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Abstract: Rising wildfire incidents in South America, potentially exacerbated by climate change,
require an exploration of sustainable approaches for fire risk reduction. This study investigates
wildfire-prone meteorological conditions and assesses the susceptibility in Colombia’s megadiverse
northern region. Utilizing this knowledge, we apply a machine learning model and the Monte Carlo
approach to evaluate sustainability strategies for mitigating fire risk. The findings indicate that a
substantial number of fires occur in the southern region, especially in the first two seasons of the year,
and in the northeast in the last two seasons. Both are characterized by high temperatures, minimal
precipitation, strong winds, and dry conditions. The developed model demonstrates significant
predictive accuracy with the HIT, FAR, and POC of 87.9%, 28.3%, and 95.7%, respectively, providing
insights into the probabilistic aspects of fire development. Various scenarios showed that a decrease
in soil temperature reduces the risk mostly in lower altitudes and leaf skin reservoir content in
the highest altitudes, as well as in the north region. Sustainability strategies, such as tree belts,
agroforestry mosaics, and forest corridors emerge as crucial measures. The results underscore the
importance of proactive measures in mitigating wildfire impact, offering actionable insights for
crafting effective sustainability strategies amid escalating fire risks.

Keywords: biomass burning; wildfires; machine learning; risk; vulnerability; hazard; sustainability
strategies; adaptation

1. Introduction

Wildfires in tropical regions, housing Earth’s intricate ecosystems and highest car-
bon storage [1], have profound destructive consequences. They alter the structure and
composition of natural assemblages unadapted to fire effects [2,3]. The extensive scientific
literature documents fire’s substantial impact on ecological processes and dynamics [4].
Notably, Latin America faces significant threats, losing around 51 million hectares of forests
from 1980 to 2010 [5]. Colombia is ranked among the top four countries most affected
by wildfires relative to its territory [6]. Wildfires may initiate positive feedback loops,
heightening ecosystems’ vulnerability to irreparable losses [7,8]. This situation is especially
significant in the Colombian Caribbean, which hosts one of the world’s most irreplaceable
nature reserves [9].

In Colombia, previous studies (e.g., [10–12]) have explored critical factors influencing wild-
fires. The findings reveal a peak in fire activity from December to March, attributed to elevated
temperatures, intense winds, reduced humidity, and diminished precipitation [13–16]. However,
explanatory biophysical and human factors vary across regions, emphasizing the significance of
conducting analyses at the regional level [6]. Hoyos et al. [15] emphasize the significant impact
of land cover transformations on wildfires in the humid tropics of the Colombian Caribbean.
The challenge of controlling wildfires in these regions has intensified due to elevated drought
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levels and the proliferation of flammable non-native vegetation that rapidly responds to drought
conditions [12,17]. Climate change could potentially exacerbate these effects in tropical regions,
especially at high altitudes. This is evident in cloud forests, which are undergoing a notable shift,
experiencing intermittent rainfall instead of the customary fog [18].

Within this framework, a wide-ranging set of modeling approaches has been devised
for wildfire forecasting [1]. Some of these models showcase the rapid progress in machine
learning (ML), leveraging algorithms that autonomously enhance performance by analyz-
ing datasets to discern patterns and infer outcomes from input data. For instance, Hung
et al. [19] employed deep neural computing, a subset of ML, to assess its effectiveness in
generating a forest fire susceptibility map. Other studies have also underscored the efficacy
of these models in various domains, including the forecasting of pollutant concentrations
and the analysis of their precursors [20,21]. Such efforts have yielded robust algorithms
that hold promise for analyzing spatial and temporal patterns.

This progress enables the creation of scenarios in diverse fields, as demonstrated by
Agudelo et al. [22], assessing tropical forest loss, and Celis et al. [16], analyzing wildfire
development to anticipate potential future situations and impacts. These scenarios provide
valuable insights for sustainable regional territorial planning, underscoring the need to
adopt effective strategies tailored to the unique characteristics of each region.

Building on these studies, the primary objective of this manuscript is to analyze
scenarios for reducing the wildfire risk of cover loss in a megadiverse zone in the Colombian
Caribbean. This entails the identification of key factors driving these events and applying
machine learning methods to construct a probabilistic wildfire risk model. The model
is designed to formulate risk scenarios that facilitate the identification of crucial points.
Through this assessment, we aim to propose cost-effective and sustainable approaches
to accurately address these perturbations. This effort is valuable for informed decision
making, underscoring the urgent need for comprehensive strategies and interventions. It
aligns with the United Nations Sustainable Development Goal 15: Life on Land [23] and
contributes to the Land Degradation Neutrality Challenge [24].

2. Literature Review

A wildfire is an uncontrolled fire that occurs in wildland areas, typically involving vegeta-
tion [1,5]. Wildfires can be ignited by natural causes (e.g., lightning strikes), and in Colombia,
it is mostly caused by human activities (e.g., campfires, agricultural burning) [3,21]. These
fires can spread quickly, driven by multiple factors (e.g., fuel availability, wind) and can cause
significant damage to ecosystems and infrastructure [10,18].

Due to the aforementioned reasons, wildfires are a significant environmental concern
globally, impacting ecosystems, human health, and socio-economic well-being. In Colom-
bia, these phenomena have garnered increasing attention due to their frequency, severity,
and diverse impacts [13–15,21]. Understanding the drivers, dynamics, and implications of
wildfires in Colombia is essential for developing effective mitigation and adaptation strate-
gies [10,16,22]. This section synthesizes key findings from academic research to elucidate
the brief state of knowledge of wildfire research in Colombia.

2.1. Causes and Drivers of Wildfires

Anthropogenic activities, coupled with natural factors, contribute to the ignition and
spread of wildfires in Colombia. Agricultural practices such as slash-and-burn farming,
land clearing for cultivation, and illegal logging are primary human-induced causes [1,3].
The proliferation of these activities, often driven by socio-economic factors, exacerbates fire
risk, particularly in rural areas where forest resources are crucial for livelihoods [5,16,22].
Moreover, climate change-induced alterations in temperature and precipitation patterns
amplify fire conditions, increasing the likelihood of wildfire occurrence [12,15,17]. The
theoretical lens of the socio-ecological system framework provides a useful framework
for understanding the interconnectedness of human activities, environmental dynamics,
and fire regimes in Colombia [22]. By conceptualizing wildfires as emergent properties
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of coupled human–environment systems, the framework highlights the complex inter-
actions shaping fire regimes and underscores the importance of integrated management
approaches [16].

2.2. Climate Change and Wildfires in Colombia

Climate change has emerged as a significant driver of wildfires in Colombia, exacerbat-
ing fire risk and altering fire regimes across diverse ecosystems [16]. Rising temperatures,
shifting precipitation patterns, and changes in vegetation dynamics interact to create con-
ditions conducive to increased fire occurrence and intensity [5,16,18,23,24]. Studies have
documented a positive correlation between temperature increases and wildfire frequency
in Colombia, with projections indicating a further escalation in fire activity in the coming
decades [8,12].

