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Abstract: The formation of Quaternary glaciers represented a pivotal event in the climatic and
geological history of the Tibetan Plateau. However, due to the scarcity of direct evidence for low-
latitude glaciation, the timing and extent of late Quaternary glaciation on the Tibetan Plateau remain
controversial. This study focuses on the Liangwang Mountains, which are located in the southeastern
part of the Tibetan Plateau and has a maximum elevation of 2820 m, as the subject of investigation.
Through a comprehensive application of glacial landform analysis, scanning electron microscopy
(SEM)-based micromorphology analysis of quartz sand, and spore-pollen data analysis, we uncovered
evident signs of glacial activity in this region during the Quaternary period. Our research identified
typical glacial landforms such as cirques, U-shaped valleys, fluted moraines, and terminal moraines.
Additionally, spore-pollen analysis revealed a high frequency of fir pollen, indicating cold climatic
conditions during that time. Furthermore, the micromorphology analysis of quartz sand further
corroborated the glacial origin of these deposits. Based on these combined findings, our study
confirms that the Liangwang Mountains experienced glaciation during the Quaternary period,
making them glacial relics at the lowest latitude currently known in mainland China. This discovery
provides a valuable reference for understanding the paleoclimate and glacial history of the Tibetan
Plateau and its surrounding regions.

Keywords: glacial geomorphology; penultimate glaciation; glacial sequences; Liangwang Mountains

1. Introduction

The investigation of Quaternary environments and their evolution holds profound im-
plications for human survival and has garnered significant scholarly attention [1,2]. A partic-
ularly important research topic is the study of Quaternary glaciers [3,4]. The Qinghai–Tibet
Plateau, as the highest plateau in the world, is not only home to modern glaciers, but
also hosts numerous ancient glacial relics in its hinterland and adjacent mountains [5–8].
These relics serve as valuable records of significant climatic changes that has occurred
throughout the Quaternary period [9–11]. The southeastern Qinghai–Tibet Plateau is highly
sensitive to Quaternary global climate change [12,13]. It is characterized by a strong mon-
soonal influence, distinct natural geographic vertical zonation, and noticeable topographic
and climatic variation [14]. This region holds significant importance for the formation of
monsoonal maritime glaciers. Evidence of a Quaternary climate is preserved in the glacial
relics found at different altitudes and latitudes within the region [12,15]. These relics serve
as valuable indicators of the ancient glacial systems’ advancement and retreat during the
Quaternary period.
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To comprehend the relationship between the Quaternary climate, the uplift of the
Tibetan Plateau, and global events in the southeastern Tibetan Plateau, numerous scholars
have conducted studies on the glacial relics found in this area. They have explored the in-
terplay between glacial development, climate, and tectonics [16,17]. Among the mountains
on the southeastern edge of the Tibetan Plateau, the glacial relics provide the most valu-
able information for a detailed analysis of glacial development in relation to climate and
tectonics [18–20]. Specifically, the glacial relics at lower latitudes exhibit highly sensitive
climate response characteristics and offer more precise records of climate change during
the Quaternary period [21]. However, many low-latitude glacial relics in the southeastern
Tibetan Plateau have either been destroyed or remain undiscovered due to weathering
and erosion. This limits our ability to analyze the coupling between glacial development,
climate, and tectonics, and hinders our understanding of the timing and extent of late
Quaternary glacial activity on the Tibetan Plateau. The Liangwang Mountains, which are
the focus of this study, are located on the southeastern edge of the Tibetan Plateau and have
an even lower latitude than the existing glacial relics in the southeastern part of the plateau.
Consequently, the Liangwang Mountains represent the lowest-latitude glacial relics in
mainland China. The study of these relics is not only crucial for investigating the coupling
relationship between glacial development, climate, and tectonics, as well as the extent of
Quaternary glaciation, but also aids in analyzing whether the glacial advancements on the
Tibetan Plateau were triggered by temperature cooling or the increased moisture brought
about by strong Indian summer winds.

To validate the occurrence of glacial development in the Liangwang Mountains during
the Quaternary period, this paper examines the geomorphological characteristics of the
region. The focus is placed on the microscopic morphological features of the quartz sand
and spore powder present in sediments from the area of the Liangwang Mountains. Field
geological surveys, geomorphological analyses, scanning electron microscopy experiments,
and sporulation experiments are employed to investigate glacial relics in the Liangwang
Mountains.

The primary objectives of this study are as follows:

(1) To establish the presence of Quaternary glacial activity in the Liangwang Mountains;
(2) To determine the environmental conditions that facilitated glacier formation in this region;
(3) To explore the factors contributing to glacial development in the Liangwang Moun-

tains, considering its unique low-latitude location.

