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Abstract: Following the critical analysis of the concept of “sustainability”, developed on 

the basis of exergy considerations in previous works, an analysis of possible species 

“behavior” is presented and discussed in this paper. Once more, we make use of one single 

axiom: that resource consumption (material and immaterial) can be quantified solely in 

terms of exergy flows. This assumption leads to a model of population dynamics that is 

applied here to describe the general behavior of interacting populations. The resulting 

equations are similar to the Lotka-Volterra ones, but more strongly coupled and 

intrinsically non-linear: as such, their solution space is topologically richer than those of 

classical prey-predator models. In this paper, we address an interesting specific problem in 

population dynamics: if a species assumes a commensalistic behavior, does it gain an 

evolutionary advantage? And, what is the difference, in terms of the access to the available 

exergy resources, between mutualism and commensalism? The model equations can be 

easily rearranged to accommodate both types of behavior, and thus only a brief discussion 

is devoted to this facet of the problem. The solution space is explored in the simplest case 

of two interacting populations: the model results in population curves in phase space that 

can satisfactorily explain the evolutionistic advantages and drawbacks of either behavior 

and, more importantly, identify the presence or absence of a “sustainable” solution in 

which both species survive. 
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List of Symbols 

jia  Discharge from “j” used by “i” Greek symbols 

ic  Minimum consumption for survival  of “i”, W i  Dimensionless exergy capture coefficient of “i”

E  Exergy flow rate, W i  Inflow capture coefficient, W/person of “i” 

iwE  Exergy flow rate discharged by “i”, W i  Exergy destruction coefficient of “i” 

i
E
  Exergy flow rate destroyed by “i”, W i  Coupling terms in Equation (7), W/person 

N Population numerosity   Parameter in Equation (15) 

pi Global discharge coefficient of “i” i  Lyapunov exponents, 1/y 

ri Limit growth rate (births-deaths) of “i”, 1/y i  Intrinsic mortality rate of “i”, 1/y 

wi Exergy discharge coefficient of “i”   

1. Introduction  

The concept of sustainability is based on the qualitative or quantitative assessment of environmental 

interactions between a system and its environment at large, and implies the identification of a certain 

number of natural—and possibly finite—resources so that the dynamic interplay among species in a 

given ecological niche can be modeled to study the time evolution of the system. A first problem is 

thus that of “measuring” the resources, i.e., of finding a quantifier that is at the same time useful, 

convenient and general enough to represent material and immaterial fluxes. A second problem is posed 

by the empirical observation that most existing species display a multitude of “modes” of natural 

interrelation, like indifference, competition, cooperation, antagonism, adaptation, etc. A third problem 

is the “flexible attitude” exhibited by most species towards the substitutability of certain  

resources [1–3]. 

Since the very first attempts to construct behavioral and evolutionary models of living organisms, 

two substantially different approaches have been taken:  

a) An ad hoc approach that focuses on the particular dynamics of a single species or of a particular, 

generally small, ecological niche: models of such kind strongly depend on a set of very 

stringent initial assumptions, but thanks to their “specificity” have enjoyed a remarkable degree 

of success in reproducing experimental field data and—to a lesser extent—to predict future 

trends; 

b) The opposite approach is also possible: one tries to understand the population dynamics in a 

global sense, emphasizing and exploiting similarities in the behavior of different species in 

different environmental conditions and within different trophic chains. An original model of 

this second type has been proposed in previous papers by the present authors [4,5], and is based 

on the generally accepted principle that population dynamics depend substantially on the 

availability of primary resource and on the axiom that the consumption of such resources can be 

measured by an environmental indicator called extended exergy, EE in the following [6]. 
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Extended Exergy is a physical quantity (measured in J, its fluxes in W) that explicitly measures 

the different forms in which natural resources are “available”, has the logical attributes of a 

