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Abstract: Agricultural nutrients play a critical role in food production and human nutrition 

in China. Against this backdrop, agricultural extension services are essential for providing 

farmers with knowledge and information about nutrient management. By using a propensity 

score-matching (PSM) approach, this study examines the impact of agricultural extension 

on farmer nutrient management behavior. Survey data about rice farmers in seven provinces 

of rural China are used. The empirical results indicate that participation in agricultural 

extension has a positive impact on rationalizing farmer nutrient management behavior. 

However, this impact is trivial. Compared with non-participating farmers, the reduced ratio 

of total fertilizer use and total inorganic fertilizer use by participating farmers is only 1.7% 

to 3.7%, and the improved ratio of the total organic fertilizer use and the level of  

soil-testing-based fertilizer use by participating farmers is only 1.008% to 1.173%. 

Additionally, the causal impacts of agricultural extension participation on nutrient 

management behavior tend to be higher for more educated, risk-loving and larger-scale 

farmers. This study reveals that China faces great challenges in implementing improved 

nutrient management practices for hundreds of millions of farmers through extension 

services. The findings also have important implications for China’s extension system to 

meet the objectives of improving nutrient management. 
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1. Introduction 

Nutrients, such as nitrogen (N), phosphorus (P), potassium (K), micronutrients, and others, are 

essential for plant growth, food production and, ultimately, for adequate human nutrition [1]. It has 

been estimated that the survival of nearly half of the world’s population depends on the use of 

agricultural nutrient inputs [2], whereas lack of access to nutrients in most African countries is a 

primary cause of low crop yields and food shortages [3]. Over the past 50 years, China has 

successfully achieved food self-sufficiency for its rapidly growing population. China is now feeding 

approximately 22% of the global population with only 7% of the global arable land area.  

This accomplishment was achieved primarily by increasing the use of chemical fertilizer nutrients, 

especially N and P. China is now the world’s largest producer, consumer and importer of chemical 

fertilizers, consuming over 1/3 of the world’s chemical fertilizers and accounting for approximately 

90% of the increase in global fertilizer consumption since 1981 [4]. However, Chinese agriculture uses 

far more chemical fertilizers per unit of crop production than comparable systems in Europe or North 

America [3]. In 2010, Chinese agriculture consumed 28.1 Tg N as synthetic fertilizer, exceeding 

consumption in North America (11.1 Tg N) and the European Union (10.9 Tg N) combined [5]. 

Numerous agronomic and economic studies under both experimental conditions and on farm fields 

provide conclusive proof that the overuse of chemical fertilizers has become widespread across China. 

For example, the average amount of N fertilizer used in the major rice producing regions of China is 

195 kg ha−1, which is 47% higher than the recommended rate [6]. The oversupply of nutrients or an 

imbalance between nutrients reduces the efficiency of nutrient use. As a consequence, the mean N-use 

efficiency in crop production in China has decreased drastically from 32% in 1980 to 26% in 2005 and 

is much lower than the efficiency achieved in many developed countries [7]. 

Nutrient losses from agriculture have resulted in serious environmental stress by increasing 

greenhouse gas (GHG) emissions and by polluting ground and surface water through N leaching [8]. 

According to the official report from the Ministry of Environmental Protection of China in 2010, the 

annual loadings of N and P from the agricultural sector into the nation’s water bodies reached 2.7 and 

0.3 Tg, which contributed to approximately 60% of the total N and P loads. The high rate of N 

fertilizer use has led to large N losses in the form of ammonia (NH3) volatilization and N leaching into 

groundwater and lakes [9]. Furthermore, the manufacture and use of N fertilizers are estimated to have 

contributed to approximately 30% of agricultural GHG emissions and more than 5% of China’s total 

GHG emission in 2007 [10]. To address the country’s widespread water quality and other nutrient-related 

environmental issues (e.g., soil acidification, N deposition, and climate change), drastic improvements 

in nutrient management that will allow the Chinese food production industry to simultaneously feed 

the growing human population and decrease the environmental impacts of food production are one of 

the great challenges China faces in the 21st century.  

In an effort to address these food security and environmental challenges related to agricultural 

nutrient use, China has implemented wide-ranging nutrient management practices to increase the 

efficiency of N and P use [11]. However, most of these nutrient management technologies, programs, and 

recommendations have not been adopted by farmers. The primary reason for this problem is rooted in 

the lack of knowledge and information by end users, because the majority of the hundreds of millions 

of farmers have received limited education about the value and efficient use of plant nutrients [12].  
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Hu et al. [13] found that, with appropriate N fertilizer application technology, N fertilizer use could be 

reduced by more than 30% without lowering (and potentially even increasing) rice yields. Cui et al. [14] 

found that using improved nutrient management technologies could reduce N fertilizer use by 40% 

without lowering maize yields, compared with current farming practices. Therefore, the timely delivery 

of science-based fertilizer recommendations through education, training and extension services is 

essential for improving nutrient use efficiency and for reducing the over-application of nutrients [15].  

However, given the importance of agricultural extension services for proper nutrient management, 

little empirical work has been conducted to examine this area of farm management in China. To the 

best of our knowledge, the only two exceptions can be found in [10,16]. Using data collected on the 

North China Plain, Huang et al. [10] showed that through training and scientist-guided on-farm pilot 

experiments, N-fertilizer use could be reduced by 22% in maize production without compromising 

yields. Using data from 813 maize farms, Jia et al. [16] found that improved N management training 

could significantly reduce farmer N fertilizer application by 20%.  

A major drawback of the above studies is that they do not properly control for potential differences 

between participants and farmers in the comparison group (non-participants), making it difficult to 

draw definitive conclusions. To identify the impacts of agricultural extension participation, an evaluation 

must construct a credible counterfactual outcome; that is, a study must estimate the nutrient management 

behavior of participants if they had not participated in the agricultural extension programs. Failure to 

do this will bias the corresponding impact estimates. To fill this gap, we employ a propensity score 

matching (PSM) method to overcome this unobserved counterfactual problem. We use the PSM model 

because it can create experimental conditions in which participants and non-participants are randomly 

assigned, providing an unbiased estimation of the treatment effects, and it can be used to identify a 

causal link between agricultural extension participation and farmer nutrient management behavior.  

To the best of our knowledge, this is the first study to use the PSM method to evaluate the impact of 

agricultural extension participation on farmer nutrient management behavior.  

Rice production is selected for this study for two reasons. First, rice is the number one crop in terms 

of the unit per area yield in China, reaching 6.777 t ha−1 in 2012, which is 1.359 and 1.155 times 

greater than the unit per area yield for wheat and maize. Second, as discussed above, there is suspected 

overuse of agricultural nutrients in rice production. 