Furthermore, changing precipitation patterns, including prolonged droughts and shifts
in the timing and distribution of rainfall, contribute to drier conditions, fueling the ignition
and spread of wildfires [15,16,18]. These climate-induced alterations in moisture availability
and vegetation moisture content amplify fire risk, particularly in regions characterized
by seasonal variability in precipitation. Nevertheless, more detailed analyses and target
research are needed to create informed strategies to reduce wildfire impacts in Colombia.

2.3. Impacts of Wildfires

Wildfires in Colombia exert profound impacts, posing challenges for sustainable
development and biodiversity conservation [7,9,22]. Forest loss, habitat degradation, and
soil erosion are among the ecological consequences, undermining ecosystem resilience and
biodiversity conservation efforts [8,10,11]. Furthermore, the socio-economic repercussions
of wildfires are far-reaching, impacting rural communities heavily reliant on forest resources
for sustenance and livelihoods. However, limited attention has been given to these impacts
in academic research, primarily due to challenges associated with accessing relevant data
and conducting quantitative assessments [15,16,22]. Displacement, the loss of income, and
compromised food security exacerbate socio-economic vulnerabilities, particularly among
marginalized populations, and these factors could yield a change in wildfire frequency [16].
The concept of social-ecological resilience offers valuable insights into understanding and
addressing the impacts of wildfires. By recognizing the interconnectedness of social and
ecological systems and the adaptive capacities of communities and ecosystems, resilience
theory emphasizes the importance of fostering adaptive governance, building social capital,
and enhancing ecological integrity to mitigate wildfire risks [6,18,19,22].

2.4. Wildfire Risk Prevention: Vulnerability and Machine Learning Forecast
2.4.1. Vulnerability Assessment

Vulnerability assessments play a crucial role in wildfire risk prevention by identifying
socio-economic and environmental factors that exacerbate communities’ susceptibility to
fire incidents. Factors such as proximity to forested areas, land use patterns, socio-economic
status, and access to resources influence communities’ vulnerability to wildfires [1,4,7,22].
Integrating vulnerability assessments into wildfire management strategies enables targeted
interventions to reduce risk and enhance resilience among vulnerable populations. Fur-
thermore, vulnerability mapping facilitates the prioritization of resources and allocation of
support to high-risk areas, contributing to more effective wildfire prevention and response
efforts [2,6,8].

2.4.2. Machine Learning Forecasts

Machine learning algorithms offer promising tools for predicting wildfire occurrence,
behavior, and potential impacts. By analyzing diverse datasets encompassing meteoro-
logical and land use variables, ML models can generate accurate forecasts of fire risk at
various spatial and temporal scales [16,22]. These forecasts enable robust planning and
decision making, allowing authorities to allocate resources efficiently, implement targeted
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prevention measures, and issue timely warnings to at-risk communities, as previous re-
search has shown [12,15,19–21]. Moreover, machine learning-based wildfire models have
been more recently used to facilitate scenario planning and risk assessment, supporting the
development of adaptive management strategies that account for future uncertainties and
changing environmental conditions [16,22].

2.5. Wildfire Management Strategies

Effective wildfire management in Colombia necessitates a comprehensive approach
encompassing prevention, preparedness, response, and recovery efforts. Prevention strate-
gies focus on addressing underlying drivers of wildfires, promoting sustainable land use
practices, and enhancing public awareness and education [18,20]. Early detection and
monitoring systems enable a timely response and intervention, minimizing the extent and
severity of wildfires [16,22]. Community-based approaches, rooted in participatory decision
making and local knowledge systems, enhance resilience and foster an adaptive capacity
among vulnerable communities [23]. Integrating indigenous and traditional ecological
knowledge into wildfire management strategies not only enhances the effectiveness of inter-
ventions but also promotes cultural continuity and social-ecological sustainability [16,24].
The adaptive co-management framework offers a theoretical basis for collaborative gov-
ernance arrangements that empower local stakeholders, facilitate learning, and promote
adaptive management in fire-prone landscapes, but always basing decision making on
reliable data [10,12].

3. Materials and Methods
3.1. Study Area

This study focuses on the northern region of Colombia (Lat: 10 to 11.5; Lon: −74.5
to −73; Figure 1b), situated within three local administrative zones (i.e., Magdalena, Ce-
sar, and La Guajira) and being part of the Colombian Caribbean (Figure 1a). This area is
renowned for its remarkable microclimatic gradients, highlighted by an isolated mountain-
ous expanse known as the Sierra Nevada de Santa Marta (SNSM). The Sierra Nevada is
the highest coastal mountain range globally, soaring to an elevation of 5775 m above sea
level—MASL [25]. This geographical uniqueness, coupled with its proximity to the equator,
oceanfront location, and the prevalence of northeast trade winds, has bestowed the region
with prominent ecological significance.

The area is characterized by an array of diverse ecological units, defined in this
research as biomes (Figure 1c), that include dry and wet tropical forests, Sub-Andean
forests, Andean forests, mountain moorlands, and even snow-covered territories. This
exceptional ecological richness has earned it a reputation as a biodiversity hotspot. This is
further exemplified by its high level of species endemism [9]. Notably, the region is home
to two National Natural Parks, Tayrona, and Sierra Nevada, recognized as being among
the most irreplaceable protected areas worldwide in terms of conservation efforts [25].

Despite its immense ecological significance, this region is under the looming threat
of an elevated number of wildfires, primarily concentrated during February and March,
a trend consistently observed in various previous studies (e.g., [26,27]). This distinctive
characteristic makes it a particularly compelling area for study and holds great relevance in
the modeling and prediction of wildfires. However, it is worth noting that this area lacks
ground-based meteorological stations that could offer comprehensive data for rigorous
analysis or model development. Consequently, data must be sourced from reanalysis
datasets and satellite-derived information.
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3.2. Atmospheric Characteristics Present during Wildfires Episodes

To identify functional diversity traits and atmospheric and edaphic conditions present
in specific locations when a wildfire occurs, the days and zones with and without wildfires
were selected for each of the 4 seasons of the year, with the idea of avoiding changes associ-
ated with the seasonality of the atmosphere, which could provide misleading conclusions.
For this purpose, hotspot data from 1 January of 2016 to 31 December of 2021 were obtained
from the Moderate Resolution Imaging Spectroradiometer (MODIS), featuring a 1 km
spatial resolution, and the Visible Infrared Imaging Radiometer (VIIRS), offering a finer
375 m spatial resolution, distributed by the Fire Information for Resource Management
System, FIRMS [28], which represent the presence of these events and have been previously
used by several studies (e.g., [29,30]) including some in Colombia (e.g., [15,26]).