“cost”, and thus is amenable to a resource accounting procedure -the method in fact goes under 

the name of Extended Exergy Accounting, EEA. Extended exergy is additive, explicitly 

includes irreversible losses, and its formulation covers the so-called “externalities”: using a 

somewhat anthropological expression, it can be rightly said that the EE of a commodity is a 

measure of the biosphere “effort” to convert low-entropy into high-entropy resources while 

generating that commodity. (Note: The conceptual novelty of Extended Exergy is its inclusion 

of the equivalent Capital, Labor and Environmental Remediation costs into the exergy 

“embodied” in a product of whatever material- or energy conversion chain. In the context of 

this paper, Capital and Labor are of course absent, and the difference between the use of exergy 

and extended exergy consists in the inclusion in the latter of the amount of natural exergy 

resources required of the environment to “biodegrade” the environmental damage produced by 

a species. To provide a simple example, the restoration of the trees destroyed by the Southern 

Pine Beetle [3] requires a certain amount of cumulative exergy, in the form of solar irradiation 

and nutrients, that represents the “cost” for the biosphere  to recover its previous state. 

Similarly, the oxidation of pollutants in a water basin requires solar irradiation, microbic action, 

etc., all of which can be expressed in terms of “exergy inflow”).  

Nature’s intertwined trophic chains are far too complex a system to be amenable to a tractable 

comprehensive mathematical approach: for example, it is impossible to classify within general 

schemes voluntary or instinctive behaviors that, especially in superior species, can be treated only by 

recurring to species-specific, and therefore non-general, assumptions. Reasoning in an ethologic sense, 

though, it is legitimate to posit [7] the dependence of the dynamics of a certain species on the available 

resources (measured by extended exergy), formulate a proper mathematical model on its basis, and 

apply the model to predict the dynamics of a single species (local level) or of an entire ecological niche 

(global level): since a large amount of experimental data are available on the dynamics of certain 

populations, the results can subsequently be validated and verified. It was shown in two previous 

papers [4,5] that such an analysis of the sustainability concept leads to credible results. In the model 

adopted in those papers, “competition” was among the species and for the available resources.  

The underlying assumptions are quite simple: 

1) The number N of individuals in a species at a given time depends on the global exergy 

resources a population can avail itself of. 

2) These resources may be quantified in terms of Extended Exergy (i.e., by their primary 

resource equivalent), and expressed as a flux of exergy that each species may tap. 

The resulting equation for a single population (for the complete derivation, see [4,5]) couples the 
population size (its numerosity N) with the exergy rate )(tE  of the global exergy resources exploited 

by the population in its ecological niche: 











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)()(
)()(

tcNtE

tcNtEr
tNtN




 

 (1) 



Sustainability 2012, 4                            

 

 

2614

where the dot denotes the time derivative, the constant r is the limit growth rate of the population (in 
the case of infinitely abundant flow of resources) and   is the intrinsic mortality rate of the species 

(calculated in the case in which the availability of resources drops to zero). It is useful to briefly 

discuss the behavior of the solutions of this equation in a very simple but realistic situation. Suppose 
that the incoming exergy rate is constant in time: this means the population )(tN  can avail itself of the 

same exergy inflow at every instant of time. What one expects is then a “logistic” behavior, in the 
sense that, after an initial transient, the solution )(tN  approaches a limit depending on the parameters 

of the model and on the available exergy flow. Indeed in this simple case the equation possesses an 

implicit solution given by: 
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where )( 00 ttNN  and 
c

Er
N




* . It is clear that as t , *)( NtN  . The behavior is indeed 

similar to that of a logistic-type equation under a carrying capacity constraint: here however the 

specific exergy consumption rate and the parameters of the model exactly define the carrying capacity. 

Note that in this case, under a constant influx condition (and therefore an infinite amount of cumulative 

exergy) at its disposal, the numerosity can sustain itself to the value *N for an infinite time.  

