the host performance.

(2) Next, determine α, which shows the percentage of CPU, β, which shows the percentage of

memory, and γ, which shows the percentage of storage. In this case, the sum of α, β	and	γ may
not exceed 100. In addition, the sum of α, β	and	γ should be 100. ℎݐݏ݋ ௣ܰ௘௥௙௢௥௠௔௡௖௘, which is

the performance of the nth host, should be calculated through Expression (2). ℎݐݏ݋ ௣ܰ௘௥௙௢௥௠௔௡௖௘ = 	 ℎݐݏ݋ ௖ܰ௣௨ℎݐݏ݋୫ୟ୶	_௖௣௨ × ߙ + ℎܰݐݏ݋௠௘௠௢௥௬ℎݐݏ݋୫ୟ୶ _௠௘௠௢௥௬ × ߚ + ℎݐݏ݋ ௦ܰ௧௢௥௔௚௘ℎݐݏ݋୫ୟ୶	_௦௧௢௥௔௚௘ 	× ߛ	
(2)

(3) In this case, ℎݐݏ݋ ௬ܰ_௩௔௟௨௘ is equal to ℎݐݏ݋ ௣ܰ௘௥௙௢௥௠௔௡௖௘ , and the y-axis coordinate value

normalized for all hosts should be calculated by implementing the process under Step 2 for n hosts.

3.3. DRV-CS 3D Coordinates

For 3D simulation of the DRV-CS, the distances between the hosts are shown on the x-axis, and the

performance is shown on the y-axis and z-axis, as shown in Figure 4. In this case, the y-axis shows the

CPU and memory, and the z-axis shows storage, although the user may change. The x-axis can be

normalized in the same way as used for 2D coordinates.

Figure 4. DRV-CS 3D coordinates.

Sustainability 2014, 6 8085

The y-axis is normalized as follows.

(1) Determine ℎݐݏ݋୫ୟ୶	_௖௣௨, ܽ݊݀	ℎݐݏ݋୫ୟ୶	_୫ୣ୫୭୰୷, which are the hosts with the highest measured

values for the CPU and host memory, respectively.

(2) Next, determine α, which shows the percentage of CPU, and β, which shows the percentage of

memory. In this case, the sum of α and β should be 100 and may not exceed 100. Calculate ℎݐݏ݋ ௬ܰ_௩௔௟௨௘, which is the y-axis coordinate value of n-th host through Expression (3). ℎݐݏ݋ ௬ܰ_௩௔௟௨௘ = 	 ℎݐݏ݋ ௖ܰ௣௨ℎݐݏ݋୫ୟ୶ _௖௣௨ × ߙ + ℎܰݐݏ݋௠௘௠௢௥௬ℎݐݏ݋୫ୟ୶ _௠௘௠௢௥௬ × (3) ߚ

(3) The y-axis coordinate value normalized for all hosts should be calculated by implementing the

process under Step 2 for n hosts.

The z-axis is normalized as follows.

(1) Among the hosts for the clustering simulation, determine ℎݐݏ݋୫ୟ୶	_௦௧௢௥௔௚௘, the host with the

largest available storage size.
(2) For ℎݐݏ݋ ௦ܰ௧௢௥௔௚௘ , the nth host from the ℎݐݏ݋୫ୟ୶	_௦௧௢௥௔௚௘ , calculate the z-axis coordinate ℎݐݏ݋ ௭ܰ_௩௔௟௨௘	through Expression (4). ℎݐݏ݋ ௭ܰ_௩௔௟௨௘ = ℎݐݏ݋ ௦ܰ௧௢௥௔௚௘ℎݐݏ݋୫ୟ୶ _௦௧௢௥௔௚௘ × 100 (4)

(3) The z-axis coordinate value normalized for all hosts should be calculated by implementing the

process under Step 2 for n hosts.

4. DRV-CS Design

The DRV-CS is composed of a user interface, which receives simulation visualization and host

information from the user, a host manager, which analyzes and manages the host information in the form

of XML received from the user as inputs, a CA manager, which manages clustering algorithms to be

implemented based on the host information, a coordinate converter, which processes data to show

simulations on the viewer, and a viewer, which visually shows simulation states. A fully functional

structural drawing of the DRV-CS is shown in Figure 5.