The rest of the paper is organized as follows. The next section presents an analytical framework and 

methodology, followed by a presentation of the data and descriptive statistics in Section 3.  

The empirical results and findings are discussed in Section 4. The last section concludes with key 

findings and policy implications.  

2. Analytical Framework and Methodology 

2.1. Decision to Participate in Agricultural Extension  

Following [17,18], the economic rationale that drives the analytical framework underlying farmer 

participation in agricultural extension is the maximization of perceived utility. The decision about 

whether to participate in an agricultural extension program depends on the utility the farmer expects to 

derive from participation. Farmer participation only occurs when the expected utility of participation 
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(UP ) is greater than the utility without participation ( NU ), i.e., 0P NU U  . The difference between 

the utility with and without participation may be denoted as a latent variable *
iD , such that 0* iD  

indicates that the utility with participation exceeds the utility without participation. Therefore, the *
iD  

is not observable, but can be expressed as a function of the observed characteristics and attributes 
denoted as iZ  in a latent variable model as follows: 

iii ZD  *  (1)

and 

*1, 0

0,
i

i

if D
D

otherwise

 
 


 (2)

where iD is a binary indicator variable that equals 1 if a farmer participates in an agricultural extension 

program and is otherwise zero;   is a vector of the parameters to be estimated; iZ is a vector of 

explanatory variables, including the household and farm-level characteristics; and i is the error term, 

which is assumed to be normally distributed. 

The probability of participation in an agricultural extension program by a farmer based on 

observable characteristics can then be estimated using either a binary probit or a logit model: 

)(1)Pr()0Pr()1Pr( *
iiiii ZFZDD    (3)

where F is the cumulative distribution function for i , which is commonly assumed normally 

distributed in the probit model or extreme value distributed in the logit model. The extreme value 

distributed error gives the function its logistic distribution. 

In can be noted that the decision by a farmer to participate or not in an agricultural extension 

program is dependent on the farm, as well as farmer characteristics; therefore, it relies on each 

farmer’s self-selection rather than on random assignment. 

2.2. Impact of Agricultural Extension Participation on Farmer Nutrient Management Behavior  

A commonly used approach to evaluate the impact of participation in an agricultural extension 

program on the outcome of farmer nutrient management behavior is to include a dummy variable equal 

to the one in the outcome equation indicating whether the farmer participated in an agricultural 

extension program, but otherwise equaling zero, and then applying an ordinary least squares (OLS) 

regression. This may be expressed as follows: 

iiii uDXBehavior    (4)

where iBehavior  represents the nutrient management behavior of farmer i , iX is a vector of farm-level 

and household-level characteristics, such as the age and education of the farmer, the farm size, the 
farmer risk attitude, and soil quality variables; iD  is a dummy variable, 1iD   for participation in an 

agricultural extension program and 0iD   otherwise. The coefficient   in the specification captures the 

impact of agricultural extension participation on farmer nutrient management behavior. This approach, 

however, is likely to generate biased estimates because it assumes that participation in an agricultural 

extension program is exogenously determined; however, it is potentially endogenous. Participation in 
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agricultural extension programs is not random and is strongly correlated with unobservable household 

and farm characteristics (e.g., managerial skill, motivation, and so on) that may be correlated to 

nutrient management behavior. This may arise from farmer self-selection for participation in an 

agricultural extension program or from strategic program placement. The issue of selection bias occurs 
if unobservable factors influence both the error term of the participation equation i  in Equation (1) 

and the error term of the nutrient management behavior iu  in Equation (4), resulting in correlation 

between the two error terms. Therefore, estimating Equation (4) with ordinary least squares will lead to 

biased estimates. 

Researchers have proposed various methods to avoid selection bias [19]: (1) an experimental study 

in which participants can be randomly assigned to either control or treatment groups, but this is not 

possible for ex post studies; (2) the instrumental variables (IV) approach, in which a major limitation is 

that it normally requires a valid instrument that determines the treatment status but not the outcome 

variable, which is an arduous task in empirical studies [20]. Moreover, the IV procedure assumes that 

the treatment variable only induces a parallel shift (intercept effect) on the outcome variable, implying 

that the interactions between extension participation and other covariates does not exist; (3) Heckman’s 

two-step method; however, this two-step procedure depends on the restrictive assumption that the 

unobserved variables are normally distributed [21]; (4) a difference-in-differences estimation, which 

examines the effect before and after a treatment and between treated and untreated groups; therefore, 

this method is limited to studies with longitudinal data; and (5) a propensity score-matching method, 

which, unlike the methods mentioned above, requires no assumption about the functional form 

specifying the relationship between outcomes and outcome predictors. Therefore, the difficulty of 

finding valid instrumental variables can be avoided, and cross-sectional data collected at one point in 

time can be used [22,23]. 

Based on these attributes and the data availability, we chose the PSM method to control for 

selection bias in our analysis. 

2.3. The Propensity Score-Matching (PSM) Method 

2.3.1. Average Treatment Effect (ATE) 

The objective of this study is to estimate the average treatment effect (ATE) of agricultural 

extension participation on farmer nutrient management behavior. An ideal situation to estimate the 

ATE is to simply compare two outcomes for the same unit: when the unit is assigned to the treatment 

and when it is not [24]. In the context of this study, for example, the ATE could be estimated by 

comparing nutrient management behavior when the farmer is enrolled in an agricultural extension 

program and when not enrolled. In the absence of experimental data, the biggest challenge to 

estimating an ATE is that we do not know what the nutrient management behavior would have been if 

the farmer had not participated in the agricultural extension program. Therefore, construction of an 

unobserved counterfactual remains the basic problem of the evaluation of ATEs [25]. Rosenbaum and 

Rubin [26] developed the PSM approach, which is most commonly used in non-experimental settings 

to overcome the unobserved counterfactual PSM constructs of a statistical comparison group by 

matching every individual observation of participants with an observation having similar characteristics 
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to the group of non-participants. In essence, the PSM model creates the conditions of an experiment in 

which participants and non-participants are randomly assigned, providing an unbiased estimate of 

treatment effects, and it can be used to identify a causal link between agricultural extension participation 

and farmer nutrient management behavior.  
According to [26], the ATE ( i ) in a counterfactual framework can be defined as follows: 