Obviously this is no longer true when 


0

)(
t

dttE  describes a finite amount of cumulative exergy  

(see [4,5]). Notice also that the carrying capacity *N  is proportional to E  but also inversely 

proportional to c, a model constant representing the specific exergy consumption rate corresponding to 

“minimum survival” of the population; indeed if in a given interval of time the total energy 
consumption rate )(tE  of the population is much higher than )(tcN then the population increases in 

that interval, while in the opposite situation the population would decrease: this means that the curve 
)(tN  “follows” in some sense the curve )(tE . A last remark: in the previous simple situation when 

)(tE  is constant we can have two qualitative different behavior of the solution )(tN (see e.g. [4]): if at 

0tt   the initial population size is larger than *N , then the population will monotonically (and 

exponentially) decrease to the value *N , while if the population size at 0tt   is smaller than *N , then 

the population will increase to the value *N . Some plots of the transient )(tN  are provided in  

Figure 1: the gray curves represent the first case, the black ones the latter. 
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Figure 1. Qualitative transient behavior or the solutions of Equation (3). 

 

In the case of Z populations the previous equation generalizes to: 
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where again the rj, j=1…Z, are the limit growth rates of each population and the j are the intrinsic 
mortality rate of each species. Now the “source term” )(tE j

  represents the exergy rate allocated to 

population  j and, as such, it will depend on the strength of the mutualism and competition between 
populations i and j. Once the characteristics of each species have been assigned (rj, j and )(tE j

 above), 

a “scenario” is completely identified by specifying the evolution of the incoming total exergy rate: for 

each scenario, equations (3) describe the evolution of the Z populations. For a detailed analysis on the 

dynamics of competing populations governed by Equation (3), we refer readers to [4]. The relative 

strength of the interactions between populations i and j, that we describe by means of a set of 

parameters characteristic of the species and of their ecological niche, determines the relative amount of 

the global incoming exergy allocated to each population.   

In this paper we show that the system (3) is comprehensive and general enough to encompass the 

three following experimentally observed modes of species interaction [8,9]:  

a) Indifference: two species in the same environmental niche share the available incoming exergy 

flux but do not feed on each other’s discharges; 

b) Commensalism: one of the species survives solely on the resources released by its “host”; 

c) Mutualism; the two species compete for the externally available resources, but feed on each 

other’s discharges. 

2. A Model of Two Interacting Populations Sharing a Common Renewable Resource 

Consider two species that share a single renewable resource and who “feed” on their respective 

discharges (Figure 2). Notice that the relative strength of the interactions between populations i and j, 

that we describe by means of a set of parameters characteristic of the species and of their ecological 

niche, determines the relative amount of the global incoming exergy allocated to each population.  Our 

model assumes that, at each instant of time, the rate of exergy accumulation or depletion (Ė1 and Ė2 



Sustainability 2012, 4                            

 

 

2616

here) is the force that drives the increase (or decrease) in the respective numerosities: it will be 

therefore regarded as “useful input”. 

Figure 2. Exergy “balance” for species 1 and 2. 

 

The exergy “balances” read:  

112112121211 )1(  EEaEaEaEE wwwin
   (4)

221221212122 )1(  EEaEaEaEE wwwin
   (5)

 
Notice that, since exergy is not a conserved quantity, in this paper the expression “exergy balance” is 
adopted to denote the closure of the exergy equation obtained by introducing the exergy destruction  
We assume that the allocation of the exergy flows 1E  and 2E  increases with the numerosity of the 

respective population. So we set: 
2211

11
1 NN

N





  and 
2211

22
2 NN

N





 , 1 and 2 (both in 

J/individual/day) being the specific exergy consumptions of the two species (notice that 1+2=1 and 

that 0
)( 21 


dt

d 
 as requested by the imposed boundary conditions). In most real situations, the 

parameters i  could depend also on time: in this paper, for simplicity, we posit that they are constant. 