The user interface consists of graph information for controlling the visualization of the simulations,

host information for setting the host to be simulated, Run for implementing simulations and Stop for

stopping the simulations. The graph information consists of algorithm kind (AK) for algorithm selection,

cluster count (CC) for receiving inputs of the number of clusters to be simulated and normalization for

showing hosts on graphs. In addition, 2D or 3D can be selected according to simulation visualization through

the mode. The host information consists of the host count (HC), which inputs the number of hosts to be

simulated, create, which creates as many numbers as the number of inputted hosts, and random create (RC),

which creates arbitrary numbers internally in the system.

The host manager comprises the host importer (which reads XML documents to simulate hosts

installed in actual environments), host parser (which analyzes the XML documents that have been read),

and host analysis (which analyzes the hosts through normalization). In addition, it also comprises the

generator (which creates arbitrary hosts) and compare random host (CRH), which compares host

Sustainability 2014, 6 8086

information for diverse distributions. Hosts are added to the host list (HL) after being identified as having

host information that does not overlap with other hosts’ host information through CRH.

Figure 5. DRV-CS architecture. IP, Internet Protocol; M, Memory; C, CPU; CRH, compare

random host; HL, host list; MAHP, move adjacent host point; CCA, check clustering

availability; ICP, initialization center point; USA, user-selected algorithm; UCP, update

center point; CL, cluster list; FAH, find adjacent host; CA, cluster algorithm; AK, algorithm

kind; CC, cluster count; CM, Cluster Mark; HC, host count; RC, random create.

The CA manager (cluster algorithm manager) consists of the user-selected algorithm (USA), which

shows the clustering algorithm selected by the user, the initialization center point (ICP), which creates

arbitrary clusters in the number set by the user, and find adjacent host (FAH), which finds adjacent hosts

based on arbitrary clusters. The hosts found through FAH are added to the cluster list (CL). When all

hosts have been implemented, the CA manager moves to a new center point through the update center

point (UCP) based on the hosts added to individual clusters. Thereafter, FAH is repeatedly implemented

to move to the optimum center point, and whether FAH should be additionally implemented is judged

through the check clustering availability (CCA). When no additional implementation is necessary

according to the CCA, the host adjacent to the center point is selected as a cluster through the move

adjacent host point (MAHP).

The coordinate converter plays the role of a broker that processes data and delivers them to the viewer,

so that the viewer can visualize the operation state of the host manager and the CA manager.

The viewer consists of the control view for controlling the DRV-CS, graph view for visualizing

simulations and information view for providing the clustered host information to the user.

Sustainability 2014, 6 8087

5. DRV-CS Implementation

The initial screen of the DRV-CS is shown in Figure 6. Screen 1 visualizes the host clustering

simulation for desktop resource virtualization in 2D or 3D depending on the user’s view mode selection.

In addition, when a cluster has been selected in Screen 1, a frame that shows the information of the

clustered host is implemented. Screen 2 shows the desktop PC information to be simulated. Through this

table, the user may first revise the host information to be simulated. Screen 3 provides an interface for

selecting whether to show the visualization to be simulated in Screen 1 in 2D or 3D.

In addition, the screen provides algorithm selection and normalization for clustering, a view for showing

normalization states in Screen 1 and an interface for inputting the number of clusters for clustering. It

also provides a line for showing the state of clustering on simulations, a cluster mark for identifying

changes in clusters’ locations and a text interface for distinguishing clusters. Screen 4 provides an

interface for defining the number of hosts necessary to simulate clustering algorithms and changes in

performance ratios for arbitrary hosts.

Figure 6. Initial configuration screen of the DRV-CS.

Figure 7 shows the operation screens of the DRV-CS that create and simulate 1,000 hosts. The left

side shows 2D simulations, and the right side shows 3D simulations. Screen 1 inputs the number of host

as 1,000, creates random host information through create, and shows the information in the table. Screen

2 performs normalization to show the created random hosts on the graph and produces x-axis, y-axis and

z-axis values, depending on the simulation modes. Through the view, each host is expressed as a point

in the case of 2D simulations as shown in Screen 2 and as a sphere in the case of 3D simulations. Screen

3 shows a case in which the number of clusters was inputted as 10 for clustering, and the clustering was

implemented through the run interface. In this case, clustering simulations in the inputted number of

clusters are operated. Screen 4 shows a case where line, cluster mark and text have been activated on a

Sustainability 2014, 6 8088

simulation in operation in which the current locations of clusters and the view of clustered hosts

connected with each other are shown. In addition, the screen shows the host ID of each cluster on the

graph, so that cluster conditions can be understood.