2. Materials and Methods
2.1. Study Area

The Liangwang Mountains region is situated on the southeastern margin of the Tibetan
Plateau, southeast of Kunming city, Yunnan Province, China. It is located at the geographic
coordinates of N 24◦46′06.3′′ and E 102◦55′08.2′′, with an elevation of approximately
2800 m above sea level. The mountains are encompassed by three prominent highland
lakes: Dianchi Lake, Fuxian Lake, and Yangzonghai Lake (Figure 1). The study area
is characterized by a predominantly elevated terrain, with the highest peak reaching
2820 m and the lowest altitude recorded at 2140 m, resulting in a maximum relative height
difference of 680 m. The primary mountain range in the Liangwang Mountains region
exhibits a predominant orientation towards the northeast, while the valleys within the
mountain range predominantly follow a northeast to southwest direction. The area of
the Liangwang Mountains is characterized by a secondary planation surface, featuring an
overall steep terrain. Some areas have been subject to gully erosion, resulting in deeply
incised terrain and steep slopes. The topographic slopes in the entire region range from
5 to 25 degrees, with certain localized areas exhibiting slopes exceeding 30 degrees.
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Figure 1. Study area location map.

The Liangwang Mountains are situated within the geotectonic context of the Yangzi-
South China land mass area (V), the upper Yangzi ancient block (V-2), and the eastern margin
of the Kunming depressional zone in the Kang-Dian basal fault zone (V-2-3). To the east of the
area lies the western branch of the north–south Xiaojiang Fault, while the Pudu River Fault
Zone borders it to the west. The tectonics of the area around the Liangwang Mountains are
primarily influenced by the north–south-oriented Pudu River and Xiaojiang Fault.

2.2. Field Survey and Topographic Analysis

Geomorphological mapping is a well-established method that is used to study earth
surface processes and landscape evolution in various environmental contexts [22]. In this
study, we employed a combination of Google Earth image analysis, fieldwork, and in-
door experimental analysis to determine the specific distribution characteristics of glacial
landforms in the Liangwang Mountains.

To begin with, we developed a detailed expedition route using 1:50,000 topographic
maps and Google Earth images. A month-long field trip was then conducted to investigate
and analyze the macroscopic topography of the area around the Liangwang Mountains.
During this field trip, we marked the distribution of glacial landforms on the 1:50,000
topographic map, labeled them, and collected samples from accumulations that exhibited
the characteristics of glacial deposits. The sampling points YLQS01, YLQS02, YLQS03,
and YLQS04 in the U-shaped valley area are located at a lateral moraine upstream of
Yangliuqin. The thickness of the entire profile is approximately 6 m, and the sampling
depth is 30 cm. Due to its special geographical location, this lateral moraine is less prone to
alteration and destruction due water flowing through the central part of the valley at later
stages, resulting in it being well preserved. The sampling points YLQX01 and YLQX02 are
situated at a mixed deposit of ice and water downstream of Yangliuqin. The profile stands
at approximately 5 m high, with a sampling depth of 20 cm. The sediment at this location
consists of material from the upstream basal moraine of Yangliuqin that was transported
and deposited here by river flow. In the Fengkoucun area, sampling points FK01 and
FK02 are positioned at a lateral moraine adjacent to an eastern gully. The profile measures
approximately 8 m in height, and the sampling depth is 50 cm. A prominent cirque has
developed at the top of this gully, and the glacier flows down from the cirque, eroding the
surface and forming a gully. Finally, based on the results of indoor experimental analysis,
we identified three glacial deposits and mapped the distribution of glacial landforms in the
Liangwang Mountains, using the 1:50,000 topographic map as a reference.

2.3. Scanning Electron Microscope Analysis of Quartz Sand

The use of scanning electron microscopy (SEM) is crucial for characterizing the mor-
phology of quartz sand and deducing sediment transport modes and depositional environ-
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ments [23–28]. Quartz sand, known for its high hardness, resistance to weathering, and
stability, retains microscopic morphological features on its surface, which are formed by
various transport forces. To determine whether the sediments in the Liangwang Moun-
tains were deposited under glacial conditions, we analyzed the microscopic morphological
characteristics of quartz sand particles using SEM. Initially, we conducted a field trip to the
Liangwang Mountains and identified sediments that exhibited characteristics that were
consistent with glacial accumulation. Samples were collected from different layers and
passed through a 0.5 mm sieve. Each sample, weighing approximately 20 g, underwent
organic matter removal via soaking in a 1:3 H2O2 solution. The reacted samples were then
soaked in a 1:30 dilute HCl solution for 12 h. Subsequently, the samples were boiled on an
electric hot plate until the gravel turned white. They were then rinsed with distilled water,
and dried under a microscope in a drying oven set to 40 ◦C. For each sample, 50 grains
of quartz sand with particle sizes ranging from 0.2 to 0.5 mm were selected, uniformly
bonded to the carrier table, and coated with a layer of conductive gold film in a vacuum
coater in order to perform microscopic (The manufacturer of the thermo scientific quattro s
scanning electron microscope equipment is Thermo Fisher Scientific, and it was purchased
through Beijing, China) observation.

Referring to previous studies [25,29], we categorized 39 different depositional envi-
ronments into typical micromorphological features (Table 1). These features were further
grouped into three categories: shapes of quartz sand, mechanical features, and chemical
features. A statistical table was created to determine the total frequency of the micromor-
phological features associated with each depositional environment. After SEM analysis,
samples that did not exhibit the typical microformation features of glacial environments
were excluded. The remaining samples, displaying features characteristic of glacial envi-
ronments, were plotted as scatter plots.