Note that the parameter ank is the amount of the discharge of species k “recycled” by species n: if 
ank=akn=0, the two populations are indifferent to each other, i.e., neither one exploits the discharges of 
the other as its own exergy input). Since the instantaneous rate of discharge and destruction of the 
exergy flow can be only a fraction of the incoming one, we set iniiw EwE

i

   and inii EE
i

    where 

iw  and i  are two dimensionless species-specific constants measuring the portion of incoming flow 

being discharged and destroyed by population iN : In the model presented here, these “discharges” are 

NOT equivalent to the detritus (which is a pure material flow rate): they include also any form of 
exergy released by species j (thermal, chemical, etc.) 

It is clear that this interpretation for the constants iw  and i  implies the constraints 1 iiw  . 

Equations (4) and (5) then result in: 
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Due to the constraints 1 iiw   we see that the above expressions are indeed, at every instant,  

non-negative, as requested by their physical interpretation. It is convenient to set iii wp 1 : by 

substituting (6) and (7) into (3), we obtain:  
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Where for simplicity we set 11211  wa  and 22122  wa . The strong coupling between the 

numerosity of each species and the time evolution of ALL the participating species is apparent.  

Notice that in this case, Z = 2, but the formulae can be easily extended to account for whatever number 

Z of interacting populations, see [1]. We shall assume in the following that the exergy influx Ėin is 
constant and that the model coefficients , w, , r,  and c are known for all species considered.  

The type and degree of interaction between the two species is represented by the terms k  and k  that 
respectively contain the “j” (that express the exergy voracity of species j) and the “ij,” that quantify 

the degree of mutualism. Let us examine, on the same line as proposed in [8], the three possible 

general behaviors. Notice that Jørgensen [8] uses “cooperation” and “parasitism” to indicate 

“mutualism” and “commensalism” respectively. 

2.1. Indifference  

Species 1 and 2 display a disjointed behavior: in spite of sharing the same ecological niche, they do 

not interact, in the sense that neither species feeds, directly or indirectly, on the waste of the other one, 
which means that 01221  aa . Equations (8) and (9) simplify to: 
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Even in this rather simple case, the strong non-linearity of the equations make them not amenable to 

an explicit solution. However the global behavior of the solutions, as we will see, strongly depends on 

the two quantities 
11

111

c

pr




 and 
22

222

c

pr




. These two parameters contain the efficiency of each species to 

gain “net” exergy flows ( kk p ), their “minimal survival” requests ( kc ) and the ratio of the growth rate 
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to the mortality rate 
k

kr


 in the respective limit cases of infinite and zero resources available.  

For simplicity let us consider that 
22

222

11

111

c

pr

c

pr







 ; the symmetric results for 
11

111

22

222

c
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c
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
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


  will simply 

follow by permutation of the indices 21 , and the special case 
11

111

22

222

c

pr

c

pr







  will be discussed at 

the end of the section. In the state plane ),( 21 NN , the system of Equations 8 and 9 possesses three 

fixed points, listed in Table 1: 

Table 1. Fixed points of the system of Equations (10–11). 

 
1N  2N  

a) 0 0 

b) 0 
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c) 
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
 0 

The corresponding Lyapunov exponents are given by the following expressions: 

Table 2. Lyapunov exponents of the system of Equations (10–11) at points a, b and c. 
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Point a is always unstable. The exponents 1  and 2 for points b and c are such that one point will 

be unstable and the other stable: the assumption 
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  results in point c being asymptotically 

stable and point b unstable. We can divide the plane ),( 21 NN  into three different regions (only the 

semi-plane defined by 01 N  and 02 N are considered here because this semiplane is invariant 

under the flow). The three regions are divided by the so called isoclines 1s  and 2s , defined as (see 

Figure 3): 
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On 1s  we have 01 N  and on 2s , 02 N . Notice that the two lines have the same angular 

coefficient and, since here 
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222
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c
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c
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
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


 , line 1s  is above 2s .  
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Figure 3. The three regions defined by the two isoclines. The fixed points are marked by  

a dot. 