We identified a total of 6385 wildfire events in the region (Figure 2) and subsequently
conducted composite analyses for each season throughout the year, following the approach
outlined by Casallas et al. [31]. Additionally, anomaly maps were developed for each variable
to enhance the understanding of geographical patterns. In this case, the mean of the days when
the study area experienced at least one wildfire was compared with the mean of the days with
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no wildfires. Our analyses were based on hourly meteorological data sourced from the ERA5
Reanalysis dataset [32], with a spatial resolution of 0.25◦ × 0.25◦, spanning the period from 1
January 2016 to 31 December 2021. It is noteworthy that ERA5 data have been widely validated
by numerous researchers (e.g., [33,34]). The dataset encompassed essential meteorological
variables, including daily mean temperature at 2 m, surface solar radiation, 2 m dew point
temperature, 10 m meridional (v) component of the wind, 10 m zonal (u) component of the wind,
leaf area index for both high and low vegetation, soil temperature, volumetric soil water content,
leaf skin reservoir content, total daily evaporation and total daily precipitation. These variables
were instrumental in discerning the most critical factors contributing to the development of
wildfires in our study area.
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Figure 2. Number of hotspots illustrated with colors and contours for the period between January
2016 and December 2021 for four seasons of the year: (a) DJF (December, January, and February);
(b) MAM (March, April, and May); (c) JJA (June, July, and August); (d) SON (September, October,
and November). The maps were constructed using the Cartopy library of Python [35].

Additionally, to obtain more information about meteorological behavior, the Canadian
forest fire weather index (FWI) was calculated with inputs from ERA5 [36,37]. First, daily
dry air temperature, relative humidity (RH), wind speed, and precipitation were used as
inputs to calculate the Fine Fuel Moisture Code (FFMC), the Duff Moisture Code (DMC),
and the Drought Code (DC). These, in turn, were used to generate the initial spread index
(ISI) and the buildup index (BUI). And finally, we combined them to obtain the FWI and
daily severity rating (DSR).
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3.3. Machine Learning Model
3.3.1. Multicollinearity Analysis

Considering that the development of a robust forecasting model hinges on the quality
of input data, we meticulously curated a comprehensive set of variables. These encom-
passed the aforementioned meteorological data sourced from ERA5 and included FWI
indicators. To ensure the reliability of our model, we performed a multicollinearity analysis
among these variables. Multicollinearity occurs when two or more independent variables
exhibit high correlations, potentially undermining the ML model’s ability to accurately esti-
mate the individual impact of each independent variable on the dependent variable [38,39].
Therefore, to identify multicollinearity, we used the variable inflation factor (VIF) among
the predictor variables, and those with the highest VIF were subsequently excluded until
the multicollinearity was reduced to less than 7 (Table A1), as advised by Kline [40], obtain-
ing as a result nine input variables: evaporation, precipitation, leaf area index, leaf skin
reservoir content, solar radiation, and from the FWI index, WIND, DMC, and DSR.

3.3.2. Machine Learning Structures and Statistical Validation

Once the VIF method was performed, we adopted two different ML approaches to
determine the prediction models. These were appraised to set the one that generated the
best results in terms of temperature forecasting [41]. For this purpose, we followed the
work of Casallas et al. [21] and compared (i) random forest regression (RF) with (ii) an
artificial neural network (ANN) (Figure 3 shows the ANN structure).
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The RF algorithm employs a bagging approach, which trains a set of individual
prediction models of decision trees in parallel using a random set of training data for each
of them [42] to subsequently combine the result of the multiple predictions. In our RF
configuration, we included as parameters 100 estimators (the number of decision trees)
and squared_error (loss function) as a criterion, with a max depth of trees that holds until
every leaf is pure (all data on the leaf have the same class). Regarding the ANN, the
interconnected layers of nodes acquire information through training data that they use for
their learning process by assigning random weights to each variable, testing the output and
modifying this weight to identify the connection between inputs and outputs [43]. In this
case, different combinations of layers (3D convolutional neural networks, convolutional
long short-term memory networks, and dense neural networks) were tested (Figure 3)
following a grid search method [44]. We tested 120 combinations of the types of layers,
number of layers and neurons, optimizers, activation, and loss function to select the
structure and hyperparameters that produced the smallest errors on the validation dataset.
The model was constructed in the TensorFlow library [45], with help of Keras [46], in
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Python 3.9 and trained for 100 epochs. The loss selected was the mean square error (MSE),
Adam [47] was used as an optimizer, and for the activation, the dense layer used the
rectified linear unit (ReLU) [48], which were the hyperparameters identified as the best
via the grid search method. Furthermore, we applied an early stopping method [49] and
dropout rate to mitigate overfitting.

In terms of the input and output variables of the ML techniques, the input tensor
contained the 9 variables resulting from the VIF method, and the output matrix was con-
structed with the combination of two datasets as outlined in Figure 4, where we matched
the hotspot brightness temperature from MODIS/VIIRS with the date, latitude, and lon-
gitude of the air temperature from ERA5, replacing the pixel values of the latter with the
data records of MODIS/VIIRS. For validation, the data were divided into two sets, the
training set with 80% of the data and the test set with the remaining 20% for validation,
and to prevent the possible bias generated by the unequal magnitudes of the variables,
min–max normalization was applied.
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To validate and compare the results of the two models, we established a threshold at
the 95th percentile of the modified temperature dataset to classify the temperature value
indicative of a wildfire. For the evaluation, the selected indicators of the model performance
were the categorical statistics hit rate (HIT), false alarm rate (FAR), and the proportion of
correctness (POC)—the reader is referred to the Supplementary Material of Celis et al. [20]
for a complete explanation of the parameters, including the equation of the categorical
parameters. Furthermore, given the spatial characteristics of wildfires, where the adjacent
area of a pixel with a hotspot may also be fire-prone [50,51], we introduced a proximity
evaluation. This evaluation involved situations where the model predicted values above
the threshold (95%-tile) for a pixel, but the real condition did not involve a wildfire. In such
cases, the pixel was considered correct if one of the surrounding pixels showed an actual
wildfire occurrence.

The use of ANNs and RF enables the estimation of critical wildfire points based on di-
verse variables. These advanced techniques facilitate the capture of complex and non-linear
relationships between meteorological variables and fire risk, thereby providing a robust
foundation for risk prediction and assessment. However, given the fundamental connection
between the accuracy of ML model predictions and the availability and quality of training
data, it is essential to acknowledge the inherent constraints of this approach. While utilizing
information from global models may offer benefits in regions with limited instrumentation,
such as in this study, these data may introduce biases in meteorological variables due to
limitations in representing complex physical processes, simplified assumptions, or errors
in data assimilation. As a result, the inputs to ML models inherently incorporate bias.

3.4. Monte Carlo Simulations

To address the inherent uncertainty in input variables and to derive probabilistic
outcomes rather than deterministic ones, we implemented Monte Carlo simulations, con-
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sidering that several studies (e.g., [20,52]) have generated satisfactory results explaining
these strong variations through statistical analysis [41]. To implement the Monte Carlo
method, we determined the probability distribution for each variable (Table A2), and these
distributions were displaced, aligning the median with the daily value of each variable.
Subsequently, random values were generated from these latter probability distributions,
constrained within the maximum and minimum values of each pixel. The outcome of this
process comprised 100 simulations per day that were used as inputs of the ML-trained
model, producing a range of probable outputs that were then classified into three cate-
gories of wildfire probability according to the modified temperature: low (below the 40th
percentile), medium (between the 40th and 95th percentiles), and high (above the 95th
percentile) [53]. It is important to note that only ERA5 variables were selected for generating
the random inputs, and the fire weather index (FWI)-related indexes were derived from
these simulation results.