Table 1. Quartz sand morphological characteristics.

Shape of quartz
sand

Roundedness 13: well-rounded; 14: round; 18: subrounded; 25: subangular; 34:
multangular; 35: pointed

Edge shape 15: abraded edge; 17: subrounded edge; 24: subangular ridge;
32: ridge erosion; 33: sharp-edged ridge

Relief 16: low relief; 23: moderate relief; 31: high relief

Mechanical

10: sinuous ridge; 11: folded cleavage planes; 12: dish-shaped
pits; 19: subaqueous polish; 20: small impact crater; 21: straight
grooves; 22: V-shaped gouges; 26: small shell-shaped fragments;
27: adhering fragments; 28: fractures; 29: parallel striations; 30:
deep impact crater; 36: terraces; 37: parallel cleavage planes; 38:

medium-sized shell-shaped fractures; 39: large
shell-shaped fractures

Chemical

1: flakey exfoliation; 2: silica crystallization; 3: amorphous silica
precipitation; 4: siliceous film; 5: siliceous scales; 6: siliceous
sphere; 7: honeycomb etching surface; 8: oriented etch pits; 9:

pits and grooves

2.4. Sporopollen Analysis

Sporopollen is a valuable indicator of climate response, as different climates support the
growth of distinct plant types. The preservation potential of palynology makes it an ideal tool
for reconstructing paleoclimates [30,31]. Sporopollen analysis employs the traditional method
of sporopollen stratigraphy, which involves assessing the composition and abundance of
various genera and species within the four major plant groups of trees, herbs, shrubs, and ferns
based on the natural classification system. This analysis aims to stratigraphically divide and
compare layers, determine the ancient vegetation cover, and reconstruct the ancient climate.
By quantifying the spore content of each species, we can conduct quantitative research on
ancient vegetation and climates. Utilizing sporopollen analysis data, we established three
quantitative models: spore-pollen vegetation types, spore-pollen climatic zones, and spore-
pollen humidity levels. In order to assess whether the paleoclimatic conditions prevailing
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during the development of glaciers in the Liangwang Mountains were consistent with the
conditions required for glacier formation, we conducted a sporopollen analysis of sediments
collected from the Liangwang Mountains. A total of 26 samples were collected and processed,
following the following procedure: crushing and weighing the samples; treating them with
NaOH (10%), 10% HCL, and HF; sieving them using a 40~50 W ultrasonic shaker and a 5 µm
sieve; and microscopic observation.

3. Results
3.1. Geomorphological Features of the Glacier in the Liangwang Mountains

To determine the distribution of glacial relics in the area around the Liangwang
Mountains, we utilized a comprehensive analysis method, combining fieldwork and indoor
experiments. The summit area and the source of the valley in the Liangwang Mountains
exhibit numerous glacial erosion landforms, including cirques, U-shaped valleys, fluted
moraines, and moraine topography. The western and eastern faces of the main peak of the
Liangwang Mountains (2820 m) predominantly present glacial cirques (Figure 2), with a
general altitude distribution of around 2600 m. However, it is important to note that the
Liangwang Mountains lie within the North Subtropical Low-Latitude Plateau Monsoon
Climate Zone, characterized by distinct wet and dry seasons. Moreover, the peak region
of the mountains primarily consists of limestone, rendering it susceptible to erosion and
damage caused by rainfall and runoff. Consequently, some glacial cirques and ridges have
undergone erosion and destruction, while the main prominent features have been preserved
(Figure 3). To further analyze the glacial cirques in the area of the Liangwang Mountains,
we calculated the flatness index using a 1:50,000 topographic map of Chengjiang County
and field measurements. The calculated flatness index of these glacial cirques ranged from
approximately 1.80 to 3.54.
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There are U-shaped valleys (Figure 4) located to the northeast of the main peak of
the Liangwang Mountains. These valleys exhibit open and relatively flat bottoms, display
steep valley slopes, and are covered with contemporary vegetation. The valleys measure
40 m in width and stretch over a length of 1000 m, with a northwest orientation. Most of
these valleys have been impacted by modern gully erosion, resulting in the preservation of
only partial glacial deposits in the central and lower portions. Using a power-law function
model, we calculated the b-index of valleys at different elevations in the area around the
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Liangwang Mountains. The b-index fluctuates within the range of 1.681 to 2.057 for the
valleys of different elevations in the area around the Liangwang Mountains.
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Figure 4. U-shaped valleys and glacial deposits ((a) is a U-shaped valley with a lateral moraine
located within it. (b) is a terrace formed by the transportation and accumulation of glacial deposits
by flowing water in the upstream area).

Within the area around the Liangwang Mountains, there are three distinct sets of
moraine assemblages that represent remnants from the same ice age. The first set consists of
lateral moraine landforms found within the U-shaped valleys of the Liangwang Mountains
(Figure 4a). These lateral moraines exhibit exposed moraine rocks, primarily composed of
angular or subangular limestone. The rocks display a mixed size distribution, lack sorting,
and show signs of weak weathering, which are characteristics of moraine rocks formed
through glacial action (Figure 5d,e).
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(b,c) are characteristics of individual boulders. (d,e) are moraine rocks found in the lateral moraines
within the U-shaped valley, exhibiting typical glacial features).