 

In region I 1N  and 2N  are both increasing functions of time, in region III they are both decreasing 

functions of time, while in region II 1N  is increasing and 2N  decreasing. The behavior of the solution 

is characterized as follows (see Appendix 1 for the proof): if at some time 0t  the solution is in region I 

then there exists a finite time 0tt   for which the solution will leave that region. If at some 1t  the 

solution is in region II then it will remain in this region and asymptotically approach point c for t∞. 
If at some time 3t  the solution is in region III then it will either remain there for all subsequent times, 

asymptotically approaching c, or it will enter at some time 3' tt  into region II to approach again point 

c. Thus in all cases for which 
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  is satisfied, population 2N  will become extinct and 

population 1N  will tend to the stable (sustainable) value 
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. By the same arguments it can be 

shown that conversely, if 
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. An ensemble of plots for the case 

22

222

11

111

c

pr

c

pr







 , corresponding to different 

initial conditions, is shown in Figure 4.  

Figure 4. Three different orbits for the system (10–11) in the case 
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The special case 
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




  is very interesting. Point a is again unstable, but now the two 

isoclines 1s  and 2s converge into a line that is itself an attractor. Both species survive and the weighted 

sum 2211 NN    reaches the carrying capacity limit for which 
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examples of possible behaviors in phase space.  

Figure 5. The case r p r p

c c

 


 
1 1 1 2 2 2

1 1 2 2

: The arrows indicate the time direction of the evolution. 

 

2.2. Commensalism  

One of the two species displays a commensalistic behavior with respect to the other one, in the 

sense that rather than extracting its exergy feed rate from Ėin, it thrives solely on the “discharge flows” 

of the other species. Asymmetrically, the species “pestered” by the parasite does not feed on it—(in 

other words, any degree of mutualistic behavior is disregarded). Assuming species 2 to be the parasite, 

this implies: 
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Under these circumstances, (10-11) become: 

in

in

in

in

r E p c NdN
N

dt E p c N

r E c NdN
N

dt E c N

 
  

 
   

  
   

1 1 1 1 11
1

1 1 1

2 1 2 2 1 22
2

1 2 1 2









 (14)

Note that now the coupling between the species (or better of species 2 with species 1) is described 
only in terms of the two constants 1  and 1 : thus, the system (14) can be formally integrated, even if 

the solutions can be only written out implicitly: 
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 (15)

where the two values 1N̂  and 2N̂  are given by:  

22

1212
2

11

11
1

ˆ

ˆ

c

Ewar
N

c

Epr
N

in

in











 (16)

These are also the asymptotic values of )(1 tN  and )(2 tN  since clearly from (15) we have that 

11
ˆ)( NtN

t
    and 22

ˆ)( NtN
t
   . Thus, both species reach their respective carrying capacity 

limit. Note that *
1N  is proportional to 1p , i.e. to 111  w : increasing the discharged and destroyed 

portion of the incoming exergy flows proportionally reduces the corresponding carrying capacity value 

for population 1. But population 2 feeds on this discharged flow: Equation 16 shows that indeed the 
carrying capacity limit for 2N  is proportional to 1w . Note that, in contrast to the case of competing 

populations, and assuming 01 w , the two populations will always both survive. In fact, species 1 

meets no competition in tapping the exergy flow it needs and species 2 feeds on the “crumbs” of 

species 1. This result is quite obvious, but we stress that: 

a) it is derived on exact mathematical basis. 

b) the carrying capacity limits are directly linked to the parameters of the model. 

c) Equations 14 describe also how fast these limits are reached (Figure 6). 

Figure 6. An example of the evolution of the two populations in the commensalistic case. 
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2.3. Mutualism  

This is the most general case, in which both 12a  and 21a  are strictly positive (>0). The model 

equations are 6 and 7. Again, it is convenient to examine the phase space ),( 21 NN , or better the 

invariant subspace given by  0,0:),( 2121  NNNN . In this case, the Lyapunov coefficients assume 

the following values (the fixed points a, b and c are the same as in Table 1):  

Table 3. Lyapunov exponents of the system of Equations (10-11) at points a, b and c. 