01
iii YY   (5)

where 1
iY  and 0

iY  denote the nutrient management behavior of farmer i  who participates in the 

agricultural extension program and farmer i  who does not participate in the agricultural extension 

program, respectively. Estimating the impact of agricultural extension participation on the thi  farmer 

from Equation (5) would be misleading due to the problem of missing data. Normally, we can only 
observe either outcome 1

iY  or 0
iY  for one farmer at a time, not both. The normally observed outcome 

can be expressed as follows: 
01 )1( iiiii YDYDY   (6)

where D  is a dummy variable that indicates agricultural extension participation. The average effect of 

the treatment on the treated (ATT) is defined as the difference between the expected value of the outcome 

by participants while participating in the agricultural extension program and the expected value of outcome 

they would have received if they had not participated in the program. Following Smith and Todd [23], 

the ATT, which is the parameter of interest in this empirical research, can be defined as follows: 

)1|-()1|()1|( 0101  iiiiiii DYYEDYEDYEATT  (7)

Data on )1|( 1 ii DYE  are available from the program participants, but data on )1|( 0 ii DYE , 

which is the counterfactual outcome, are not observable for a given farmer. Therefore, what we can 

usually observe is the ATE, which can be expressed as follows:  

)0|()1|(
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iiii

DYEDYEATTATE

DYEDYEDYEDYEATE

DYEDYEATE

 (8)

If participation in agricultural extension is randomly assigned, the participation dummy variable D  
is statistically independent of the outcome ),( 01

ii YY , and the mean outcome of untreated individuals 

)0|( 0 ii DYE  can be used as a proxy for )1|( 0 ii DYE . However, in non-experimental surveys, the 

treated and untreated groups may not be the same before receiving treatment. Therefore, )0|( 0 ii DYE  

cannot be used as a proxy for )1|( 0 ii DYE . )0|()1|( 00  iiii DYEDYE  indicates the extent of 

selection bias that arises when the ATE is used to examine the impact of a treatment in non-experimental 

studies. Therefore, given the non-random participation in agricultural extension, using Equation (8) to 

estimate the impacts of agricultural extension would yield biased estimators (i.e., due to selection bias). 

The basic objective of the impact analysis is to find ways to make the selection bias zero 
( 0)0|()1|( 00  iiii DYEDYE ) so that the ATT=ATE. The PSM model can be employed to 

account for this selection bias. 
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The validity of the PSM method depends on two conditions: (1) the assumption of unconfoundedness 

or conditional independence (CIA); and (2) the assumption of common support (CSA). The CIA 
assumption states that given a set of observable covariates X , the respective treatment outcomes 1

iY , 
0

iY  are independent of the actual participation status D . In notation, as follows: 

XPYY ii /),( 01   (9)

Hence, after adjusting for observable differences, the mean of the potential outcome is the same for 
1D  and 0D ( )0|()1|( 00  iiii DYEDYE ). The CIA assumption permits the use of matched 

non-participating farms to measure how the group of participating farms would have performed had 

they not participated. Under the CIA, the propensity score in this study’s context, which can be defined 

as the conditional probability that a farmer will participate in an agricultural extension program, given 

its pre-participation characteristic, is given as follows: 

 )()();()1Pr()( XihFXpXDEXDXp   (10)

where F  can be the normal or logistic cumulative distribution and X is a vector of  

pre-treatment characteristics. 

On the other hand, the CSA assumption rules out the phenomenon of perfect predictability by 

ensuring that every individual has a positive probability of either being a participant or a non-participant in 

an agricultural extension program. The CSA can be expressed as follows: 

1)1Pr(0  XD  (11)

Under the assumptions of CIA and CSA, the ATT effect can then be estimated as follows: 

}1|)](,0|[()](,1|[({
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XpDYYEE

DYYE
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 (12)

2.3.2. Matching Algorithm 

Various matching algorithms are available to match participants with non-participants of similar 

propensity scores, depending on the distribution of the covariates in the matched treatment and control 

groups. In all matching algorithms, each treated individual i  is paired with some group of comparable 
non-treated individuals j  and then the outcome of the treated individual i , iY  is linked with the 

weighted outcomes of his neighbors j  in the comparison (control) group. Asymptotically, all matching 

methods should yield the same results. However, in practice, there are trade-offs in terms of bias and 

efficiency with each method [27]. The most commonly used approaches are nearest neighbor matching 

(NNM), kernel-based matching (KBM), and radius caliper matching (RM) [28]. The NNM involves 

choosing individuals from the participants and non-participants that are closest in terms of propensity 

scores as matching partners. It is usually applied with replacement in the control groups. In the KBM, 

all treated subjects are matched with a weighted average of all controls, using weights that are 

inversely proportional to the distance between the propensity scores of treated and comparison groups. 
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RM uses a tolerance level on the maximum propensity score distance between a subject in the 

treatment group and all individuals in the control group who are within that distance. 

2.3.3. Matching Quality 

Because the main purpose of PSM is to reduce selection bias by increasing the balance between the 

participants and non-participants [29], there should be no systematic differences in the distribution and 

overlap of covariates between the two groups after matching. It is important to check if the matching 

procedure is able to balance the distribution of the relevant variables across groups of participants and 

non-participants. This balancing test is normally required after matching to ascertain whether the 

differences in the covariates in the two matched sample groups have been eliminated, in which case, 

the matched comparison group can be considered plausibly counterfactual [20].  

There are several covariate-balancing tests can be used to test the balance of the PSM results. In this 

study, we used the following methods to check the balance of the scores and covariates. First, we 

calculated the standardized bias before and after matching and checked for a significant difference in 

the covariates of both groups using a two-sample t-test. After matching, there should be no significant 

differences [30]. Secondly, we run a logit model using the after-matching sample to compare the 

pseudo-R2 with the R2 obtained from the logit estimation using the before-matching sample.  

After matching, there should be no systematic differences in the distribution of covariates between 

both groups, so the low value of a pseudo R2 indicates that the balancing property is satisfied [31]. 

Finally, the balancing property was checked using the mean absolute standardized bias (MASB) between 

participants with non-participants, as suggested by Rosenbaum and Rubin [32], who recommend that a 

standardized difference of greater than 20% should be considered too large and an indicator that the 

matching process has failed. 

2.3.4. Sensitivity Test 

Despite the fact that PSM tries to compare the difference between the outcome variables of 

participants with non-participants with similar inherent characteristics, it cannot correct unobservable 

bias because PSM only controls for selection bias that is specifically due to observable variables 

(“selection on observables”). If there are unobserved variables that simultaneously affect the 

participation decision and the outcome variables, a “hidden bias” or “selection on unobservables” bias 

might arise and the PSM estimator may no longer be consistent. There is the need to check for 

sensitivity of the ATT to hidden bias after matching. Rosenbaum [30] has suggested the use of a 

sensitivity analysis called bounding approach to address this problem. The purpose of the sensitivity 

analysis is to ask whether inferences about participation effects may be changed by unobserved variables. 