Figure 7. DRV-CS simulation screen.

Figure 8 shows host information clustered with the results of the clustering simulation of 10 clusters

for 1,000 hosts shown in Figure 7. When the user has selected a cluster, Screen 1 shows the host

information included in the selected cluster in the form of a table. Screen 2 provides the selected cluster

to the user, so that it can be identified based on its IP. Screen 3 provides the host information included

in the selected cluster to the user, so that it can be understood by the user.

Figure 8. Host clustering through the DRV-CS.

Sustainability 2014, 6 8089

6. Performance Evaluation

Figure 9 shows the results for measuring the clustering time according to increases in the number of

DRV-CS hosts and clusters. The number of hosts increased to 100, 200, 300, 400, 500, 1000, 2000,

3000, 4000 and 5000, and the number of clusters increased to 5, 10, 15, 20, 25 and 30 at each time point

of increase to implement clustering. In this case, the implementation speed at each time point of increase

was the average of 50 implementations. Figure 9 shows that clustering is implemented within 5 s when

the number of hosts is smaller than 500. When the number of hosts was 1000 or larger, at least 10 s was

spent. When clustering was implemented by applying 30 clusters to 5000 hosts, approximately 21 s was

spent. This is more efficient compared to the labor, electricity and time spent on actual clustering tests

with 5000 hosts.

Figure 9. Clustering workload time according to increases in the number of DRV-CS hosts

and clusters.

7. Conclusions

Due to the limited performance of the resources of desktop PCs or smart devices, the use of cloud

services has been rapidly increasing. Among the visualizations for cloud services, desktop resource

virtualization utilizes the resources on existing desktop PCs, and thus, hierarchical structures for

clustering are very important. Therefore, in the present paper, a DRV-CS was proposed for selecting

clusters in desktop virtualization. The DRV-CS provided XML-based interfaces, so that the hosts in

cloud infrastructures in operation could be simulated. In addition, the simulator provided user interfaces,

so that the user can determine clustering elements for selecting appropriate clustering algorithms from

among diverse clustering algorithms.

In future work, studies will be conducted to express not only normalization, but also fault-tolerance

and resource availability. Studies will be conducted to provide user-defined interfaces, so that host

information, including not only CPU, memory, and storage, but also time and network infrastructure

according to resource availability, can be considered to enable utilization in diverse applications.

In addition, a multi-core GPU will be used to extend the simulation to multiple desktop PCs.

Sustainability 2014, 6 8090

Acknowledgments

This research was supported by the MSIP (Ministry of Science, ICT and Future Planning), Korea, under

the ITRC (Information Technology Research Center)) support program (NIPA-2014-H0301-14-1021)

supervised by the NIPA (National IT Industry Promotion Agency) and BK21 Plus project of the National

Research Foundation of Korea Grant.

Author Contributions

All the authors contributed equally to this work. All authors read and approved the final manuscript.

Conflicts of Interest

The authors declare no conflict of interest.

References

1. Gil, J.-M.; Park, J.H.; Jeong, Y.K. Data center selection based on neuro-fuzzy inference systems in

cloud computing environments. J. Supercomput. 2013, 66, 1194–1214.

2. Degefa, F.B.; Won, D. Extended Key Management Scheme for Dynamic Group in Multi-cast

Communication. J. Converg. 2013, 4, 7–13.

3. Malkawi, M.I. The art of software systems development: Reliability, Availability, Maintainability,

Performance (RAMP). Hum.-Centric Comput. Inform. Sci. 2013, 3, 1–17.

4. Jeong, Y.S.; Kim, H.W.; Jang, H.J. Adaptive resource management scheme for monitoring of CPS.

J. Supercomput. 2013, 66, 57–69.

5. Song, E.H.; Kim, H.W.; Jeong, Y.S. Visual Monitoring System of Multi-Hosts Behavior for

Trustworthiness with Mobile Cloud. J. Inform. Process. Syst. 2012, 8, 347–358.