 1 2

a) 1r  2r  

b) 1r  
22

22






r

r
 

c) 
11

11

r

r






 
2r  

All three points are unstable. This means that the system tends to avoid situations in which one or 

both of the populations become extinct. This is an indication that in the present model, cooperation 

(mutualism) may lead to sustainable scenarios. Let us show the existence of another fixed point and 

look more closely at the dynamics. 

If we consider the numerators of (8-9), repeated here for clarity in Equations 16, it is possible to 

verify that, for whichever value of the model parameters, the two curves described by (16) always 
intersect in a point (the fixed point) on the semi-plane  0,0:),( 2121  NNNN , which we shall denote 

as d.  

 
 









0)(

0)(

2211222112222

2211111221111

NNNcNNpEr

NNNcNNpEr

in

in







 (17)

It is useful to write down the solution of this system in terms of the parameter  given by the ratio 
of 2N / 1N : 

 inr E p
N

c ( )

N N

    


    
  

1 1 1 2
1

1 1 1 2

2 1



 (18)

where the parameter  solves the following quadratic equation (
11

1
1 c

r
x


  and 

22

2
2 c

r
x


 ): 

x ( x p x p ) x         2
1 2 1 1 1 2 2 2 2 1 0  (19)

the two solutions   being: 

 x p x p x p x p x x

x

         
 



2
2 2 2 1 1 1 2 2 2 1 1 1 1 2 1 2

1 2

4

2
 (20)
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From (20) we note that   is always positive and   always negative. The negative solution must 

be discarded because 1N  and 2N  are both positive definite. So there exists another fixed point given 

by: 

 1 1 1 2
1

1 1 1 2

2 1

inr E p
N

d c ( )

N N







    


     
  



 (21)

Furthermore this point is attractive. Indeed we can label different domains in the semi-plane 

 0,0:),( 2121  NNNN  according to the signs of 
1N  and 2N . Consider species 1 first. In order to 

have 01 N  we need:  

 
 211121

1111111
12 


NcEr

NcpEr
NN

in

in








 (22)

Equation 22 describes a curve dividing the semi-plane in two regions; region I, where 01 N , and 

region II, where 01 N . The two lines depicted in Figure 7 correspond to the two cases 122 p   and 

122 p  : the special case 122 p   (and the equivalent case for species 2 211 p  ) will be discussed 

at the end of this section.  

Figure 7. The two regions identified by the curve (22) for 122 p   (left) and  

122 p   (right). 

 

Repeating the same argument for species 2, we find two more curves dividing the semi-plane as in 
Figure 8, again corresponding to the two cases 211 p   and 211 p  : 
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Figure 8. The two regions symmetrically defined for 2N  for 211 p   (left) and 211 p  . 

 

Note that the fixed point d is given by the intersection of a curve in Figure 7 with a curve in  
Figure 8. For example if we have 122 p   and 211 p  , to find the fixed point d we can superimpose 

the two curves on the right in Figure 7 and Figure 8 to obtain the picture shown in  

Figure 9. 

Figure 9. The fixed point d as the intersection of the two curves in Figures 7–8.  

 

 

It is also clear by geometrical considerations that the fixed point d will always lie on the positive 

quadrant. Note that the two curves divide this quadrant into four regions, marked with the letters A, B, 
C, and D in Figure 9: each region is characterized by different signs of 1N  and 2N . In region A both 

1N  and 2N  are positive, so 1N  and 2N  are both increasing functions of time. In region B 1N  is 

increasing and 2N  is decreasing. In region C 1N  is decreasing and 2N  increasing and finally in region 

D both 1N  and 2N  are decreasing functions of time. Thus, point d is attractive. The same argument 

applies for the other three possible cases ),( 211122 pp   , ),( 211122 pp    and 

),( 211122 pp   .  
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A plot of trajectories corresponding to initial values in the four different regions is given in  

Figure 10.  