The second set of lateral moraines is located in the eastern part of Fengkou village,
adjacent to the washout gully. These landforms are covered by modern plants, with
boulders scattered across their surface (Figure 5a,b). The predominant lithology is dolomite,
and the rocks within this set have a diameter of 1–2 m and show a high degree of weathering.
They are distributed in a continuous band along the lateral moraine landform, and some
gravel surfaces exhibit small rub marks in the same direction (Figure 5c).

The third set of glacial deposition is represented by an ice-water terrace (Figure 4b).
This feature comprises moraine deposits that originate from the central upstream part of
Yangliuqin. It formed through the transportation and accumulation of water subsequent
to the initial glacial activity. As a result, the terrace retains certain moraine characteris-
tics while also displaying traits associated with flowing water. The accumulated terrace
primarily consists of limestone gravel, which is highly prone to erosion by flowing water.
Consequently, during the transportation and accumulation process, prominent features
were eroded and removed by flowing water.

3.2. Characterization of the Quartz Particle Morphology

Through extensive sampling and rigorous indoor experimental analysis, we identified
three distinct locations in the area around the Liangwang Mountains that consistently
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displayed the characteristics of glacial deposits. These sites included the upstream lateral
moraine (YLQS) of Yangliuqin, the downstream glaciofluvial terrace (YLQX) of Yangliuqin,
and the eastward lateral moraine (FK) near Fengkou village.

The majority of quartz sand grains collected from glacial sediments in the area
around the Liangwang Mountains exhibited pointed, subangular, and multangular shapes.
Among the three micromorphological features (well-rounded, round, and subrounded),
subrounded grains occurred sporadically and with a very low frequency. The analysis
of edge-shape statistics revealed a high frequency of subangular ridges and sharp-edged
ridges, while ridge erosion and subrounded edges were less frequent, and no samples
with abraded edges were observed. The relief morphology statistics indicated that quartz
sand particles with high relief and depths greater than 1 µm had the highest frequency,
followed by particles with moderate relief and depths between 0.5 µm and 1 µm, which
also had a relatively higher frequency. Quartz sand particles with low relief and depths
less than 0.5 µm had a lower frequency. Overall, the selected quartz sand particles in this
study predominantly exhibited pointed subangular ridges with moderate-to-high relief
(Figure 6a). The observation of the selected quartz sand grains revealed their lack of overall
rounding and prominent angles, indicating minimal transportation after detachment from
the parent rock. This suggests that the glacier in the area around the Liangwang Mountains
was relatively small in scale and had a short transportation distance.
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Figure 6. Typical mechanical characteristics of the Liangwang Mountains quartz sand, as determined
via SEM analysis ((a) is the shape of some quartz sand particles; (b) represents the shell-shaped
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parallel striations; (g) represents terraces; (h) is a small impact crater; and (i) represents fractures).
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In this study, various mechanical features were observed on the surfaces of the selected
quartz grains, including shell-shaped fractures of different morphologies (Figure 6b), V-shaped
gouges (Figure 6c), parallel striations (Figure 6d,e), adhering fragments (Figure 6f), terraces
(Figure 6g), small impact craters (Figure 6h), and fractures (Figure 6i). The frequencies of these
micromorphological features were calculated, revealing that small shell-shaped fractures with
lengths less than 20 µm occurred at a frequency ranging from 10% to 40%, with an average
frequency of 29%. Medium-sized shell-shaped fractures with lengths between 20 µm and 40 µm
occurred at a frequency ranging from 8% to 30%, with an average frequency of 18%. Large shell-
shaped fractures with lengths greater than 40 µm occurred at a frequency ranging from 10% to
40%, with an average frequency of 22%. The occurrence of terraces on the quartz grain surfaces
was relatively low, ranging from 0% to 10%, with an average frequency of 4%. This limited
occurrence suggests a restricted scale of glacial development in the Liangwang Mountains,
resulting in weaker forces being exerted by the ice body on the quartz sand surface. Higher
frequencies of V-shaped gouges and small impact craters, which are characteristic morphological
features of a flowing water environment, were observed in samples YLQX01 and YLQX02
compared to samples YLQS01, YLQS02, YLQS03, YLQS04, FK01, and FK02. The frequencies of
V-shaped gouges and small impact craters in samples YLQX01 and YLQX02 were 22–28%, while
their frequencies were lower in the remaining samples. This indicates the presence of flowing
water in the depositional environment, specifically in samples YLQX01 and YLQX02. In this
experiment, no underwater polished surfaces were found on the surfaces of the collected quartz
grains. Only V-shaped gouges were observed on some of the quartz sand grains, indicating the
presence of strong flowing water during deposition. However, the activity time was sufficiently
short to prevent the formation of underwater polished surfaces.