The sensitivity analysis involves calculating upper and lower bounds with a Wilcoxon sign-rank test to 

test the null hypothesis of no participation effect for different hypothesized values of unobserved 

selection bias [33]. 
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3. Data and Description Statistics 

3.1. Sampling Procedure and Data 

The data used for this paper were collected in a nearly nationally representative household survey in 

seven provinces of rural China, and the collection took place between January and March 2013.  

A three-stage stratified random-sampling design was chosen to ensure the representativeness of the 

sample. First, seven provinces were selected from China’s major agro-ecological zones from a list of 

provinces arranged in descending order based on their gross value of industrial outputs (GVIO).  

The GVIO was used on the basis of the conclusion from [34] that the GVIO is one of the best 

predictors of the standard of living and development potential and is often more reliable than the net 

rural per capita income. The seven representative provinces included: Jiangsu, representing southeastern 

coastal rice production areas (Jiangsu, Shanghai, Zhejiang, Fujian, Guangdong and Hainan); Shandong 

and Henan, representing northern rice production areas (Beijing, Tianjin, Hebei, Shanxi, Shandong and 

Henan); Sichuan, representing southwestern rice production areas (Sichuan, Chongqing, Guizhou, 

Guangxi, Yunnan and Tibet); Heilongjiang, representing northeastern rice production areas (Jilin, 

Liaoning, Heilongjiang and Inner Mongolia); and Hebei and Jiangxi, representing the central rice 

production areas (Anhui, Hubei, Jiangxi and Hunan). Second, in each selected province, three counties 

were randomly selected, one from each quintile of a list of counties arranged in descending order of 

GVIO. Third, within each selected county, three villages were chosen. Finally, twenty rice production 

households were then randomly sampled from a list of farming families in each village. As a result, a 

total of 1250 rice production households in 63 villages from 21 counties were surveyed using a 

standardized survey instrument. 

The survey instrument was a closed-ended questionnaire that was modified from the baseline survey 

instrument. It was field-tested during a three-day training exercise with the enumerators and local 

researchers in each of the seven provinces. Data were checked using a data-cleaning syntax that checked 

for errors. Data cleaning was then performed at the country level by data assistants. The household survey 

used a structured questionnaire to collect data from the selected households on the demographic 

characteristics of the household, farm-level characteristics, individual features, farmer participation in 

agricultural extension programs, as well as farmer nutrient management behavior. In addition to the 

household survey, we also conducted a village survey to collect valuable information about the  

socio-economic characteristics and the agricultural extension program characteristics of the village. 

3.2. Variable Selection 

The implementation of matching requires the choice of a set of variables that credibly satisfy the 

assumption of unconfoundedness. The choice of covariates to be included in the first step (propensity 

score estimation) was an issue. Heckman et al. [21] indicated that omitting important variables will 

increase the bias in the resulting estimation. Bryon et al. [35] noted that including extraneous variables 

in the participation model would reduce the likelihood of finding common support. In principle, only 

variables that simultaneously influence the choice to participate in an agricultural extension program 

and the outcomes of participation, which are not affected by participation, should be included in the 

PSM when matching is performed [27]. Meanwhile, the choice of variables should be guided by 
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previous research, economic theory, and the institutional setting within which the treatment and 

outcomes are measured. Under those principles, the variables employed in this study can be divided 

into three groups: the household characteristics (age, education, farming experience, risk attitude, 

extension contact, village leader, household income, off-farm income ratio, and distance to the nearest 

fertilizer shop); farm characteristics (farm size and soil quality) and village characteristics (extent of 

agricultural extension participation, village income and off-farm income ratio). 

3.3. Summary Statistics 

3.3.1. Summary Statistics of Independent Variables 

Table 1 presents the definitions and differences in the characteristics of participants and  

non-participants with their t-values. The t-values indicate that there are significant differences in some 

of the variables used in the empirical analysis. Specifically, the participants were younger and were 

closer to the nearest fertilizer shop than non-participants. However, the education level, risk attitude, 

proportion of village leaders, farm size, soil quality and extent of agricultural extension participation in 

their village were all significantly higher factors for participants than for non-participants. The differences 

in the mean characteristics between participants and the non-participants that could have affected 

participation indicated a potential source of bias, hence, the need for matching and selection bias tests. 

Table 1. Variables definition and differences in means of participants and non-participants. 

Variables Description 

Participants  

(N = 396) 

Non-participants 

(N = 854) T-test 

Mean SE Mean SE 

Household characteristics 

Age of household head Year 45.90 9.43 51.70 9.94 0.055 ** 

Education of 

household head 

1 = 0 year; 2 = less than 6 years; 3 = 6–9 years; 

4= 9–12 years; 5= more than 12 years  
2.97 0.91 2.62 0.90 0.032 ** 

Farming experience 

of household head 

1 = less than 3 years; 2 = 3–10 years;  

3 = 10–15 years; 4 = more than 15 years 
3.26 1.03 3.22 0.93 0.174 

Risk attitude of 

household head 

1 = risk aversion; 2 = risk neutrality;  

3 = risk loving 
1.50 0.85 1.39 0.73 0.052 ** 

Extension contact 
Number of household head’s contact with the 

agricultural extension agent one year  
3.03 2.88 2.30 2.77 0.001 *** 

Village leader dummy 
1 = the household head is a village leader,  

0 = no 
0.22 0.12 0.12 0.11 0.003 *** 

Household income Ln (household income) 10.76 0.84 10.64 0.87 0.231 

Off-farm income ratio 
The proportion of off-farm income to the total 

income (%) 
54.31 34.04 54.52 32.03 0.127 

Distance to the 

nearest fertilizer shop 
Kilometers 3.00 3.38 4.98 4.85 0.002 *** 

Farm characteristics 

Farm size Ha 0.31 0.45 0.27 0.37 0.012 ** 

Soil quality 1 = poor; 2 = moderate; 3 = good 2.25 0.70 1.98 0.47 0.022 ** 
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Table 1. Cont. 

Variables Description 

Participants  

(N = 396) 

Non-participants 

(N = 854) T-test 

Mean SE Mean SE 

Village characteristics 

Extent of village agricultural 

extension participation 

The proportion of agricultural 

extension participants in village (%) 
35.23 18.15 25.17 18.34 0.003 *** 

Village income Ln (village income) 10.68 0.57 10.57 0.62 0.256 

Village off-farm income ratio  
The proportion of off-farm income to 

the total income in village (%) 
41.54 23.25 39.27 22.58 0.651 

Note: ***, **, and * indicate statistical significance at 1%, 5% and 10%, respectively. 