Figure 10. Four different orbits for the general case. 

 

It is apparent from Equation 20 that the value of   is independent of inE : this is a strong constraint 

on the system because it means that the asymptotic value of the ratio 
2

1

N

N
 is also independent of inE  

and depends only on the parameters characterizing the species and their interaction (competition-

cooperation). From a mathematically point of view this property of the solution is tautologic, but the 

question of whether a real system actually possesses this attribute is indeed far from obvious: since the 

ratio 
2

1

N

N
 and inE  are easily measurable in field experiments, the above constraint is suggesting a 

possible experimental “check” on the model. In a future paper we plan to examine some of the 

available experimental result in order to verify whether this statement is falsifiable. 
Let us now briefly discuss the case 122 p  . Looking at Figure 7 now the two points marked with 

black dots on the N1 axis coincide, so that the curve dividing the semi-plane into two regions becomes 

a straight line, and the intersection point is now given by: 

inr E p
N

c

N N


 

  

1 1
1

1 1

2 1

d



 (23)

where   is given by Equation 20. In this case the equation for 1N  decouples, since we have: 













111

11111
1

1

NcpE

NcpEr
N

dt

dN

in

in



 
 (24)

This is the same equation as the first of (14). In that case species 1 (the host), having no 

competitors, fed on all of the available exergy flow, so that after discharges and destructions are taken 
into account, its net exergy income was 11 pEE in

   (see Equation 4). On the contrary, in this case, 1N  
captures only a fraction of the environmental exergy at its disposal, the complementary fraction being 
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taken by species 2; but there is another “resource” flow coming from the fraction of the exergy of 
species 2 discharge “recycled” from species 1 and these two flows, because of 122 p  , sum up just 

to 1pEin
 . This is a rather special situation but it is interesting to note how the equation for 1N  

decouples. In contrast to the second of (15), however, the equation for 2N  depends on both 

populations, so we cannot give analytical results as in that case. It is clear however that the qualitative 

dynamics cannot differ much from the general case.  

3. Conclusions 

The first conclusion that can be derived from the arguments developed in this paper is that the 

axiom that is at the foundation of our reasoning, namely that resource consumption (material and 

immaterial) can be completely and unambiguously quantified in terms of exergy flows, is a convenient 

and fruitful working hypothesis. The model of population dynamics derived from such axiom results in 

strongly coupled and intrinsically non-linear evolution equations. In this paper, the time evolution 

patterns of two species sharing an ecological niche have been studied under three different scenarios: 

indifference, commensalism and mutualism. Our results indicate that: 

- if the two species just coexist in the same niche without cooperating or preying on each other, their 

competition invariably leads (Section 2a) to the extinction of one of them, unless their genetic (r,), 

consumption (c, ) and efficiency (p) parameters are in a very precise and delicately tuned balance, 

in which case the two species may coexist sustainably; 

- if one of the two species assumes a commensalistic type of behaviour (it feeds on the other’s 

discharges, Section 2b), then both species reach their respective carrying capacity limits; 

- if the two species display a mutualistic type of behaviour (each one feeds partially on the other’s 

discharges, Section 2c), then there is always a stable sustainable point and both populations survive. 

In all cases, the sustainability of the point in state-space of the surviving population(s) prescribes a 

certain well-identified numerosity. 

In spite of the apparent success of our model, caution ought to be exercised in generalizing its 

results: nature is far more complex than any complicated and non-linear model makes it appear, and 

the results presented here are but a basis—and an incentive!—for further study. In particular, the 

following problems need to be carefully addressed if this type of approach is brought down from a 

descriptive to an applicative or predictive level: 

1) Substitutability of exergy resources: our model explicitly lumps all of the “available” material 
and energy fluxes into the extended exergy inflow inE . This poses no problem for the energy 

flows, but contains the implicit assumption that ALL material flows are perfectly substitutable. 

