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Abstract: Restoration projects can have varying goals, depending on the specific focus, 

rationale, and aims for restoration. When restoration projects use project-specific goals to 

define activities and gauge success without considering broader ecological context, 

determination of project implications and success can be confounding. We used case 

studies from the Middle Rio Grande (MRG), southwest USA, to demonstrate how 

restoration outcomes can rank inconsistently when narrowly-based goals are used. 

Resource managers have chosen MRG for restoration due to impacts to the natural flood 

regime, reduced native tree recruitment, and establishment of non-native plants. We show 

restoration “success” ranks differently based upon three goals: increasing biodiversity, 

increasing specific ecosystem functions, or restoring native communities. We monitored  

12 restored and control sites for seven years. Treatments ranked higher in reducing exotic 

woody populations, and increasing proportions of native plants and groundwater salvage, 

but generally worse at removing fuels, and increasing species and habitat structural 

diversity. Managers cannot rely on the term “restoration” to sufficiently describe a 

project’s aim. Specific desired outcomes must be defined and monitored.  

Long-term planning should include flexibility to incorporate provisions for adaptive 

management to refine treatments to avoid unintended ecological consequences. 
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1. Introduction 

Ecological restoration projects focus on the recovery of an ecosystem that has been degraded or 

damaged [1]. According to Van Diggelen et al. [2] and Ruiz-Jaen and Aide [3] restoration projects can 

take on three levels of intensity and associated project goals. One level, considered reclamation, may 

for example have the restoration goal of increasing the biodiversity of a highly degraded system [4,5]. 

The next two levels may involve the reintroduction of an ecosystem function or the re-establishment of 

species or communities to an ecosystem [6]. By evaluating the trajectory of recovered ecosystems, 

restoration practitioners can assess how restoration projects accomplish desired outcomes or goals [3]. 

Although some guidelines are suggested as measures to gauge restoration successes [1,7], there is no 

quantitative evidence showing that by accomplishing each of the specific goals (i.e., diversity, 

community structure or ecosystem function) a project will lead to the same assessment of restoration 

success or failure. Gauging restoration success on an overly narrow or poorly defined set of criteria is 

problematic. For example, when criteria are too narrow, restoration activities may have broader effects 

than the focused goal causing secondary effects which may or may not represent a desired 

management outcome. When criteria are poorly defined, evaluation of success is confounded because 

different measures of restoration success may lead to conflicting conclusions. 

Restoration projects should not only be assessed by how different activities contribute to  

reaching stated management goals, but also the consequences of those activities on other ecosystem 

components [8]. Defining project goals without a broader set of ecological objectives may obscure the 

relative merits or drawbacks of specific restoration treatments, making treatment choice unclear or 

confusing. Here we present analyses to rank several activities commonly used by restoration 

practitioners based on how they accomplish several common restoration project goals (sensu [9,10]).  

Using the Middle Rio Grande (MRG) Riparian Restoration project in New Mexico, USA, we can 

experimentally test how varying project goals, without clearly defined ecological objectives, affect the 

evaluation of restoration methodologies. Resource managers have chosen the MRG for restoration 

because anthropogenic activities have altered the natural flooding regime, cottonwood (Populus 

deltoides subsp. wislizenii) recruitment, and plant species composition [11]. In the 20th century, 

engineers dammed and channelized the MRG to reduce the frequency and severity of flooding, and to 

facilitate agriculture and water management [12]. As a result, many natural processes in the riparian 

forest ecosystem have been disrupted or altered. For example, spring floods historically scoured 

channel margins and deposited new sediment on which cottonwood seedlings germinated [13,14].  

The absence of spring flood events has allowed invading plants such as saltcedar (Tamarix 

ramosissima) and Russian olive (Elaeagnus angustifolia) to establish on sites formerly available to 

native cottonwood trees [13]. The quantities of woody debris in many areas of the riparian forest have 

increased substantially due the lack of scouring floods and rates of decomposition on the now dry 

floodplain [11,15]. The non-native plant introductions that generally follow hydrological alteration can 
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also lead to further changes in water available to native vegetation and changes in the form and 

function of riparian plant communities. 