The utilization of Monte Carlo simulations to assess uncertainty in ML models rep-
resents a valuable tool in risk management, such as wildfires. These simulations enable
not only the estimation of uncertainty in predictions but also the consideration of inherent
variability in the data and the models themselves. However, it is essential to acknowledge
the limitation that not all probability distributions align exactly with every variable across
all pixels. When the data exhibit non-standard characteristics, it can be challenging to find a
probability distribution that fully captures their complexity. This discrepancy may result in
error propagation, underscoring the importance of considering its impact on the precision
of model outcomes.

3.5. Land Cover Analysis and Risk Assessment

After obtaining the wildfire probability, which serves as a representation of the hazard
(in the following, the terms wildfire probability and hazard are used interchangeably),
the next step involves assessing the risk of vegetation cover loss. To accomplish this, it
is imperative to incorporate the vulnerability of the vegetation cover into the analysis.
Therefore, in this study, we evaluated the global vulnerability to wildfires through an
assessment of four distinct criteria. These criteria can be categorized into two ecological
vulnerability indicators and two socio-economic vulnerability indicators. Specifically, we
calculated the net susceptibility of vegetation and threat level of strategic ecosystems to
represent ecological vulnerability, while the socio-economic vulnerability was assessed
through a proximity indicator utilizing the wildland–urban interface (WUI) and response
capacity. To ascertain the relative importance of each of these indicators, we carried out a
multicriteria matrix, which we will elaborate on in the subsequent sections.

First, to determine the net susceptibility (NS) of vegetation, we used the method
of [54], which is defined as the assessment of the susceptibility of vegetation to burn, suffer
damage, recover from a wildfire, or spread fire due to its intrinsic traits and extrinsic factors
and the influence of fire on ecological units. This process was divided into two criteria:
the calculation of the raw susceptibility (RS) index and the net susceptibility (NS) index of
vegetation.

The RS index (Equation (1)) assesses the pyrogenic condition of vegetation and the
role of fire for each ecological unit type. This assessment is based on four key factors:
(i) Type of vegetation cover: this is derived from the 2018 land cover map provided by
the Colombian Environmental Information System (SIAC) [55]. (ii) Duration of fuel: This
variable quantifies the duration of the ignition process, with shorter ignition times resulting
in faster vegetation burning and consequently a greater area affected. It is measured
in ignition hours [54]. (iii) Total fuel load: measured in ton/ha, this variable accounts
for the total amount of fuel available [56]. (iv) Fire influence on ecological units: This
refers to the classification of ecosystems vegetation according to the biomes, based on
their susceptibility to fire [57]. We utilized the map of continental, marine, and coastal
ecosystems from SIAC [55] for this classification. Although some of these variables should
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be evaluated locally, using satellite images give a good enough approximation, especially in
terms of the meteorological resolution. The RS index is calculated following Equation (1):

RS = 0.25 FT + 0.25 D + 0.25 FL + 0.25 FI (1)

where RS is the raw susceptibility of vegetation, FT is the rating of the vegetal fuel type, D
is the rating of the duration, FL is the rating of the fuel load, and FI is the rating of the fire
influence according to the ecological unit.

Each of these four variables is categorized into five levels, ranging from one to five,
where higher values signify a greater combustibility. The classification system follows the
fire risk protocol outlined by IDEAM [57] for all variables, except for fuel load and duration.
For these, we adapted the categorization based on IDIGER [56] and Moreno et al. [58].
These adaptations were chosen to provide a more detailed classification, featuring five
categories instead of four. It is essential to note that the assignment of the duration of fuel
and total fuel load categories was made by the specific vegetation cover type. (For further
details, please refer to Tables A3 and A4). The next procedure was to calculate the NS index
using Equation (2):

NS = 0.33 RS + 0.33 PP + 0.33 T (2)

where NS is the net susceptibility of vegetation, RS denotes the raw susceptibility of vege-
tation, PP indicates the rating of the average precipitation and T signifies the rating of the
average temperature of the last 30 years. NS combines (i) RS with climatic conditions (i.e.,
extrinsic factors) obtained from the SIAC. These climatic conditions encompass multiyear
(ii) average precipitation and (iii) average temperature for each biome.

The second criterion to be evaluated to calculate the global vulnerability was the threat
level of the strategic ecosystem. To this end, we used the classification of Etter et al. [59]
and assigned values for each category as follows: critically endangered (5), endangered (4),
vulnerable (3), minor concern (2), and not classified (1). In the third criterion, we identified
the WUI as an indicator of socio-economic vulnerability by evaluating the proximity of these
zones to urban areas [60]. To achieve this, we selected the peripheral areas of urban centers
in a range of 2.5 km, and we classified them into four categories with their corresponding
scores as follows: wet areas (1), urban area, transitory crops, artificial green areas (2),
heterogeneous agricultural area, open areas without little vegetation, permanent crops,
agricultural areas (3), and herbaceous vegetation, pastures, forests, and shrubs (4).

In the fourth criterion, response capacity, we used data from the capacity index [61],
which evaluates the preparedness of each territory to effectively manage disaster risks and
considers financial, socioeconomic, and institutional capacity. To create the multicriteria
matrix (Casallas et al. [60]) for the obtained variables, we considered indicators commonly
used by other researchers to assess wildfire land vulnerability (please refer to Table A3).
For each indicator, we assigned a value of one (1) if it was present and zero (0) if it was
absent. We then tallied the occurrences of each criterion to identify the most frequently
used ones. This process allowed us to assign weights to each global vulnerability criterion
based on their frequency of use, as shown in Equation (3):

GV = 0.18 WUI + 0.25 RC + 0.43 NT + 0.14 SE (3)

where GV is the global vulnerability, WUI represents the wildland–urban interface, RC is
the risk capacity, NT is the net susceptibility of vegetation, and SE represents the threat
level of the strategic ecosystem.

Finally, to obtain the daily risk of vegetation cover loss due to wildfires, the vulner-
ability was first normalized on a scale from zero (0) to one (1), where 0 represents low
vulnerability and 1 represents high vulnerability. Subsequently, the vulnerability was
multiplied by the fire probability, resulting in the generation of daily wildfire risk maps, as
is elucidated in Equation (4):

RISK = GV ∗ WP (4)
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where GV is the global vulnerability and WP represents the wildfire probability.

3.6. Modeling and Management Strategies

After validating the wildfire probability model and assessing global vulnerability,
we proceeded to create risk reduction scenarios by adjusting specific variables that have
the potential to decrease it. These variables are associated with activities that can be
implemented in the area and are aligned with different United Nations Sustainable Devel-
opment Goals [23]. In this sense, the following adjustments were made to the inputs of the
Monte Carlo simulations to lower the wildfire probability in four experimental scenarios.
The variables subject to modification for the four hazard scenarios included (i) leaf skin
reservoir content, (ii) soil temperature, (iii) relative humidity (used in the FWI indexes),
and (iv) wind speed. Given the significant variations and differences in magnitudes and
probability distributions among variables and pixels, we made these modifications based
on values corresponding to 0.2 of the normalization of each pixel for each variable. Our ap-
proach involved selecting ninety-six days distributed throughout the year. These included
eight (8) representative days for each month, capturing various behavioral patterns under
different weather, soil, and vegetation conditions.