The presence of iconic micromorphological features closely associated with glacia-
tion, such as parallel striations, adhering fragments, and fractures, is considered to be
a representative indicator of glacial processes. The statistical analysis conducted in this
study revealed a high frequency of these micromorphological features at all three sampling
sites, suggesting the involvement of glaciation in the sediment transport process. Parallel
striations, which are linear or curved marks on the quartz surface, serve as important
markers for identifying glaciation [25,29]. These striations are formed through the mutual
friction between quartz grains and display similarities to terraces and parallel cleavage
planes. After careful screening, it was observed that the quartz grains with surface rub
marks accounted for 8% to 36% of the samples, with an average frequency of 22%. Adher-
ing fragments, generated by the pressure of overlying glacial ice, are typical microforms
observed in the quartz sand within glacial environments. These fragments were present in
all eight samples, with a frequency ranging from 14% to 30% and an average frequency of
21%. Fractures that are often considered indicative of glacial action were also observed to
varying degrees on the surfaces of quartz grains during the SEM analysis conducted by
several scholars. In this experiment, fractures were present with a frequency ranging from
6% to 22%, and an average frequency of 13%.

The frequencies of the different microformation features of varying origins were
counted using the environmental particle percentage method (Figure 7). It was found that
the total frequency of microformation features related to glacial processes was higher than
that associated with flowing water and wind processes. Although some samples showed
environmental signs that suggested a contribution from flowing water, their frequency
was relatively low, indicating a shorter duration of water involvement during deposition.
Therefore, SEM analysis of quartz sand in the area around the Liangwang Mountains
indicated that the sediments were formed in a glacial or glaciofluvial environment.
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3.3. Palynological Characterization

A total of 2 topsoil sporopollen samples were collected from the Liangwang Mountains.
In these samples, a total of 1257 plant spore particles were counted, with 486 particles
found in sample LWS01 and 771 particles identified in sample LWS02. Overall, 14 families
(genera) were identified, including 6 families (genera) of woody plants, 3 families (genera)
of herbaceous plants, and 5 families (genera) of ferns. The six main woody plant types
identified were Pinus, Alnus, Castanopsis, Quercus, Rhododendron, and Myrsine. The three
main types of herbaceous plants were Gramineae, Artemisia, and Bidens. The five main types
of ferns identified were Pteris, Pyrrosia, Polypodiodes, Humata, and Hicriopteris. This study
analyzed topsoil sporopollen samples from the Liangwang Mountains via comparative
study with sporopollen from glacial sediments.

A total of 16 samples, labeled 1 to 16, were collected from the upstream Yangliuqin
moraine section, and a total of 10,403 spores were counted. Among these spores, 946 were
counted in samples 1 and 2, 1365 were counted in samples 3 and 4, 1466 were counted
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in samples 5 and 6, 1287 were counted in samples 7 and 8, 880 were counted in samples
9 and 10, 1034 were counted in samples 11 and 12, 2403 were counted in samples 13 and
14, and 1022 were counted in samples 15 and 16. In this experiment, a total of 29 families
(genera) of spore pollen were identified, including 13 families (genera) of woody plants,
7 families (genera) of herbaceous plants, and 9 families (genera) of ferns. The main woody
plant types identified were Pinus, Alnus, Castanopsis, Quercus, Cyclobalanopsis, Betulaceae,
Abies, Picea, Tsuga, Albizia, Rhododendron, Myrsine, and Lonicera. The main herbaceous plant
types were Gramineae, Artemisia, Chenopodium, Megacarpaea, Caryophyllaceae, Compositae,
and Bidens. The main fern types were Pteris, Pyrrosia, Polypodiaceae, Polypodiodes, Humata,
Athyrium, Lycopodium, Onychium, and Hymenophyllum.

Based on the presence or absence of Abies in each layer of the profile, this study divides
the upstream Yangliuqin moraine profile into two spore-pollen combination sections (Figure 8).
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Figure 8. Spore-pollen count in the Yangliuqin upstream lateral moraine profile.

Section 1 of the spore-pollen count includes samples 1 to 5, with woody plant spores
accounting for 55% to 76% of the material tested. The main species in this section are Pinus,
Alnus, Castanopsis, Quercus, Albizia, Rhododendron, and Myrsine. Herbaceous plant spores ac-
count for 10% to 22%, including Gramineae, Artemisia, Chenopodium, Megacarpaea, and Bidens.
Fern spores make up 8% to 19% of the spores, mainly Pteris, Pyrrosia, Polypodiodes, Humata,
and Athyrium. This characteristic sporophyte assemblage indicates a mixed coniferous
forest landscape in a warm and humid climate.

Section 2 of the spore-pollen count includes samples 6 to 18, with woody plant
spores accounting for 47% to 85% of spores. The main species in this section are Pi-
nus, Cyclobalanopsis, Betulaceae, Abies, Picea, Tsuga, and Lonicera. Herbaceous plant spores
account for 5% to 25% of the total, including Gramineae, Artemisia, Chenopodium, Caryophyl-
laceae, and Compositae. Fern spores make up 8% to 32% of the spore powder, mainly
Pyrrosia, Polypodiodes, Polypodiodes, Athyrium, Lycopodium, Onychium, and Hymenophyllum.
Abies appears frequently in this spore-pollen section, reaching a maximum of 12.3% in the
profile. Alnus, Quercus, and Castanopsis appear in lower concentrations in the early stage
and gradually disappear in the late stage. The spore-pollen content of ferns gradually
increases, reaching a maximum of 32%. These findings suggest a coniferous forest land-
scape under a cold temperate and humid climate. The main spores found in the moraine
layers of the Liangwang Mountains include Pinus, Cyclobalanopsis, Betulaceae, Abies, Picea,
Tsuga, Lonicera, Gramineae, Artemisia, Chenopodium, Caryophyllaceae, Compositae, Pyrrosia,
Polypodiaceae, Polypodiodes, Athyrium, Lycopodium, Onychium, and Hymenophyllum.