Amphibians and reptiles (herpetofauna) play important roles within ecosystems. Similar to many 

birds and mammals they are major consumers of terrestrial arthropods [16]. However, amphibians and 

reptiles are more efficient at converting food into biomass and are a higher quality food source for 

predators [17]. Recent declines in some herpetofaunal populations have stimulated a greater overall 

interest in the monitoring of these populations [18,19]; therefore, it is reasonable that resource 

managers would monitor these wildlife species during and following restoration projects. 

In order to assess how varying project goals can lead to confusion of the evaluation of restoration 

success, we rank three restoration techniques by how they accomplish specific project goals. We use 

two case studies along the MRG to evaluate hypothetical, yet probable, project goals. We evaluate how 

restoration treatments rank within each case study to accomplish three levels of project goals including 

how treatments affect: (1) native biodiversity (either by removing exotic species or increasing total 

species richness), (2) ecosystem function (such as fire risk or groundwater availability and use) and  

(3) restoring communities (such as historic wildlife communities or habitat structural diversity).  

We define habitat in terms of vegetation structure instead of the biological, physical, and chemical 

elements of a system (sensu [20]). We tested the hypothesis that treatments will rank differently based 

upon three levels of treatment intensity. We predicted that in the absence of ecological objectives, 

divergent project goals will lead to confusion in evaluating which restoration activity is the best overall 

treatment which a resource manager may select to implement. For example, the most appropriate 

treatment to minimize water use by non-native vegetation may not necessarily be the best treatment 

for, and may indeed be in direct conflict with, supporting a diverse wildlife community. 

2. Research Methodology 

2.1. Restoration Treatments  

Restoration treatments were conducted at 12 sites (approximately 20 ha each) for seven years in 

three geographically distinct segments (i.e. North, Middle, South) along the MRG. Each region had 

four sites; three were experimental and one was a control. Each experimental site was randomly 

assigned to one of three treatments to remove non-native plants (hereafter, treatment; Figure 1). 

Treatment 1 consisted of removing non-native plants and dead, woody-debris. Crews used chainsaws 

to remove non-native plants and herbicide (i.e., Garlon) was applied to stumps. Treatment 2 consisted 

of procedures in Treatment 1 followed by a light, prescribed fire. Treatment 3 consisted of procedures 

in Treatment 1 followed by revegetation with native shrubs. Control sites experienced no treatment.  

Not all experimental sites were treated simultaneously owing to the magnitude of the undertaking. 

As a result, the duration of pre-treatment conditions varied from three to five years, and post- 

treatment conditions varied from two to four years. Non-native plant removal began in 2003 and was  

completed in 2005. 

Two case studies were undertaken between 2003 and 2006. These studies evaluated all, or a subset 

of MRG experimental sites, to determine the effect of treatments on vital attributes of the forest system 

which might be used to gauge restoration success.  
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Figure 1. (a) Riparian woodland along the Middle Rio Grande, New Mexico, USA;  

(b) Treated site to remove non-native plants with a native cottonwood (Populus deltoides 

subsp. wislizenii) overstory. 

2.2. Case Study I—Field Sampling 

We monitored herpetofaunal species from June to September from 2000 to 2006 and measured 

vegetation variables before and after treatments. Descriptions of herpetofauna sampling techniques are 

described in [21]. We compiled a list of historic species present in the MRG from 1938 to 1995 from 

monitoring projects along the MRG [22–24] and records of specimens from the Museum of 

Southwestern Biology. Museum specimens were georeferenced using a 400 m buffer around the MRG 

in Bernalillo, Valencia, and Socorro Counties, New Mexico. Species richness of amphibians and 

reptiles per site was compared to historic composition. A species was considered ‘gained’ when it was 

absent before treatment but present after treatment and found in historical records. A species was 

considered ‘lost’ if it was present before treatment and found in historical records but absent  

after treatment.  