Regarding risk with the global vulnerability scenarios, we created three situations:
(i) vegetation cover change, (ii) response capacity increase, and (iii) climate change scenario.
The modified variables in the first scenario (vegetation cover change) were those related
to the vegetation cover type, that is, fuel type, duration, fuel load, and fire influence on
ecological units. Therefore, the vegetation cover was changed according to the native and
most predominant vegetation of each ecological unit [62]. The only ecological unit that
remained consistent was the paramo. This is because the vegetation cover categories do
not differentiate between its native cover, including certain pasture and herb species, and
disturbed vegetation (such as crops) [63], and both are categorized together. In addition, we
adjusted the threat level of the strategic ecosystems of Etter et al. [59], because the restora-
tion of the vegetation structure also entails the recovery of the geographical extent and
distribution of ecological units, which are aspects considered in this index. Consequently,
the same areas were assigned a minor risk concerning this variable (in the latter case, the
paramo was included).

For the second vulnerability scenario (response capacity increase) the vulnerability
was decreased based on the modification of the index capacity for all municipalities. This
index encompasses three critical dimensions that define how municipalities respond to
risk: financial, socioeconomic, and institutional capacities. Therefore, in this scenario, we
focused on the variables addressed by institutional capacity, which involves investment
and instruments allocated for disaster risk management [61]. This included the adoption of
(i) the Municipal Committee for Disaster Risk Management, (ii) the Municipal Disaster Risk
Management Plan or the Emergency Response Management Strategy, and (iii) the increase
in the risk management investment per capita by 10% in knowledge and risk reduction. In
cases where the initial investment was non-existent, the minimum investment allocation
was directed toward Colombia’s 55th percentile. This value produced a notable change,
while lower values resulted in non-significant changes.

In the third vulnerability scenario (climate change), we incorporated the notion that
climatic factors induce fluctuations in intrinsic vegetation performance, such as humidity
levels within plant tissues [54]. Consequently, we elevated the mean temperature by
1.5 ◦C [64], with the overarching aim of appraising alterations in climatic susceptibility.
Based on these findings, we proposed specific strategies [65] tailored to activities that can
be implemented within the study area. These strategies aim to induce targeted changes
in critical variables, thereby influencing and mitigating wildfire risk [66]. This approach
not only enhances the scientific understanding of ecological dynamics but also contributes
significantly to sustainability objectives. Specifically, our scenarios and proposed activities
align with key Sustainable Development Goals, notably, SDG 15: Life on Land, SDG 11:
Sustainable Cities and Communities, and SDG 13: Climate Action.



Sustainability 2024, 16, 3410 12 of 35

It is important to mention that the hazard and vulnerability scenarios do not interact
between them. This means that the hazard scenarios do not produce changes in vulnerabil-
ity or vice versa [67]. Although this is a limitation that clearly produces uncertainty, we
would not allow interactions between vulnerability and hazard since these relations are not
very well understood, and understanding them is not the aim of this paper. Nevertheless,
many studies have shown, including the last IPCC report, that many models do not allow
vegetation to interact with the climate in a prognostic way [64]. Another element which is
important to mention is that the data spatial resolution could be a source of uncertainty,
and it would be desirable to produce regional studies with regional climate models to
reduce and quantify the uncertainty related to the data.

In summary, we use a methodological approach that combines ML with traditional
programming practices. This study addresses the extraction of crucial relationships be-
tween meteorological variables and hotspots through ML techniques. In turn, traditional
programming is incorporated, which includes considering coverages and formulating
risk scenarios. By integrating these approaches, our work seeks to effectively evaluate
the efficacy of various preventive measures and risk management strategies. Through-
out this study, we highlight the complementarity of these methodologies, thus creating a
comprehensive framework for addressing the challenges associated with wildfires.

4. Results and Discussion
4.1. Wildfire Atmospheric, Soil, and Vegetation Characteristics

Here, we present the results on atmospheric, soil, and vegetation factors (Figure 5).
These findings show significant variations in trends for all assessed variables on wildfire
days and in specific affected zones. These variations are most noticeable during the first
two seasons of the year (DJF and MAM), which coincide with peak fire occurrence. Solar
radiation (Figure 5a,b) peaks during DJF and MAM, especially in areas and on days
impacted by wildfires, suggesting a strong link between wildfires and high solar radiation
levels (67% of wildfires occur when radiation levels exceed the third quartile compared
to non-fire days). Similar patterns are observed during JJA and SON. Factors like cloud
cover, seasonality, surface orientation, and slope may contribute to this, with the southern
region experiencing longer radiation exposure compared to the northern slope, making it
more susceptible to wildfires for a significant portion of the year. In summary, high solar
radiation raises air temperatures [68], affecting fuel moisture and temperature, increasing
the risk of wildfires [69].

In DJF and MAM, air temperatures reach their highest levels, with median increases
of around 2 ◦C, particularly in zones where wildfires occur (Figure 5c). This temperature
surge, evident in mean anomalies (Figure 5d), is most notable in the southern and south-
west regions, with positive anomalies of up to 3 ◦C, where wildfires are common. While the
overall mean temperature across the study area remains relatively stable throughout the
year (Figure 5c), peaks are closely tied to fire development. Higher temperatures accelerate
moisture evaporation from vegetation and surface materials, fueling fire spread [66–70].
Notably, wildfires can occur under both warm and relatively cold conditions, with about
35% of cases happening below the region’s median temperature. Thus, factors linked to
low humidity are crucial, as relative humidity responds more significantly to weather
conditions [71]. Additionally, JJA and SON also exhibit elevated temperatures during wild-
fires, though unlike other seasons, wildfires never occur under low-temperature conditions
(approximately <20 ◦C).
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Figure 5. Boxplots depicting the behavior of atmospheric, edaphic, and vegetation variables during
days with wildfire absence (blue) and wildfire occurrence (red) in the respective zones. These are
complemented by maps illustrating anomalies on wildfire days and by contours that depict the
number and location of the fires. Specifically, we present the following: (a) solar radiation boxplot
and (b) its anomalies; (c) air temperature boxplot and (d) its anomalies; (e) soil temperature boxplot
and (f) its anomalies; (g) evaporation boxplot and (h) its anomalies; (i) relative humidity boxplot and
(j) its anomalies; and (k) precipitation boxplot and (l) its anomalies. The white point in the boxplots
denotes the mean. The maps were constructed using the Cartopy library of Python [35].

Soil temperature mirrors air temperature trends, as shown in Figure 5e. However, no-
table differences arise in the northern region, where positive anomalies in soil temperature
contrast with negative anomalies in air temperature. The increase in soil temperature may
be due to several factors, including higher temperatures experienced by mountain slopes
during sunlight hours compared to surrounding air masses at the same elevation [72]. This
effect is exacerbated by low volumetric soil water content (Figure 6b) [73]. Conversely, air
temperature is heavily influenced by its negative correlation with wind in zones with high
mean speeds (Figure 6d) [74].
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Figure 6. Boxplots depicting the behavior of atmospheric, edaphic, and vegetation variables during
days with wildfire absence (blue) and wildfire occurrence (red) in the respective zones. These are
complemented by maps illustrating anomalies on wildfire days and by contours that depict the
number and location of the fires. Specifically, we present the following: (a) volumetric soil water
boxplot and (b) its anomalies; (c) wind speed boxplot and (d) its anomalies; (e) leaf skin reservoir
content boxplot and (f) its anomalies; (g) LAI of high vegetation boxplot and (h) its anomalies; and
(i) LAI of low vegetation boxplot and (j) its anomalies. The white point in the boxplots denotes the
mean. The maps were constructed using the Cartopy library of Python [35].