Based on the analysis of topsoil spore powder characteristics in the Liangwang Moun-
tains, fir (Abies) is no longer present in the area around the modern Liangwang Mountains.
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However, Abies appears frequently in certain moraine layers, with its content reaching as
high as 12.3%. This indicates that a significant amount of fir was growing in the Liangwang
Mountains during that period. Presently, fir predominantly grows in the Yulong Mountains
at an altitude of approximately 3800 m. Considering the vertically decreasing temperature
rate of 0.6 ◦C at the same latitude, the average annual temperature in the area around the
modern Liangwang Mountains is 11.7 ◦C. In contrast, the average annual temperature
in the area around the Liangwang Mountains during that time was approximately 2 ◦C.
This analysis of the paleoclimatic background suggests that the Liangwang Mountains
possessed the suitable climatic conditions for glacial development during that period.

4. Discussion
4.1. Ice Age Discussion

The modern theoretical equilibrium line is determined using three calculation meth-
ods: a method using the maximum precipitation zone and empirical curve relationship
(MPC), a method using the maximum precipitation zone with a statistical formula (MPF),
and a method using weather station precipitation and an empirical formula (WPF) [32,33].
In this study, the modern theoretical equilibrium lines of the Liangwang Mountains were
reconstructed using three methods: MPC, MPF, and WPF. These methods relied on meteo-
rological data from the Chenggong weather station and reference data tables of equilibrium
lines from typical glaciers [34].

Table 2 presents the modern theoretical equilibrium line of the Gongwang Mountains,
which is approximately 4488 m. During the penultimate ice age, the equilibrium line of
the Gongwang Mountains dropped to an altitude of around 1400 m [35,36], suggesting
that the ancient equilibrium line of the Gongwang Mountains during that period was
approximately 3000 m. Considering that the Liangwang Mountains share a similar climatic
environmental background with the Gongwang Mountains as they are both located in the
southeastern edge of the Qinghai–Tibet Plateau and the middle Yunnan Basin, we calculated
the ancient equilibrium line of the Liangwang Mountains based on the maximum decline
of 1400 m observed in the penultimate ice age. The calculated ancient equilibrium line
of the Liangwang Mountains during the penultimate ice age was approximately 2800 m,
which is close to the highest elevation of the Liangwang Mountains, which is only 2820 m.
However, it is important to note that the modern theoretical equilibrium lines calculated
in this study do not take into account other factors, and that the elevation of the weather
station can affect the accuracy of the calculations. Based on the data collected in and
presented Table 2, it can be concluded that the modern theoretical equilibrium lines of the
Liangwang and Gongwang Mountains, both located in the central Yunnan Basin, are not
equal. Additionally, the calculated modern theoretical equilibrium lines tend to be higher
than the actual equilibrium lines, and the elevation of the weather station in proximity to
the mountain peak affects the accuracy of the modern theoretical snow line value. Thus,
the modern theoretical equilibrium line of the Liangwang Mountains is lower than that
of the Gongwang Mountains, with a larger magnitude of difference. Moreover, the data
used in this study are provided by the Chenggong meteorological station, and there is
no meteorological station at the top of the Liangwang Mountains. According to relevant
research, the precipitation measured at the bottom of the mountains is significantly lower
than the precipitation measured on the mountains [37]. Combining these factors, it is likely
that the modern theoretical equilibrium line of the Liangwang Mountains has an error of
several hundred meters, indicating that the height of the ancient equilibrium line of the
Liangwang Mountains during the penultimate ice age was lower than the current elevation
of the Liangwang Mountains.

The penultimate ice age witnessed the most significant cooling in the southeastern
edge of the Tibetan Plateau, resulting in the largest decline in the equilibrium line. In con-
trast, the decline during the last ice age was much smaller. Previous glacier research
on the Qinghai–Tibet Plateau and its marginal mountains indicated that glacial devel-
opment during the antepenultimate ice age, also known as the Zhong-lianggan ice age,
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was primarily concentrated in the inner region of the Qinghai–Tibet Plateau. It was only
during the penultimate ice age that glacial development gradually spread to the plateau’s
edge [16,38,39].

Table 2. The altitude, summer temperature and precipitation at ELAs using different methods.