Numbers of non-native saltcedar and Russian olive trees and amount of fuels were  

measured along 50 m transects and in 4 m radius plots in conjunction with herpetofauna sampling  

(also described in [21]). Ground fuel load (metric tons per ha) was estimated with Fuels Management 

Analyst software [25].  

2.3. Case Study II—Field Sampling 

Habitat structure, defined in terms of vegetation structure, was quantified in treated (Treatment 1 

and 3) and control sites in 2006. During Case Study II, too few sites were available in Treatment 2 for 

analyses, because of drought and restrictions on controlled burns. Percent understory cover and total 

(a) (b) 
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number of native and non-native plant species were measured in 2 × 2 m plots. Woody species cover 

was measured using the line intercept method along transects. Percent cover was estimated using cover 

classes. Overall, we evaluated 1820 plots and 3628 m of transect. Foliage height diversity was 

calculated using percent cover of woody species in three height classes (1–5 m, 5–15 m, and >15 m) to 

calculate Shannon H (measure of diversity). Species richness was estimated using species accumulations 

curves and Michaelis Menten (MM) richness estimators using Estimate-S software [26,27]. Description 

of the methods and responses of vegetation to restoration treatments and controls are described in [28]. 

Groundwater wells were manually bored and a steel well-casing was pounded in so that about  

0.8 meters protruded above the soil surface. Each well casing had an interior diameter of 5.1 cm and an 

external diameter of 6 cm. Each well extended approximately 4 m below the soil surface and was 

screened across the bottom 1.5 m of the casing with 0.5 mm slotted stainless steel screen. Each well 

was equipped with a gaged (vented-cable) data logger (miniTROLL, In-Situ, Inc.). Depth to 

groundwater (DTW) was sampled every 15 or 30 minutes. Each well was originally equipped with an 

Electronic Engineering Innovations Model 5.0 vented logger. On 27 April 2005, loggers were replaced 

with Solinst 2001 M10 Mini LT Levelloggers. Correction for barometric pressure was achieved via an 

on-site Solinst 3001 M1.5 Mini LT Barologger. Detailed groundwater measurement methodology is 

presented in Gunning [29]. Changes in evapotransirational use was evaluated through quantifying 

differences in diurnal groundwater fluctuations between control and treated sites over the peak of the 

growing season (July and August) during the period of study. Ranks of ground water salvage were 

determined averaging the percent water savings across all years and both seasons per site. 

2.4. Analyses 

Treatments and Controls were ranked within regions based on how well each treatment 

accomplished a specific project goal. The best rank was given a value of 1. The overall experimental 

design employed a random block configuration; therefore, treatments were ranked based on the means 

of subsamples, giving one average and standard deviation across the three regions. Treatments and 

Controls were ranked first within each block. Then ranks were averaged for a particular treatment 

across all blocks. Therefore, the mean rank of a particular treatment represents the average of all scores 

across the three regions.  

We tested for similarity in ranking among treatments using a non-parametric multi-response 

permutation procedure (MRPP) and Controls were included in analyses. Multiple comparisons were 

based on Peritz Closure [30].  

In order to evaluate the restoration treatments and give recommendations to land managers, it was 

important to detect differences due to treatments where they existed. Therefore, to decrease the 

probability of Type II error [31], we set our alpha level to 0.10.  
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3. Results  

3.1. Treatment Costs  

Treatments costs ranged from $7,550 to $9,750 per ha with Treatment 1 the lowest cost and 

Treatment 3 the highest cost (Table 1; [32,33]).  

Table 1. Costs (per ha) of removing non-native plants and woody debris from three 

restoration treatments along the Middle Rio Grande, New Mexico. (Adapted from [32,33]). 

Description Treatment 1 
(thinned) 

Treatment 2 
(burned) 

Treatment 3 
(re-veg) 

Hand crews using chainsaws  $5,000–$7,400 $5,000–$7,400 $5,000–$7,400 
Herbicide 1 $50–$150 $50–$150 $50–$150 
Prescribed burning-fire engine  $400  
Planting native vegetation 2   $2,200 
Total (maximum) $7,550 $7,950 $9,750 

1.Cut stumps treated with application of Garlon herbicide; 2.Pole planting with 247 per ha  
(100 plants per acre). 