High temperatures, coupled with low precipitation [71] and increased wind speed,
can lead to the advection of dry air, resulting in decreased humidity levels [75]. This aligns
with the findings in Figure 5i,j, where days/zones with fires consistently show significantly
lower relative humidity throughout the year (90% of wildfires occur in conditions below
the median of the entire zone), especially during DJF and MAM. The decline in humidity
also stems from the greater increase in saturation vapor pressure due to higher temper-
atures, surpassing the relatively small rise in actual atmospheric moisture content [76].
Low humidity levels heighten wildfire risk by reducing the moisture content of dead
fuels. Similarly, soil moisture is affected by the same factors, as evidenced in Figure 6a,b,
where volumetric soil water content also markedly decreases on days/zones impacted
by wildfires [77]. These decreases may result from insufficient precipitation, as shown in
Figure 5j,k.
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In DJF, the season with the highest wind speeds, most wildfires occur under conditions
with winds faster than the median, as shown in Figure 6c. Notably, wildfires rarely happen
in zones or days with the fastest winds (>2.2 m/s), associated with trade winds from
December to March. These winds bring moist air from the sea, causing topographic
cloudiness on the high elevations of the north flank, which receives the wind directly [78,79].
This pattern promotes precipitation, acting as a wildfire deterrent. However, wind behavior
varies in other regions (Figure 5d) where speeds are slower due to mountainous terrain. In
areas like the southwest flank (leeward), where most wildfires occur, descending winds
lead to heating and drying. On the southeastern side, stronger trade winds displace clouds,
resulting in reduced rainfall [72,80,81].

Following this pattern, during MAM, JJA, and SON, the wind behavior differs due
to the low influence of trade winds in the northern region. As a result, the distinct trend
of higher wind speed emerges more clearly, as depicted in Figure 6c. This is closely
associated with the fact that as surface temperatures rise, warm air descends, leading to a
decrease in pressure and subsequently an increase in wind speed due to pressure gradients
that should follow continuity [82,83]. These wind-related consequences are particularly
prominent during the JJA season, coinciding with the concentration of wildfires on the
northeast slope in contrast to the rest of the year. This shift in wind behavior is likely due
to the diminishing influence of trade winds most notably from June to September and the
dominance of generally weaker winds from the southwest [15,27,72].

Despite the anticipated high temperatures and strong winds, which typically increase
evaporation rates, the observed evaporation during DJF and MAM (Figure 5g) shows
reduced values. This trend is particularly evident in the southern and southwestern
regions, where most wildfires occur during these seasons, as depicted in Figure 5h. The
decrease in evaporation can be attributed to factors like inefficient evaporation due to
soil drying (Figure 6a). In such conditions, the soil’s specific humidity falls significantly
below its saturation point [84]. This observation corresponds with the notable decrease
in volumetric soil water content (Figure 6a,b) on the western and southern slopes, where
most wildfires occur during these seasons. Conversely, patterns during JJA and SON
indicate equivalent conditions with and without wildfires, likely because wildfires are
mostly located in the northeast, which generally has higher humidity compared to the
affected areas during DJF and MAM.

Regarding vegetation, leaf skin reservoir content showed significant variability through-
out the year, particularly in tropical dry forests, which experience extreme seasonal fluctua-
tions [85]. This variability, influenced by factors affecting various ecological units, could be
linked to vegetation disruptions from previous wildfires or anthropogenic modifications,
reducing the ability to regulate transpiration rates [86]. As a result, leaf skin reservoir
content levels follow environmental variations, especially during drought periods. This
trend was most pronounced during DJF and MAM, with the lowest values observed during
days/zones with wildfires, potentially due to leeward locations and limited soil water
availability [87]. Similarly, JJA and SON also showed lower levels during days/zones
with wildfires. Throughout the year, 83% of wildfires occurred below the median leaf skin
reservoir content for the entire zone.

Additionally, other vegetation indicators such as the LAI for both low vegetation
(crops, mixed farming, grasslands, etc.) and high vegetation (trees, forests) showed negative
anomalies during days/zones with wildfires (Figure 6h–j), indicating stress conditions
within the vegetation. However, they exhibited opposite behavior seasonally (Figure 6g–i),
suggesting a need for future research using Landsat imagery and land use classification to
better understand this dynamic [16], although this is beyond the scope of this paper.

Low vegetation with high LAI showed a minor tendency to be affected by wildfires
during DJF and MAM (Figure 6i). However, this trend was more pronounced in JJA and
SON when fires occurred only under above-average conditions [88]. Conversely, the LAI of
high vegetation remained relatively steady throughout the year on days without wildfires,
with a significant upward trend observed only during DJF and MAM (Figure 6g), indicating
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geographical variations in fire incidence. The trend of wildfires occurring at elevated LAI
levels for high vegetation (Figure 6g) suggests that fires are concentrated in areas with
dense vegetation, consistent with evidence from other cases [89]. However, further research
using higher resolution datasets and official governmental data [16] is necessary to fully
understand the role of vegetation in fires.

Despite high LAI values indicating significant rainwater interception by foliage [90],
vegetation exhibited the lowest leaf skin reservoir content during DJF and MAM (Figure 6).
This inconsistency may be due to higher plant biomass represented by the LAI, resulting
in increased fuel availability [91] when vegetation experiences water stress. Additionally,
foliage loss, a physiological adaptation to water deficit [92], contributes to increased fuel
availability. This situation is further exacerbated by increased biomass during the wet
season (SON), leading to elevated fuel availability [69] in the subsequent dry season (DJF).

It is important to mention that all the aforementioned discussion must be comple-
mented with field campaign measurements to reduce the uncertainties as much as possible.
Although this type of high-resolution data is important, it is out of the scope of this paper
but should be taken into consideration in future research.

4.2. Model Evaluation and Monte Carlo Simulation

To evaluate the forecasting performance of deterministic and probabilistic models
obtained from Monte Carlo simulations, we conducted a statistical assessment using 20% of
the data. High-temperature events were defined based on the 95th percentile, as described
in the method. Overall, both ANN and RF deterministic models demonstrated a satisfactory
performance in detecting event occurrences and non-occurrences. However, they showed
advantages and disadvantages compared to each other (Figure 7d). RF performed better
than the ANN in predicting high-temperature events (HIT = 86.0% for RF and 80.3% for
ANN). Conversely, RF had a higher false alarm rate (FAR = 30.4%) compared to ANN
(FAR = 23.3%). Regarding the probability of detection (POC), ANN yielded slightly better
results with a performance of 96.3%, while the RF model achieved 95.0%.