6. Lee, S.H.; Lee, I.Y. A Secure Index Management Scheme for Providing Data Sharing in Cloud

Storage. J. Inform. Process. Syst. 2013, 9, 287–300.

7. USA 25th TODAY. Available online: http://usatoday30.usatoday.com/tech/top25-internet.htm?csp=

34#open-share-help (accessed on 25 September 2014).

8. Shrivastava, N.; Kumar, G. A survey on cost effective multi-cloud storage in cloud computing.

Int. J. Adv. Res. Comput. Eng. Technol. 2013, 2, 1405–1409.

9. Kim, S.Y.; Roh, H.C.; Park, C.H.; Park, S.H. Analysis of Metadata Server on Clustered File

Systems. In Proceedings of the Korea Computer Congress 2009, Seoul, Korea, 1 July 2009; Volume

36.

10. Gaonkar, P.E.; Bojewar, S.; Das, J.A. A Survey: Data Storage Technologies. Int. J. Eng. Sci.

Innov. Technol. 2013, 2, 547–554.

11. Gibson, G.A.; van Meter, R. Network attached storage architecture. Commun. ACM 2000, 43,

37–45.

12. Zhang, X.; Xu, F. Survey of Research on Big Data Storage. In Proceedings of the 12th Distributed

Computing and Applications to Business, Engineering and Science, London, UK, 2–4 September

2013; pp. 76–80.

Sustainability 2014, 6 8091

13. Dong, B.; Zheng, Q.; Tian, F.; Chao, K.; Ma, R.; Anane, R. An optimized approach for storing and

accessing small files on cloud storage. J. Netw. Comput. Appl. 2012, 35, 1847–1862.

14. Sun, Z.; Fox, G.; Gu, W.; Li, Z. A parallel clustering method combined information bottleneck

theory and centroid-based clustering. J. Supercomput. 2014, 69, 452–467.

15. Preheim, S.P.; Perrotta, A.R.; Martin-Platero, A.M.; Gupta, A.; Alm, E.J. Distribution-Based

Clustering: Using Ecology To Refine the Operational Taxonomic Unit. Appl. Environ. Microbiol.

2013, 79, 6593–6603.

16. Kriegel, H.P.; Kröger, P.; Sander, J.; Zimek, A. Density-based clustering. Wiley Interdisciplinary

Reviews: Data Mining and Knowledge Discovery; Wiley: Hoboken, USA, 2011; Volume 1,

pp. 231–240.

17. Erez, H.; Ron, S. A clustering algorithm based on graph connectivity. Inform. Process. Lett. 2000,

76, 175–181.

18. Chattopadhyay, M.; Dan, P.K.; Mazumdar, S. Comparison of visualization of optimal clustering

using self-organizing map and growing hierarchical self-organizing map in cellular manufacturing

system. Appl. Soft Comput. 2014, 22, 528–543.

19. Sadashiv, N.; Kumar, S.M.D. Cluster, Grid and Cloud Computing: A Detailed Comparison.

In Proceedings of the 6th International Conference on Computer Science and Education, Singapore,

3–5 August 2011; pp. 477–482.

20. Sulistio, A.; Cibej, U.; Venugopal, S.; Robic, B.; Buyya, R. A toolkit for modeling and simulating

data Grids: An extension to GridSim. Concurr. Comput. Pract. Exp. 2008, 20, 1591–1609.

21. Buyya, R.; Murshed, M. GridSim: A toolkit for the modeling and simulation of distributed resource

management and scheduling for Grid computing. Concurr. Comput. Pract. Exp. 2002, 14, 1175–1220.

22. Góes, L.F.W.; Ramos, L.E.S.; Martins, C.A.P.S. ClusterSim: A Java-Based Parallel Discrete-Event

Simulation Tool for Cluster Computing. In Proceedings of the 2004 IEEE International Conference

on Cluster Computing, San Diego, California, USA, 20–23 September 2004;

pp. 401–410.

23. Calheiros, R.N.; Ranjan, R.; Beloglazov, A.; de Rose, C.A.F.; Buyya, R. CloudSim: A toolkit for

modeling and simulation of cloud computing environments and evaluation or resource provisioning

algorithms. Softw. Pract. Exp. 2011, 41, 23–50.

© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article

distributed under the terms and conditions of the Creative Commons Attribution license

(http://creativecommons.org/licenses/by/4.0/).