3.3.2. Summary Statistics of Dependent Variables 

In accordance with previous studies, farmer nutrient management behavior is measured in terms of 

the total amount of fertilizer used, the total amount of inorganic fertilizer used, the percentage of 

organic fertilizer used and the percentage of soil-testing-based fertilizer used [10,36].  

Table 2 reports the nutrient management behavior of participants and non-participants in rice 

production. The nutrient management behavior appears to be more rational among the participants. 

First, participating farmers used much less fertilizer and inorganic fertilizer than non-participating 

farmers. Non-participating farmers applied an average of 717 kg ha−1 of fertilizer and 642 kg ha−1 of 

inorganic fertilizer, which was more than 10.648% and 19.109% of participating farmers, respectively. 

Second, the percentages of organic fertilizer used and soil-testing-based fertilizer used by participating 

farmers were much higher than those of non-participating farmers. For non-participating farmers, the 

percentages of organic fertilizer used and soil-testing-based fertilizer used were 6.834% and 3.626%, 

which were lower than the corresponding amounts of 3.660% and 2.701% used by participating farmers.  

Table 2. Nutrient management behavior of participants and non-participants. 

Nutrient management behavior Participants Non-participants Differences 

The total amount of fertilizer used (kg ha−1) 648 717 −69 
The total amount of inorganic fertilizer used (kg ha−1) 539 642 −103 
The percentage of organic fertilizer used (%) 10.494 6.834 3.660 
The percentage of soil-testing-based fertilizer used (%) 6.327 3.626 2.701 

The unconditional summary statistics in the above tables generally suggest that agricultural 

extension may have a role in improving farmer nutrient management behavior, but because agricultural 

extension participation is endogenous, a simple comparison of the nutrient management behavior 

indicators of participants and non-participants has no causal interpretation. That is, the above 

differences may not be the result of agricultural extension but instead may be due to other factors. 

Therefore, we need to use a PSM method to control for this self-selection problem to test the impact of 

agricultural extension participation on farmer nutrient management behavior. 
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4. Results and Discussion 

In this section, we outline the common steps used to implement the PSM method. First, a probability 

model for participation in agricultural extension programs is estimated to calculate the probability (or 

propensity scores) of participation for each observation. In the second step, each participant is matched 

to a non-participant with a similar propensity score to estimate the ATT. 

4.1. Factors That Affect Participation in Agricultural Extension  

The factors that affect the decision to participate in agricultural extension programs are estimated 

using a logit model. Table 3 presents the results. The last column of Table 3 indicates changes in the 

probability of participation in agricultural extension programs given one unit of change in the explanatory 

variables; these are computed from the means of all of the explanatory variables. The likelihood ratio 

statistics of −138.024 suggested that the estimated model is statistically significant at the 1% level and 

that the pseudo-R2 value indicates that the equation explains 25.39% of the variance in decision-making 

about whether to participate in an agricultural extension program. 

Table 3. Logit regression estimates of propensity scores for participation in agricultural 

extension programs. 

Variable Coefficient Standard error 
Marginal  

Probability (dy/dx) 

Household characteristics 

Age of household head −0.0262 ** 0.0132 −0.0116 
Education of household head 0.0895 *** 0.0318 0.0498 
Farming experience of household head 0.0538 0.2346 0.0023 
Risk attitude of household head 0.3291 0.1129 0.0554 
Extension contact  0.0821 ** 0.0321 0.0167 
Village leader dummy 0.7214 *** 0.2211 0.1872 
Household income 1.1137 0.6752 0.2901 
Off-farm income ratio −1.3840 0.8775 −0.3438 
Distance to the nearest fertilizer shop  −0.2513 0.0667 −0.0624 

Farm characteristics 

Farm size  0.4251 ** 0.1982 0.8520 
Soil quality −0.3158 0.3298 −0.0785 

Village characteristics 

Extent of village agricultural 
extension participation 

0.0568 *** 0.0081 0.0125 

Village income 1.1253 0.9932 1.0231 
Village off-farm income ratio  0.8782 0.8531 0.3453 
Constant −0.4105 2.8726 - 

Log likelihood = −138.024; Pseudo R2 = 0.2539;  
Prob > chi2 = 0.000; Number of observations = 1250 

Note: (1) ***, **, and * indicate statistical significance at 1%, 5% and 10%, respectively; (2) The standard 

errors of the coefficients are estimated from bootstrap method with 1000 replications. 
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The results indicates that older farmers were less likely to participate in agricultural extension 

programs, whereas farmers that are more educated have a higher probability of participation. As expected, 

farmers that have more contact with agricultural extension agents are more likely to participate in 

agricultural extension programs. Being a village leader and having larger farm size also increased the 

probability of agricultural extension participation. The higher the proportion of agricultural extension 

participants in a village, the more likely farmers are to participate in agricultural extension programs. 

4.2. Treatment Effects of the PSM Methods 

The results modeling the impact of agricultural extension participation on farmer nutrient 

management behavior with KBM, RM and NNM are presented in Table 4. The three matching methods 

indicate that participation in agricultural extension programs has a positive impact on farmer nutrient 

management behavior. 

The impact of agricultural extension participation on reducing fertilizer use and inorganic fertilizer 

use are positive and significant for all the matching algorithms. For the amount of fertilizer used, the 

ATT ranges from 11 to 24 kg ha−1, implying that on average participants used 11 to 24 kg ha−1 less 

fertilizer than matched non-participants, and/or the amount of inorganic fertilizer used ranges from  

10 to 18 kg ha−1.  

Agricultural extension participation also led to clear and significant improvement in organic fertilizer 

use and soil-testing-based fertilizer use. Farmers that participated in agricultural extension programs 

improved their percentage of organic fertilizer use by 1.008% to 1.705%. They also had a higher 

percentage of soil-testing-based fertilizer use than non-participants by an average score of 1.096% and 

1.173%, respectively. 