In the case of the probabilistic model, our focus was primarily on testing temperatures
corresponding to high class, since they are the ones related to fires. The results (Figure 7d)
revealed that the ANN model achieved an HIT, FAR, and POC of 87.9%, 28.3%, and 95.7%,
respectively. The RF model yielded values of 95.6% for HIT, 47.9% for FAR, and 88.3% for
POC. Upon evaluation, it became evident that while the RF model excelled in predicting
high-class values, the ANN model demonstrated superior performance, particularly in
terms of the POC and especially in the FAR parameter. The ANN model exhibited a better
ability to recognize trends and accurately identify high-temperature probabilities.

Further analysis of the statistical parameters based on geographic location, as depicted
in Figure 7, reveals distinct performance characteristics. The southwestern and southern
regions of the SNSM demonstrated better model performance for high-temperature occur-
rences (HIT) (Figure 7a) and presented the lowest FAR (Figure 7b). This is probably due
to the higher frequency of wildfires in these areas, which facilitates the model’s training.
Conversely, the northeast slope displays a high HIT but, similar to the northern site, it
exhibits a higher number of false alarms. This could be linked to the fact that this area
generally presents unfavorable conditions for fires, such as high humidity, and therefore,
the anthropogenic factor may be more important compared to other areas [27,72], making
the prediction more challenging.

The eastern slope achieves intermediate–high precision, while the highest elevations
on the north side, characterized by the lowest wildfire incidence, display a good FAR but a
low HIT. This is primarily linked to a significant class distribution imbalance, which, in this
context, corresponds to a greater number of non-ignition temperatures in comparison to
wildfire temperatures, especially in high-altitude regions with fire-independent ecological
units. Such class distribution imbalances have been known to pose challenges in regression,
as documented in various studies related to forest fire prediction that use classifier learning
algorithms [50,51,93].
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In this study, we utilized an ANN to establish a deterministic model. Subsequently, we
integrated this model into Monte Carlo simulations to derive probabilistic results, offering
insights into the likelihood of different daily temperature classes. Figure 8a illustrates the
temperature scenario on a day without wildfires, showcasing the actual temperature, the
ANN-generated forecasts, and the corresponding probabilistic outcomes. These results
indicate a low probability of the area experiencing high temperatures, with the highest
likelihood observed in the southwestern region (approximately 15%) and probabilities
ranging from 0% to 6% in other areas. Medium- and low-temperature classes exhibit higher
probabilities across the entire region as expected due to the absence of fires that day.
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Figure 8. (a) Example of a day without wildfires which corresponds to 19 October 2020; (b) example
of a day with wildfires which corresponds to 17 February 2021. The yellow dots represent the location
of wildfires during the example day, which was randomly selected. Using other days leads to the
same results, which show the robustness of the ML technique. The maps were constructed using the
Cartopy library of Python [35].

Figure 8b depicts a different situation with two real fire hotspots. Here, the determin-
istic results also highlight two unusual temperature spikes right next to the real hotspots.
The probabilistic outcomes indicate a larger area with a high probability of belonging to
the high-temperature class, approximately 80% in the southwestern region and 57% in the
northeastern region, where it is observed that these areas include the real fire hotspots,
suggesting that even though an ignition occurred at a specific point, nearby zones also
exhibit favorable conditions for wildfires. Furthermore, the medium-temperature class
shows probabilities primarily ranging from 12% to 30%. Low-temperature class dominance
is observed mainly in the high altitudes of the northwest. It is important to mention that
selecting other days as examples leads to the same conclusions. Therefore, these results
demonstrate that the model is capable of being utilized in the creation of experiments
developed from sustainability strategies, contributing primarily to sustainability goals, i.e.,
SDG 15: Life on Land, SDG 11: Sustainable Cities and Communities, and SDG 13: Climate
Action.

4.3. Land Cover Characteristics and Risk

The vulnerability assessment results (Figure 9d) indicate that medium vulnerability
predominates across the study area. The highest vulnerability falls between medium
and high vulnerability, primarily observed in tropical dry forest ecological units located
in lower regions. This heightened vulnerability in the zonobiome is linked to elevated
average temperatures and the proliferation of grass and herb vegetation. These types of
vegetation are more susceptible to ignition due to their low moisture content, limited leaf
area, and high lignin percentages [54]. Their expansion is largely attributed to agricultural
and livestock activities. Additionally, areas near urban centers, particularly those within
wildland–urban interface (WUI) zones, exhibit notable vulnerability levels.
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The Andean, sub-Andean, and humid tropical zonobiomes exhibit vulnerability levels
mostly in the medium range. The highest vulnerability values are concentrated in the
WUI areas, particularly in the latter two zonobiomes. These higher vulnerability levels
are associated with vegetation cover that is more susceptible to fire, largely due to the
expansion of crop and pasture lands [94]. These changes in land use are driven by favorable
environmental conditions and, in recent years, the increasing water scarcity caused by palm
and banana crops [27]. During the dry season, the hydric deficit causes lowland farmers to
relocate their animals to higher altitudes in the Sierra to access water resources, which has
exerted additional pressure on the highland areas [27].

It is noteworthy that, according to the Red List of Ecosystems [59], a significant portion
of these previously mentioned ecological units is classified as vulnerable or in danger
due to the ongoing processes of ecosystem transformation. However, in these regions,
values slightly below medium vulnerability dominate. The prevalence of non-fire-prone
vegetation, represented by trees typical of forest biomes, contributes significantly since
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these trees exhibit higher interstitial moisture content in their tissues and boast a substantial
leaf area [54]. Additionally, lower than average temperatures and higher than average
precipitation levels characterize these areas in contrast to ecological units situated in lower
thermal zones.

In the aforementioned areas, vulnerability is primarily determined by the prevalence
of fire-sensitive ecological units, which naturally inhibit fire ignition and spread. Factors
contributing to this natural fire resistance include closed canopies blocking direct solar
radiation, low wind speeds within vegetation cover, and high humidity levels from ample
rainfall and robust evapotranspiration within dense vegetation [54,95,96]. Fire occurrence
in these units is likely due to anthropogenic activities igniting fires or altering the landscape.
These units lack adaptations for fire resistance, leading to significant disruptions in natural
cycles and extensive damage to flora and fauna. Deforestation and habitat fragmentation
further increase fire incidence by drying out forests and increasing fuel load, exacerbating
damage [4], particularly during drought conditions.

There are also ecological units in the study area that are influenced by fire to a lesser
extent. In these areas, fires often initiate in the most vulnerable vegetation types and then
spread to other areas depending on the characteristics of the available fuels, including
their quantity, humidity, and spatial distribution [54]. At the spatial scale evaluated in
this study, none of the ecological units fall into the fire-dependent category. However, a
comprehensive understanding of the role played by each ecological unit requires field
campaigns. These campaigns are essential for refining the classification and obtaining a
more accurate assessment. This means that fire is not a natural part of their ecological
processes, and these ecological units lack adaptive strategies to cope with wildfires [54].