In the simplest case, consider an animal species that has access to two or three different sources 

of vegetable food: obviously, each vegetable has a different nutritive value for the species, but 

also a different extended exergy content. Thus, our model would predict that the “optimal 

choice” for the animal would be to feed on the lower-embodied exergy food with the highest 

nutritive value. But this prediction disregards preferences, spatial distribution, physical 

accessibility, and similar factors. For more complex behaviours (for instance, related to the 
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human species), the choice between, say, bronze and iron to build spears is even more  

multi-faceted than implicitly posited by the model. 

2) Actual possibility of species reaching a stable stationary state: this is of course an extremely 

important point, because if two species in a single ecological niche reach a stable state (point d 

in Figure 10), this is by definition a sustainable situation. For larger number of species and 

realistic conditions, the problem of the stability of such stationary states is of paramount 

importance, and has not been addressed here. 

3) Metadynamics: the model presented in this paper is spatially lumped and the niche in which the 

species thrive has “impermeable boundaries”. Immigration and emigration are completely 
neglected, as well as spatially varying distributions of inE . While the former could be modeled 

by inserting an “immigration term” in Equations (6) and (7), the spatially lumped nature of the 

model is difficult to modify. One solution might be that of “discretizing” the domain, and apply 
the equations separately to different areas, accounting for the variation of inE  in each 

subdomain. This would make our model somewhat comparable to the so-called “patch” [10] or 

“incidence function” models [11], but would also demand for very taxing numerical 

simulations, not considered here. 

4) Limiting factors (“exogenous factors” in [3]): while we maintain that (extended) exergy is a 

satisfactory indicator of species numerosity (in the sense that high exergy niches must logically 

and thermodynamically correspond to globally higher numerosities), it must be remarked that 

in real ecological niches there are phenomena occurring at some scales that affect the 

numerosity of species at a different scale [12]. Viral and fungal infections to which species N is 

insensitive may affect one or more of its food sources; growth of high-foliage trees with which 

a vegetable species does not compete for nutrients may reduce its share of solar irradiation, 

etc.: at the present state of development it is not clear whether and how our model may 

accommodate such effects (like in “tritrophic” or “multi-trophic” models [3]). 

5)  Though not addressed in this paper, the application of our model raises a question that could be 

of paramount importance for practical applications: is the efficiency of one single species in the 

niche compatible with the overall energy-conversion efficiency of the same niche, considered 

as a lumped system? In other words, if two or more species reach a sustainable point (“d” in 

Figure 10), do their respective numerosities satisfy both a local (for each species) and a global 

(for the entire niche) “optimal exergy use” criterion? This is a topic we have left for  a future 

study. 
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Appendix 1 

Suppose indeed that the solution remains always in region I. Then both 1N  and 2N  are bounded 

functions, 11

11
1 c

Epr
N in






 and 22

22
2 c

Epr
N in






. But in this region these functions are also increasing; they 

must approach asymptotically a limit, say the point )ˆ,ˆ( 21 NNx  . This means that x  is an equilibrium 

point. But the only equilibrium points are given in Table 1, and x  cannot be any of these points since 

1N  and 2N  are increasing functions. So the solution will leave the region I at some time t .  

Now suppose that for some 1t  the solution is in region II and that at some subsequent time it will 

leave this region. To do this, it has to cross either line 1s  or line 2s . Suppose that it crosses 1s  at 
 tt . 

Then 0)(1 tN . For the second derivative of 1N  at 
 tt  we have (since 0)(2 tN ): 
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so that 1N  has a minimum for 
 tt . However this cannot be true because 1N  is an increasing 

function in region II. So the hypothesis that the solution crosses the line 1s  must be false. Suppose 
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instead that it crosses the line 2s  at 
 tt . Then 0)(2 tN . The second derivative of 2N  at 

 tt  is 

given by: 

0
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
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and is negative because of 0)(1 tN . So 2N  has a maximum at 
 tt , but again this cannot be the 

case since 2N  is a decreasing function in region II.  
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