However, although agricultural extension participation has an impact on rationalizing farmer 

nutrient management behavior, this impact is trivial. Based on our study, participating farmers’ total 

fertilizer use was reduced by only 1.7% to 3.7%, and their inorganic fertilizer use is reduced by only 

1.9% to 3.3%. The improved percentage of organic fertilizer use and soil-testing-based fertilizer use 

due to agricultural extension participation are also small, ranging from 1.008% to 1.173%. The reasons for 

this are as follows: first, there are many complex barriers to effective knowledge and technology transfer to 

farmers in China. Most of the more than 200 million farmers in China are poorly educated, are relatively 

old, and operate very small holdings (an average 0.1–0.5 ha of agricultural land per farm) [11]; second, 

China has lacked a wide-reaching and functional extension system. According to one report, there 

were only 11 technicians providing services for 20,000 farmers in one county; at the township level, 

the extension personnel, if any, have become fertilizer salesmen or have become engaged in other 

unrelated activities (e.g., family planning) [15]; third, the extension system in China generally takes a 

top-down approach, determining what technologies should be transferred at the central, provincial or 

county level without the sufficient involvement of local farmers [13,36]; fourth, increasing agricultural 

production and food security have been the primary objectives of the agricultural extension system. 

Extension officers usually only promote programs intended to increase crop yields, as do most 

governmental incentives [37]. However, since the end of the 2000s, government policies have broadened 

to include, not only food security, but also environmental sustainability. For example, in 2005 the 

Ministry of Agriculture began a soil- and plant-testing program called the National Soil-Testing and 
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Fertilizer-Recommendation Program (STFR). By 2009, more than 2500 counties were involved and 

had received 1.5 billion Yuan of financial support from the central government to establish soil-testing 

laboratories and demonstrate the use of soil-testing and fertilizer recommendations for a diverse range 

of cropping systems. However, agricultural bureaus lack the knowledge, trained staff, and instruments 

(e.g., taxes and subsidies, regulatory authority, extension services, education and demonstration, and 

pollution standards) to implement such a policy with the concurrent goals of environmental 

sustainability and food security [11]. 

Table 4. Estimates of the average treatment effect on treated (ATT). 

Outcome variable Matching algorithm Treated Controls ATT T-stat 

The total amount of 
fertilizer used (kg ha−1) 

Kernel-based matching 648 672 −24 −1.897 * 
Radius caliper matching 648 665 −17 −2.012 ** 

Nearest neighbor matching 648 659 −11 −2.134 ** 

The total amount of 
inorganic fertilizer  
used (kg ha−1) 

Kernel-based matching 539 557 −18 −1.954 * 
Radius caliper matching 539 549 −10 −1.764 * 

Nearest neighbor matching 537 553 −16 2.894 *** 

The percentage of 
organic fertilizer  
used (%) 

Kernel-based matching 10.494 9.355 1.139 1.765 * 
Radius caliper matching 10.494 8.789 1.705 1.974 ** 

Nearest neighbor matching 10.329 9.321 1.008 2.023 ** 

The percentage of  
soil-testing-based 
fertilizer used (%) 

Kernel-based matching 6.327 5.231 1.096 2.248 ** 
Radius caliper matching 6.327 5.218 1.109 1.836 * 

Nearest neighbor matching 6.327 5.154 1.173 2.113 ** 

Note: (1) ***, **, * denote statistical significance at the 1%, 5% and 10%, respectively; (2) T-values are 

calculated using bootstrap with 1000 repetitions. 

To gain further understanding of the impact of agricultural extension participation on different 

groups of participants, we also examined the differential impact of participation by dividing households 

into different categories based on education level, risk attitude, initial application level and farm size. 

The stratification was made based on matched samples obtained from the nearest neighbor-matching 

estimator. (Results are reported in Tables 5–8.) 

As observed in Table 5, the impact of participation on total fertilizer use and inorganic fertilizer use 

decrease with educational level, while the relationship between participation and organic fertilizer use 

and soil-testing-based fertilizer use are positive. This is consistent with the expectation that better 

educated farmers are more adept at acquiring and processing information from various sources, and then 

adopting and implementing recommendations and solutions relevant to their specific problems [38]. 

Table 5. Differential impact by education level. 

Category Outcome variable ATT T-stat 

Low  
(0–6 years) 

The total amount of fertilizer used (kg ha−1) −11.21 −1.978 ** 
The total amount of inorganic fertilizer used (kg ha−1) −9.87 −2.321 ** 
The percentage of organic fertilizer used (%) 1.012 1.856 * 

The percentage of soil-testing-based fertilizer used (%) 0.098 1.985 ** 
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Table 5. Cont. 

Category Outcome variable ATT T-stat 

Middle  
(6–9 years) 

The total amount of fertilizer used (kg ha−1) −13.45 −1.765 * 
The total amount of inorganic fertilizer used (kg ha−1) −10.34 −1.995 ** 
The percentage of organic fertilizer used (%) 1.213 2.012 ** 

The percentage of soil-testing-based fertilizer used (%) 1.011 1.764 * 

High  
(more than 9 years) 

The total amount of fertilizer used (kg ha−1) −15.76 −2.679 ***
The total amount of inorganic fertilizer used (kg ha−1) −13.25 −2.114 ** 
The percentage of organic fertilizer used (%) 1.432 2.789 *** 

The percentage of soil-testing-based fertilizer used (%) 1.163 2.065 ** 

Note: (1) ***, **, * denote statistical significance at the 1%, 5% and 10%, respectively; (2) T-values are 

calculated using bootstrap with 1000 repetitions. 

Table 6 presents results for the causal impacts of participation on nutrient management behavior for 

different categories of risk attitude. The results generally reveal that the participation of agricultural 

extension exerts a positive and statistically significant impact on nutrient management behavior among 

the risk-loving farmers and risk-neutrality farmers, but insignificant effects on the risk-aversion 

farmers. It may be that risk aversion leads farmers to want to avoid the possibility of applying too little 

fertilizer, and are less concerned about applying too much fertilizer. Given that farmers in China, like 

rural households in many developing countries, have limited access to formal insurance and credit 

markets, they are generally risk-averse and more risk aversion can lead to more intensive fertilizer use, 

providing crop insurance would be a beneficiary policy to help alleviate farmers’ fertilizer use. 

Table 6. Differential impact by risk attitude. 

Category Outcome variable ATT T-stat 

Risk aversion 

The total amount of fertilizer used (kg ha−1) −9.34 −1.045 
The total amount of inorganic fertilizer used (kg ha−1) −8.47 −1.326 
The percentage of organic fertilizer used (%) 0.078 1.543 

The percentage of soil-testing-based fertilizer used (%) 0.094 1.456 

Risk neutrality 

The total amount of fertilizer used (kg ha−1) −12.64 −2.065 ** 
The total amount of inorganic fertilizer used (kg ha−1) −11.78 −1.978 ** 
The percentage of organic fertilizer used (%) 1.117 2.114 ** 

The percentage of soil-testing-based fertilizer used (%) 1.014 2.064 ** 

Risk loving 

The total amount of fertilizer used (kg ha−1) −16.56 −2.896 *** 
The total amount of inorganic fertilizer used (kg ha−1) −13.43 −2.015 ** 
The percentage of organic fertilizer used (%) 1.332 1.986 ** 

The percentage of soil-testing-based fertilizer used (%) 1.432 2.234 ** 

Note: (1) ***, **, * denote statistical significance at the 1%, 5% and 10%, respectively; (2) T-values are 

calculated using bootstrap with 1000 repetitions. 