3.2. Case Study I—Treatment Rankings  

Case Study I considered how treatments ranked with regard to their ability of reduce exotic woody 

cover, reduce fire risk through reduction of fuel load (metric tons/ha) and restore historic wildlife 

communities as illustrated by increases in amphibian and reptiles species richness. Treatments had 

different average ranking for each of the three restoration project goals (Table 2).  

Treatments contained significant variability among treatment type (N = 12, p = 0.02).  

Pairwise multiple comparisons showed that Treatment 1 differed from controls (Number of 

permutations = 35, p = 0.03) and that Treatment 1 marginally differed from Treatment 2 (Number of 

permutations = 15, p = 0.13).  

Overall, not surprisingly, Treatment 1, 2, and 3 ranked higher in removing exotic trees compared to 

controls (Table 2). However, both treatments and controls had a net gain of herpetofaunal species after 

restoration (Supplementary Material) and Treatment 1 and the Control were similar in rank (Table 2). 

Treatment 2 and the Control tied for best method to remove ground fuels; however, average fuel 

loadings were less in Treatment 2 compared to controls (Table 2).  
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Table 2. In Case Study I, three restoration treatments were ranked by how they 

accomplished three levels of project goals from 12 sites along the Middle Rio Grande, New 

Mexico. Mean rank represents the average rank for that particular treatment compared to 

all other treatments and control with each region. Lowest ranks indicate the best treatment 

for accomplishing that goal. 

Variable Treatment 
N 

Mean 
Rank 

Pre-treatment 
Mean (SD) 

Post-treatment 
Mean (SD) 

Number of Saltcedar, Russian olive     
Treatment 1 (thinned)  12 ‡ 2.1 2.75 (4.5) 0 
Treatment 2 (burned) 6 ‡ 2.3 0.33 (0.5) 0 
Treatment 3 (re-veg) 9 ‡ 2.2 5.22 (3.7) 0 
Control  9 ‡ 3.5 1.78 (1.9) 1.11 (1.4) 

Fuel load (metric tons/ha)     
Treatment 1 (thinned)  62/58 * 3.8 28.87 (24.56) 90.43 (125.73) 
Treatment 2 (burned) 32 * 1.5 22.67 (18.70) 13.15 (13.81) 
Treatment 3 (re-veg) 42/40 * 2.5 32.27 (44.04) 42.45 (46.42) 
Control  48/46 * 1.5 23.45 (23.52) 18.10 (21.82) 

Species gained (herpetofauna)     
Treatment 1 (thinned)  4 2.1 - 3.0 (1.8) 
Treatment 2 (burned) 2 3.5 - 1.5 (3.5) 
Treatment 3 (re-veg) 3 2.8 - 2.0 (2.0) 
Control  3 2.0 - 3.0 (3.6) 

‡ Number of exotic trees counted once before treatments and once after treatment. Tree counts are averaged from 3 

plots per site (at herp arrays only); * Fuels measured once before treatments and once after treatment. Fuels are 

averaged from 16 plots per site (at bird stations and herp arrays). Number of plots differs because not all plots 

previously used were located a second time for post-treatment measurements. 

3.3. Case Study II—Treatment Rankings  

The restoration goals evaluated in Case Study II were increasing plant species richness and the 

proportion of native species, increasing groundwater salvage, and restoring habitat structural diversity. 

Treatments and controls had marginally significant variability in ranks based on how well they provided 

habitat structure (N = 9, p = 0.06; Table 3). Pairwise multiple comparisons showed that the control 

sites and Treatment 3 (re-vegetation) had the most different ranking (Number of permutations = 20,  

p = 0.10). 