Method MPC MPF WPF

Mountain Range
Height of
Weather
Station (m)

Weather Station
June to August
Temperature
(◦C)

Average Annual
Precipitation at
Meteorological
Stations (mm)

Actual
Equilibrium
Line Height (m)

Theoretical
Equilibrium
Line Height (m)

Theoretical
Equilibrium
Line Height (m)

Theoretical
Equilibrium
Line Height (m)

Altai 1900 11.9 664 3320 3688 3750 3873
Tianshan 3539 4.3 454 4056 4239 4294 4365
Baima 4292 5.1 807.1 4800 4867 4942 5054
Yulong 2393 17.7 950 4800 5026 5076 5176
Luoji 2640 15.8 956 4940 5005 5103
Qianhu 3276 12.9 849.8 5134 5206 5312
Cangshan 1990 19.8 1054 4905 4980 5068
Gongwang 3900 6.8 1570 4488 4558 4553
Yushan 3845 7.4 3054 4361 4328 3953
Liangwang 1906 16.1 1100 4256 4262 4341

Given the proximity of the Liangwang Mountains to the Kunming Basin, Quaternary
global cooling led to glacial development in the Liangwang Mountains, which could have
influenced the Kunming Basin. Borehole studies conducted in different areas of the Kunming
Basin revealed a higher occurrence of Abies in the Quaternary strata, peaking at 110,000 years,
indicating an unprecedented flourishing of fir during this period [40,41]. In this study, we
analyzed the presence of Abies in the glacial sediments of the area around the Liangwang
Mountains and compared it with that of the Kunming Basin (Figure 9). The figures show that
the presence of Abies in the boreholes of different areas in the Kunming Basin reached its peak
at 110,000 years, while Abies in the moraine layer of the Liangwang Mountains peaked at a
depth of approximately 4 m. This suggests that the age of this moraine layer is likely around
110,000 years, corresponding to the penultimate ice age.
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In summary, from the perspective of the both the equilibrium line and sporulation, only
glaciers are likely to have developed in the Liangwang Mountains during the penultimate
ice age.

4.2. Why Did Glaciers Develop in the Liangwang Mountains?

The Quaternary ice age climate had a significant impact on the Qinghai–Tibet Plateau
and its marginal mountains, resulting in the development of glaciers at different times on
different mountains [38,41,42]. Comparing the ice age series of these mountain glaciers
can provide insights into the factors contributing to their formation. Figure 10 shows a
comparison of the ice age series of mountains in the southeastern Tibetan Plateau. It reveals
that the Yulong and Luoji Mountains have the longest ice age history. These mountains
began developing glaciers in the early Kunlun ice age around, at 700 ka B.P., while neigh-
boring mountains such as Cangshan, Gongwang, Qianhu, and Liangwang Mountains did
not have glaciers during that time. Despite the current altitudes of Cangshan, Gongwang,
and Qianhu Mountains being similar to those of the Luoji Mountains, only the Yulong and
Luoji Mountains had glaciers during the Kunlun ice age [43,44]. This suggests that tectonic
movements likely played a significant role in the contrasting ice age histories under similar
climatic conditions [45].
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The uplift of the Tibetan Plateau can be divided into three stages: the early “Qinghai–
Tibetan Movement” from 3.6 to 1.7 Ma, the middle “Kunlun–Yellow River Movement” from
1.1 to 0.6 Ma, and the late “Republican Movement” since 0.15 Ma [43,46,47]. The Yulong
Snow Mountains and the Luoji Mountains experienced the earliest development of the
Kunlun ice age glaciers at around 700 ka B.P., likely due to the “Kunlun–Yellow River
Movement”, which led to the significant uplift of the Tibetan Plateau. The surrounding
mountains around the Qinghai–Tibet Plateau also underwent uplift, but with different
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uplift rates due to varying fracture controls. The uplift rates of the Yulong Mountains and
Luoji Mountains were much higher compared to those of the neighboring mountains [48].
Consequently, the Yulong and Luoji Mountains were the first to rise above the equilibrium
line, allowing the development of glaciers during the Kunlun ice age. On the other hand,
the Cangshan, Gongwang, Qianhu, and Liangwang Mountains were also affected by the
Kunlun–Yellow River Movement and experienced uplift, but their uplift rates differed due
to the influence of different fracture controls. However, these mountains did not reach the
elevation of the equilibrium line and did not develop glaciers [34,49].

With the Republican Movement (since 0.15 Ma), as the strong uplift of the Tibetan
Plateau entered a new phase, the southeastern part of the plateau experienced a notably
colder period at around 0.15 Ma [12]. During this period, the equilibrium line of mountain
glaciers dropped significantly, and mountains such as Gongwang, Cangshan, and Liang-
wang, which initially failed to reach the equilibrium line, were uplifted above it. As a result,
these mountains began developing glaciers during the penultimate ice age.

During the penultimate ice age, the glacial development pattern in southeastern Tibet
reached its peak [41,50]. Glaciers developed in the Cangshan, Gongwang, and Liangwang
Mountains during this period. However, the Qianhu Mountains only experienced glacial
development during the last ice age. The equilibrium line of the Gongwang Mountains
dropped to approximately 3000 m during the penultimate ice age, whereas the current
elevation of the Liangwang Mountains is only 2820 m. Based on the distribution character-
istics of cirques in the Liangwang Mountains, the estimated equilibrium line during the
penultimate ice age was 2600 m, disregarding tectonic uplift. Thus, there was a difference
of several hundred meters in the equilibrium lines between these two mountain ranges
during the penultimate ice age. These differences indicate that glacial development is not
only influenced by tectonics, but also by other factors. Glacial development is related to
both tectonics and climate conditions [51], and the difference in equilibrium lines between
the Gongwang and Liangwang Mountains during the penultimate ice age, despite their
similar tectonic and climatic conditions, suggests the involvement of other factors.