The relationship between participation and initial application level are shown in Table 7. The results 

generally reveal that within the different initial application level groups, the impacts of participation on 

nutrient management behavior are all very trivial. The reason for this result may be that farmers in 

China had been overusing fertilizer in the past and they are becoming too used to relying on chemical 
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fertilizer. As a result, farmers become locked into “unsustainable” agricultural systems once fertilizers 

are adopted. As Tisdell [39] demonstrates, when chemical agricultural systems are adopted, 

agricultural yields or returns become dependent on them despite the very high costs, and thus impose 

an “economic barrier” to switching to organic systems. In short, agricultural practices tend to become 

“inclined towards” such systems once they are adopted despite being unsustainable. 

Table 7. Differential impact by initial application level. 

Category Outcome variable ATT T-stat 

Low 

The total amount of fertilizer used (kg ha−1) −7.38 −1.972 ** 
The total amount of inorganic fertilizer used (kg ha−1) −5.34 −1.718 * 
The percentage of organic fertilizer used (%) 0.076 2.002 ** 

The percentage of soil-testing-based fertilizer used (%) 0.087 1.684 * 

Middle 

The total amount of fertilizer used (kg ha−1) −7.35 −2.124 ** 
The total amount of inorganic fertilizer used (kg ha−1) −6.93 −1.765 * 
The percentage of organic fertilizer used (%) 0.098 2.321 ** 

The percentage of soil-testing-based fertilizer used (%) 1.012 1.804 * 

High 

The total amount of fertilizer used (kg ha−1) −10.23 −1.865 * 
The total amount of inorganic fertilizer used (kg ha−1) −7.45 −2.327 ** 
The percentage of organic fertilizer used (%) 0.096 1.911 * 

The percentage of soil-testing-based fertilizer used (%) 1.112 2.132 ** 

Note: (1) ***, **, * denote statistical significance at the 1%, 5% and 10%, respectively; (2) T-values are 

calculated using bootstrap with 1000 repetitions. 

Results from the causal impacts of participation on nutrient management behavior for different 

categories of farm size are presented in Table 8. It is significant to note that agricultural extension 

participation exerts a positive and statistically significant impact on nutrient management behavior 

among the medium and large farmers, but insignificant effects on the small-scale farmers. This result is 

consistent with Zhou et al. [40], who found an inverse relationship between farm size and fertilizer 

intensity in a study in Hebei Province, indicating that smaller farms are more likely to have high 

intensities. The reason for the insignificant effects of the small-scale farmers may be that farmers with 

less farm land will find it more difficult to spread the risks across family plots and, thus, could possibly 

use fertilizer more intensively to stabilize the crop yields. 

Table 8. Differential impact by farm size. 

Category Outcome variable ATT T-stat 

Small 

The total amount of fertilizer used (kg ha−1) −10.21 −1.214 
The total amount of inorganic fertilizer used (kg ha−1) −9.32 −1.431 
The percentage of organic fertilizer used (%) 0.092 1.614 

The percentage of soil-testing-based fertilizer used (%) 0.086 1.542 

Medium 

The total amount of fertilizer used (kg ha−1) −12.56 −2.124 ** 
The total amount of inorganic fertilizer used (kg ha−1) −11.45 −2.247 ** 
The percentage of organic fertilizer used (%) 1.034 1.986 ** 

The percentage of soil-testing-based fertilizer used (%) 1.112 2.578 *** 
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Table 8. Cont. 

Category Outcome variable ATT T-stat 

Large 

The total amount of fertilizer used (kg ha−1) −15.98 −2.797 *** 
The total amount of inorganic fertilizer used (kg ha−1) −14.43 −2.015 ** 
The percentage of organic fertilizer used (%) 1.332 2.028 ** 

The percentage of soil-testing-based fertilizer used (%) 1.213 2.456 ** 

Note: (1) ***, **, * denote statistical significance at the1%, 5% and 10%, respectively; (2) T-values are 

calculated using bootstrap with 1000 repetitions. 

4.3. Assessing the Quality of the Matching Process 

The matching process is checked to determine whether it balances the distribution of the relevant 

covariates in both the treatment and control groups using different methods. The results of the 

covariate-balancing tests are presented in Tables 9 and 10. 

First, the propensity score test indicates a significant reduction in bias after matching, and most 

importantly, there are no significant differences in matched non-participants and participants for any of 

the covariates (Table 9).  

Table 9. Tests for selection bias after matching. 

Variable 
Matched sample Bias 

T-test  
p-value 

Treated 
(N = 396) 

Control 
(N = 854) 

% Bias 
% Bias 

reduction 

Household characteristics 

Age of household head 46.21 49.98 −36.35 46.21 0.521 
Education of household head 2.89 2.56 38.79 5.71% 0.358 
Farming experience of household head 3.57 3.54 3.50 25.00% 0.172 

Risk attitude of household head 1.49 1.44 6.32 54.55% 0.616 
Extension contact 3.25 2.65 20.66 77.62% 0.216 
Village leader dummy 0.22 0.13 33.57 3.01% 0.238 
Household income 10.83 10.78 5.74 −38.78% 0.228 
Off-farm income ratio 55.98 56.04 −20.48 14.97% 0.172 
Distance to the nearest fertilizer shop 2.97 4.86 −9.80 36.03% 0.425 

Farm characteristics 

Farm size 0.34 0.31 15.86 22.81% 0.106 
Soil quality 2.18 2.14 1.62 85.19% 0.273 

Village characteristics 

Extent of village agricultural  
extension participation 

36.32 26.61 54.55 3.48% 0.345 

Village income 10.64 10.56 2.99 27.27% 0.772 
Village off-farm income ratio  39.87 38.95 6.34 59.47% 0.298 

Second, there is a substantial reduction in bias as a consequence of matching. The estimates indicate 

that the standardized mean bias before matching is 28.71%, whereas the standardized mean bias after 

matching is reduced to between 6.79% and 13.65%. The percentage reductions in the absolute bias are 

65.62%, 76.35% and 52.46% with KBM, RM and NNM matching methods, respectively. Because the 
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percentage reduction in bias by all three matching methods is greater than 20%, a value recommended 

by Rosenbaum and Rubin [32] as a sufficiently large enough reduction in standardized bias, it is 

determined that the matching substantially reduced the selection bias. Similarly, the pseudo-R2 of the 

estimated logit model was high before matching and low afterwards for all matching algorithms. The 

p-value of the likelihood ratio test was always rejected after matching, whereas it was never rejected at 

any significance level before matching, suggesting that there is no systematic difference in the 

distribution of covariates between participants and non-participants after matching (Table 10).  