Overall, controls ranked best in total plant richness, but worst in proportion of native plants 

compared to treatments (Table 3). Both treatments resulted in more groundwater salvage compared 

with controls, with Treatment 3 ranked the highest. Controls were ranked the highest in terms of 

habitat structural complexity compared to treatments (Table 3).  
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Table 3. In Case Study II, two restoration treatments were ranked by how they 

accomplished three levels of project goals from 9 sites along the Middle Rio Grande,  

New Mexico Mean rank represents the average rank for that particular treatment compared 

to all other treatments and control with each region. Lowest ranks indicate the best 

treatment for accomplishing that goal. 

Variable Treatment N Mean Rank Mean (SD) 

Total plant species richness    

Treatment 1 (thinned)  14 2.0 18.6 (11.8) 
Treatment 3 (re-veg) 11 2.3 21.4 (15.1) 
Control  13 1.7 24.9 (8.1) 

Proportion of native plants    

Treatment 1 (thinned)  14 1.3 0.85 (0.05) 
Treatment 3 (re-veg) 11 1.7 0.90 (0.10) 
Control  13 3.0 0.76 (0.04) 

Groundwater salvage (%)    

Treatment 1 (thinned)  14 2.3 12.3 (53.7) 
Treatment 3 (re-veg) 11 1.0 95.2 (123.6) 
Control  13 2.7 0 (0) 

Foliage diversity (H index)    

Treatment 1 (thinned)  14 2.3 0.33 (0.45) 
Treatment 3 (re-veg) 11 2.0 0.38 (0.29) 
Control  13 1.7 0.67 (0.06) 

4. Discussion  

Resource managers along the Middle Rio Grande (MRG) in New Mexico could potentially select 

three different methodologies to achieve three levels of project goals (restoring biodiversity, ecosystem 

function, and communities). The decision whether to treat a riparian site impacted by exotic species, 

and if so how to treat the site, is an important one. The decision is important in terms of financial 

resources, as well as, ecological ramifications. Although, none of the treatments constitute restoration 

in terms of re-establishing ecosystem functions (i.e., natural flood regime or native plant recruitment) 

or a truly native-only condition, different treatments (or lack of treatment) can serve to emphasize 

potentially desirable natural characteristics of the MRG riparian ecosystem. Treatments may also  

cause secondary effects that managers must take into consideration in making effective decisions  

on treatments. 

Therefore, to make wise management decisions, specific targets must be set, appropriate methods 

selected to achieve those objectives, secondary consequences must be evaluated, and ecological 

outcomes monitored. 

4.1. Ranking Restoration Treatments along the MRG 

All three treatments we evaluated were similar in reducing exotic woody species or creating a 

higher proportion of native plant species. Therefore, resource managers opting for the most cost 
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effective method would best choose Treatment 1 to meet the explicit goal of removing exotic  

trees (Case Study I) and bolstering the proportion of native plants (Case Study II).  

Conversely, if fuels reduction were the management objective, Treatment 2 and Controls were 

better at keeping ground fuels suppressed. Treatments 1 and 3 increased ground fuels and so their 

application could be counterproductive to meeting this specific goal. In these cases, fuels increased 

because treatments redistributed woody debris from the understory to the ground in the form of wood 

chips (i.e., small pieces of cut wood; [34]). Amount of fuels remaining after Treatment 2 were similar 

to other forest types where prescribed burns were used to reduce fuels and the risk of fire [34]. 

Controls contained greater amounts of dead and down trees in the understory compared to  

treatments [34]. This fallen and dead wood in the understory creates fuels that can increase the risk of 

fire in the riparian forest [35,36].  

Groundwater salvage is often an important goal of restoration because groundwater supports native 

riparian vegetation [37,38] and unsustainable groundwater development can threaten natural resources 

like riparian areas [39], groundwater can be a major source of user conflict and therefore is of 

management concern among natural resource managers. Case Study II, suggests that ground water 

salvage was greatest in restored sites with native plant revegetation, so removal of exotics through a 

number of means may best be used to meet this objective, while accepting the potential secondary 

consequences for vertical structure or herpetofauna richness. Therefore, adaptive management should 

include a temporal component. For example, vertical structure through restoration may be low initially 

and improve through time as plantings mature. 