The Liangwang Mountains are surrounded by three highland lakes: Dianchi, Fuxian,
and Yangzonghai. The influence of these lakes should not be overlooked, as they play a
significant role in regional climate regulation. The presence of lakes leads to the formation
of a regional lake climate, with the extent and depth of the lakes determining the degree of
climate regulation [52,53]. Studies in the Kunming Basin reveal that around 12,000 ka B.P.,
during the time of glaciation in the Liangwang Mountains, the Dianchi Lake reached its
peak size, which was nearly three times larger than its modern size. The Fuxian Lake also
experienced unprecedented expansion, with the shoreline extending several kilometers to
the north and south. These large lakes with extensive water surfaces absorb solar radiation,
resulting in decreased reflectivity. Additionally, the large water bodies have a high specific
heat and consume heat through evaporation, leading to moderate temperature changes
in area around the Liangwang Mountains. Consequently, while the southeast region of
the Qinghai–Tibet Plateau was cooling during the penultimate ice age, the area around the
Liangwang Mountains maintained a stable and relatively low temperature conducive to
glacier formation.

The glaciers in the Liangwangshan region developed significantly during the penulti-
mate period glaciation, and this phenomenon was closely related to the climatic regulation
role played by three large plateau lakes in the area. These lakes exchanged energy with
their surrounding environment through their vast lake surfaces, thereby exerting a pro-
found influence on the near-surface atmosphere. More importantly, the evaporation of
water from the lakes significantly altered the precipitation distribution pattern in the Liang-
wangshan region. During winter and nighttime, the evaporation of water vapor from the
lakes increases significantly, resulting in a notable increase in precipitation during these
periods compared to modern levels [54,55]. In meteorological and glaciological studies,
precipitation is a crucial factor in determining the theoretical equilibrium line—the altitude
at which glacier accumulation and ablation reach a dynamic balance. Influenced by these
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lakes, the theoretical equilibrium line in the Liangwangshan area is significantly lower
than the 2800 m height predicted using conventional methods. This reduction provides
the necessary climatic conditions for the formation and stable existence of glaciers at lower
altitudes. Additionally, the temperature difference between the plateau lakes and the
Liangwangshan terrain results in a significant lake–land breeze circulation phenomenon.
At night, the land cools faster than the lakes, forming a land breeze blowing towards the
lakes. Conversely, during the day, due to the lakes’ large heat capacity, which causes a lag in
warming, a lake breeze blows towards the land. This lake–land breeze circulation not only
helps to regulate the temperature in the Liangwangshan area but also effectively lowers
the surface temperature, especially during summer, thus creating favorable conditions for
the formation and maintenance of glaciers.

In summary, we can conclude that there was a close correlation between the formation
of the Liangwangshan glacier and the climatic regulation role of the three large plateau
lakes. By altering precipitation patterns and generating lake–land breeze circulation, these
lakes significantly impacted the climatic environment of the Liangwangshan region, thereby
promoting the development of glaciers in the area during the penultimate period glaciation.
Compared to Gongwangshan, which is located in the same geographical region, the lower
altitude of the equilibrium line in Liangwangshan further supports the view that these lakes
had a significant influence on glacier formation. Therefore, we believe that the formation of
glaciers in the Liangwangshan region was closely related to the climatic regulation role of
these plateau lakes.

5. Conclusions

This study provides evidence of glacial relics in the lower latitudes of the Liangwang
Mountains on the southeastern Tibetan Plateau through the use of various analytical meth-
ods, including geomorphology, sedimentology, electron microscopy, spore analysis, and
paleoclimatology. It is worth noting that these glacial relics represent the lowest-latitude
glacial relic known in mainland China. Our fieldwork and indoor experimental analysis
confirmed the existence of Quaternary glacial relics in the Liangwang Mountains. Addi-
tionally, we recovered the theoretical equilibrium line of the Liangwang Mountains and
conducted a comparative analysis with the theoretical equilibrium line of typical glaciers.
This analysis helped us to examine the possibility and timing of glacial development in the
Liangwang Mountains based on the theoretical equilibrium line. Furthermore, we collected
data on fir spore powder from boreholes in the Kunming Basin and compared them with
the Abies content in the glacial sediments of the Liangwang Mountains. This comparison
provided further confirmation of glacial development in the Liangwang Mountains during
the penultimate ice age. Lastly, we compared the ice age history of the Liangwang Moun-
tains with that of mountain glaciers in the southeastern Tibetan Plateau and discussed the
influence of tectonics and climate on glacial development.

Our findings indicate that the lower equilibrium line of the Liangwang Mountains at
this low latitude was not only influenced by significant cooling during the penultimate ice
age, but also by the unique climatic effects of the three plateau lakes.
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