Table 10. Statistical tests to evaluate the matching. 

Matching algorithm 

Mean bias 
% |bias| 

reduction 

Pseudo-R2 p-value of LR 

Before 

matching 

After 

matching 
Unmatched Matched Unmatched Matched 

Kernel-based matching 28.71 9.87 65.62 0.2539 0.0923 0.000 0.432 

Radius caliper matching 28.71 6.79 76.35 0.2539 0.0897 0.000 0.654 

Nearest neighbor matching 28.71 13.65 52.46 0.2539 0.1125 0.000 0.786 

4.4. Testing for Hidden Bias with Sensitivity Analysis 

Might endogeneity drive our results? As noted above, the effectiveness of our matching estimators 

in controlling for selection bias are dependent on the untestable identifying assumption that we are able 

to observe confounding variables that simultaneously affect farmers’ decisions to participate in agricultural 

extension programs and to adopt or not to adopt the nutrient management practices that serve as our 

outcome variables. That is, we essentially assume that endogeneity is not a problem [17]. We calculate 

Rosenbaum bounds to check the sensitivity of our results with the failure of this assumption. Given that 

the sensitivity analysis of insignificant effects is not meaningful, the Rosenbaum bounds were calculated 

only for the treatment effects that are significantly different from zero [41]. As Duvendack and 

Palmer-Jones [42], and DiPrete and Gangl [43] noted, if the critical value is less than two, one may 

assert that the likelihood of such unobserved characteristic is relatively high; therefore, the estimated 

impact is rather sensitive to the existence of unobservables. As shown in Table 11, in our results, the 

lowest critical value of γ is 2.08, whereas the largest critical value of γ is 4.59. Therefore, our 

sensitivity tests suggest that even large amounts of unobserved heterogeneity would not alter the 

inference of the estimated effects. In other words, endogeneity is unlikely to drive our results. 

Table 11. Sensitivity analysis with Rosenbaum bounds. 

Matching algorithm Outcome Variable 
Critical level of 
hidden bias( ) 

Kernel-based 
matching 

The total amount of fertilizer used (kg ha−1) 2.08–2.12 
The total amount of inorganic fertilizer used (kg ha−1) 3.15–3.23 
The percentage of organic fertilizer used (%) 2.65–2.72 
The percentage of soil-testing-based fertilizer used (%) 2.78–2.86 

Radius caliper 
matching 

The total amount of fertilizer used (kg ha−1) 2.21–2.32 
The total amount of inorganic fertilizer used (kg ha−1)  3.04–3.11 
The percentage of organic fertilizer used (%) 2.26–2.34 
The percentage of soil-testing-based fertilizer used (%) 3.21–3.56 
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Table 11. Cont. 

Matching algorithm Outcome Variable 
Critical level of 
hidden bias( ) 

Nearest neighbor 
matching 

The total amount of fertilizer used (kg ha−1) 2.48–2.65 
The total amount of inorganic fertilizer used (kg ha−1) 4.32–4.59 
The percentage of organic fertilizer used (%) 3.15–3.26 
The percentage of soil-testing-based fertilizer used (%) 2.48–2.52 

5. Conclusions  

Agricultural nutrients play a critical role in food production and human nutrition and health in 

China. However, the oversupply of nutrients has resulted in serious environmental problems. Managing 

agricultural nutrients to provide a safe and secure food supply while protecting the environment 

remains one of the great challenges in 21st-century China. Providing knowledge and information 

through agricultural extension services to farmers is essential for nutrient management. Therefore, this 

study examined participation in agricultural extension programs on farmer nutrient management 

behavior based on a nearly nationally representative household survey in seven provinces of rural China. 

Given the non-experimental nature of the data used in the analysis, the causal impact of agricultural 

extension participation is estimated by utilizing a PSM method. This helps in estimating the true effect 

of agricultural extension participation by controlling for the role of selection bias problems. 

Three main conclusions can be drawn from the results of this study. First, the group of farmers that 

participated in agricultural extension programs has systematically different characteristics than the 

group of farmers that did not participate. These differences represent sources of variation between the 

two groups that the estimation of an OLS model, including a dummy variable for participation, cannot 

take into account. Second, the empirical results from the PSM analysis show that agricultural extension 

participation has a positive impact on rationalizing farmer nutrient management behavior; however, the 

impact is trivial. Compared with non-participating farmers, the reduced ratio of total fertilizer use and 

inorganic fertilizer use by participating farmers are only 1.7% to 3.7%, and the improved ratio of 

organic fertilizer use and soil-testing-based fertilizer use are only 1.008% to 1.173%. Third, we found 

interesting results from differential impacts of participation, based on education level, risk attitude, 

initial application level and farm size. The causal impacts of participation on nutrient management 

behavior tend to be higher for more educated, risk-loving and larger-scale farmers. 

This study has important policy implications. First, for agricultural extension to have a long-term 

and more significant impact on farmer nutrient management behavior, more training efforts or other 

methods, such as the participatory approach to farming education during the entire crop season, are 

needed. However, how to implement improved nutrient management practices on hundreds of millions 

of Chinese farms through extension is a major challenge to the agricultural extension system.  

The development of more effective methods for delivering information to farmers is essential. 

Working through Farmer Professional Associations and using Farmer Field Schools are obvious steps 

forward. Meanwhile, given that the causal impacts of participation on nutrient management behavior 

are higher for more educated, risk-loving and larger-scale farmers, targeting these farmers with 

agricultural extension programs will have great demonstration effects on other farmers. Second, a shift 
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in the focus of national policies from merely food security to an integrated approach that emphasizes 

food security, the efficient use of resources, and environmentally sound production and consumption 

are highly desirable. Third, governmental support of agriculture should be redirected. We recommend 

abandoning indirect fertilizer subsidies and increasing direct support to farmers who adopt 

environmentally friendly nutrient management practices. 

While this study has made significant advancements in knowledge about the impact of agricultural 

extension participation on farmer nutrient management behavior, it nevertheless has its limitations. 

That is, the effect of agricultural extension on the change in farmer nutrient management behavior may be 

seen a long time after the extension program. However, due to the lack of panel data, we can only rely 

on a cross-sectional data set to evaluate this impact, which may bias the estimated results of this study.  
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