No treatment was ranked as the most effective means of meeting several restoration goals. In Case 

Study I, controls and all treatments experienced net gains of herpetofaunal species throughout the 

study period. This is similar to results of analyses on the effects of treatments on relative abundances 

of species of lizards. For example, Southwestern fence lizards (Sceloporus cowlesi, formerly  

S. undulatus complex) and Chihuahuan spotted whiptails (Aspidoscelis exanguis) responded positively 

to treatments and were associated with open understory habitats of restored sites [21], whereas 

amphibian species (i.e., Woodhouse’s toad (Bufo woodhousii)) did not respond to treatments and 

instead responded to hydrological variables in the years following restoration (i.e., spring flooding  

in 2005 and summer rainfall in 2006; [40]. In Case Study II, structurally and compositionally 

heterogeneous stands of vegetation support diverse species assemblages [41,42]. Vertical substrate 

provides a wider variety of habitat niches, increasing potential bird species diversity [43,44].   

There was no treatment which consistently provided the best habitat structure in our study because 

treatments ranked similar to or worse that the Control based on several possible project goals. Because 

of the importance often given to exotic plant control, managers would likely benefit from conducting 

restoration treatments; however, it may be important to leave large logs in place to add habitat 

structure to treated sites.  

4.2. Restoration Assessment Approaches 

In order to assess restoration success, managers and practitioners should clearly articulate the 

criteria which are being used to define restoration in light of management objectives and monitor 

project outcomes [45,46]. Monitoring can increase the understanding of possible trade-offs among 
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restoration activities, allowing resource managers to implement ecologically sound restoration 

activities. Unfortunately, monitoring is an often overlooked and underfunded step in restoration 

projects. A comprehensive assessment of restoration projects in the USA found that only 10% of 

projects included monitoring [9]. Projects with inadequate or no monitoring limit the ability of 

managers to evaluate project success and failure, let alone implement adaptive approaches to redirect 

activities with negative or collateral effects on ecosystems [9]. Clearly defining goals with an 

understanding of possible trade-offs can aid natural resource managers to implement ecologically 

sound restoration activities. 

Palmer et al. [47] suggest several criteria to evaluate the success of a restoration project.  

For example, restoration activities should not further damage already degraded ecosystems and project 

sites should be monitored before and after restoration implementation to provide evidence of improved 

condition. Other measures of success include whether a restored system reaches a level of  

self-sustainability and resilience [48]. At a minimum, managers should rank candidate sites based 

where restoration is most likely to be successful such as areas with resilience and low degradation [49]. 

The benefit of explicitly defining both project goals and ecological objectives should help to identify 

successes and failures [8,9] among restorative projects. 

We suggest that restoration projects include a monitoring plan and flexibility to modify activities 

which do not increase the ecological integrity of an ecosystem. If managers and practitioners pay 

particular attention to sustainable pathways before problems emerge, then solutions can be more  

cost-effective than attempting to remediate problems later [50]. First, projects should establish 

monitoring in sites at least one to two years prior to restoration activities. Monitoring should continue 

two to five years after implementation to detect short-term responses to restoration. Monitoring should 

target ecological variables relevant to documentation of desired system changes as well as potential 

secondary effects, such as negative impacts on vegetation structure or faunal composition.  

Because ecosystems are complex, restoration requires an approach that is based upon scientific 

evidence, flexibility, and the ability to respond to new information [51]. Therefore, managers need to 

document improvements and should allow for redirection of activities which further degrade 

ecosystem functions, such as habitat structure and native plant and wildlife recruitment in riparian 

forest restoration.  

As seen from our analyses, varying stated project goals can lead to selection of different restoration 

methodologies. The root of confusion in restoration projects is using project goals, which are context-

specific, in the absence of overarching ecological objectives. Through experimentally testing the 

hypothesis, restoration treatments rank differently based upon varying project goals using two case 

studies, we demonstrated the necessity to include ecological objectives in restoration projects and the 

importance of monitoring project outcomes. Goals need to be refined and specific at project onset; 

otherwise, resource managers and practitioners risk conducting restoration activities with little or no 

guidance for correction or adaptation. 
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