Vulnerability between low and medium ranges is concentrated in the highest part of
the SNSM, which corresponds to the paramo orobiome and part of the Andean orobiome,
which is explained by the fact that these areas are isolated from urban centers, and this
reduces social vulnerability. Moreover, the ecological units located in this area are fire-
sensible and fire-independent (not susceptible), having a minimum probability of natural
fire occurrence due to physiognomic classification and structural factors as well as extreme
climatic conditions with low average temperatures and high humidity. It is essential to
acknowledge that for the species inhabiting these ecological units, fire can have catastrophic
consequences and may even lead to the local extinction of certain species [54]. Furthermore,
it is worth noting that grazing animals pose a significant challenge in the paramo, as their
presence contributes to desertification processes [89].

In terms of social vulnerability, the municipalities in the study area exhibit a low response
capacity (16% on average) to perform effectively to the management of wildfire risk. They face
difficulties primarily in the financial and socio-economic aspects, and they lack the necessary
tools and investment for disaster risk management. After obtaining and normalizing both the
global vulnerability and wildfire probability, we multiplied these values to calculate the overall
risk. An illustrative example of this is presented in Figure 9a–c, which corresponds to 1 March
2021. The map highlights areas with a risk level of up to 61% in the south and southwest, 55% in
the northeast, and 47% in the east. This underscores the pressing need for a mosaic of strategies
that integrate different SDGs, addressing social vulnerability and enhancing the sustainability
of wildfire risk management efforts.

4.4. Machine Learning Risk Management Strategies Evaluation

We create wildfire risk scenarios by adjusting both hazards (four scenarios) and vul-
nerability (three scenarios), providing a basis for developing sustainable management
strategies guided by fire-smart approaches. It is important to note that while some modi-
fied variables may be correlated, their behavior depends on various environmental con-
ditions [71,74,97,98]. Therefore, each scenario focuses on modifying a single variable.
Additionally, some risk reduction strategies proposed for each situation may generate a
specific scenario, while others may combine two or more effectively.
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The outcomes of the vulnerability scenarios (Figure 10) show a significant reduction,
particularly in the vegetation cover scenario, where the current cover was adjusted based
on the native and predominant vegetation of each ecological unit, resulting in a lowered
threat level for strategic ecosystems. In this scenario, areas dominated by grasses and herbs
within the Sub-Andean, Sub-Andean azonal orobiomes, tropical humid, and tropical alter-
nohygric zone biomes were transformed to feature a predominance of tree cover [94,99].
Similarly, within the Andean biome, areas with grasses and herbs were replaced by trees
and shrubs [63,100]. The most notable reductions were seen in the tropical humid zono-
biome, Sub-Andean orobiome, and Andean orobiome, followed by the paramo orobiome
(Figure 10a). This decline in vulnerability was primarily attributed to the sustainable
recovery of native vegetation cover, leading to significant improvements in the status of
threatened strategic ecosystems.
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In contrast, the scenario involving response capacity, characterized by the implementa-
tion of the Municipal Committee for Disaster Risk Management, adoption of the Municipal
Disaster Risk Management Plan, and execution of the Emergency Response Management
Strategy, coupled with an augmented per capita investment in sustainable risk management
(Figure 10b), resulted in relatively consistent decreases throughout the entire study area.
This was due to municipalities generally exhibiting similar index values. On the other hand,
in the climate modification scenario (Figure 10c), featuring a 1.5 ◦C temperature increase,
the observed changes were uniformly distributed across the study area, impacting all zones
equally.

In the context of risk calculated with the three vulnerability scenarios shown in Figure 11,
the southern, southeastern, and northeastern regions experienced more significant changes
across all scenarios. The most substantial risk reduction, totaling 12.4%, occurred through the
vegetation cover scenario (Figure 11a) in the southern and northeastern regions. Additionally,
reductions of approximately 7% were observed in the eastern slope (Lat: 10.75 and Lon: 73.27)
at medium and high altitudes. These regions are particularly vulnerable due to alterations in
vegetation cover compounded by adverse atmospheric conditions, especially during DJF and
MAM. The response capacity scenario (Figure 11b) showed the main reductions in the south and
west regions, with consistent changes across them. While the climate change scenario resulted in
a relatively low increase in risk, it is essential to note that the actual impacts of wildfires involve
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a range of indirect changes, and our understanding of these complex interactions remains
limited [101].
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Risk assessments with the four hazard scenarios (Figure 12), showed the most sig-
nificant reduction in risk occurring on the western slope and the southern region of the
SNSM. Additionally, a substantial risk reduction was observed in the northeastern region
throughout the year, especially during MAM, JJA, and SON. This pattern is likely due to
these areas frequently experiencing wildfires, particularly during these seasons marked
by unfavorable dry conditions, potentially exacerbated by human activities leading to
ignitions near populated areas. However, further research is needed for a more thorough
analysis. The eastern slope also demonstrated significant risk reductions throughout the
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year, except for the SON season, likely because September and October are the months
with the highest precipitation in this region [27,102]. This observation is significant because,
despite prevailing easterly winds that should bring humidity from the ocean, the presence
of the Serranía de Perijá (Lat: 10.88 and Lon: −72.96), a mountainous formation acting as a
barrier, impedes humidity influx (resulting in a rain shadow effect) [80]. Additionally, the
region experiences relatively drier atmospheric conditions [72].
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In the leaf skin reservoir content, relative humidity, and wind velocity scenarios (Figure 12a–c),
risk reduction was notably more prominent across the entire region during DJF and MAM, which
coincided with the months witnessing the highest number of wildfires. In contrast, during JJA
and SON, these enhancements were more concentrated in specific zones. Within the northern
and northwestern sites (Figure 12), the most significant improvements were observed in the risk
scenario involving an increase in leaf skin reservoir content (Figure 12a). These improvements were
comparatively minor in the other risk scenarios, primarily due to the limited incidence of wildfires in
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these areas. This is owed to their favorable relief conditions for conducting humid winds, promoting
the formation of cumulus clouds that precede precipitation [63,72,100]. Furthermore, these areas
generally experience lower temperatures and represent the most humid slopes when compared to
the east and west slopes [27], especially during the initial two seasons of the year, DJF and MAM.

The soil temperature decrease scenario (Figure 12c) yielded the most substantial
reduction in lower altitudes (<1300 m) of the southern and western regions, followed by the
leaf skin reservoir content scenario. In the east, the scenarios of wind velocity and leaf skin
reservoir content performed best, while in the central region, particularly at altitudes above
3000 m, leaf skin reservoir content provided the most effective results, especially during
DJF and MAM, with noticeable differentiation. RH exhibited its primary risk reductions
during DJF and MAM, with more uniform changes across the entire region. However,
unlike other scenarios that showed the most significant risk reduction in the south and
west during JJA, the RH scenario displayed its highest decreases concentrated in the south
and east, where more wildfires occurred during this period.

4.5. Strategies for Managing Risk with Vulnerability Scenarios

Based on our previous results, it is crucial to align actions with broader global sustain-
ability principles [23], addressing multifaceted challenges by integrating environmental,
social, and economic considerations. By incorporating Sustainable Development Goals
(SDGs) into our approach, we aim not only to protect ecological units from potential wild-
fires but also to contribute to global efforts to combat climate change, preserve biodiversity,
and foster resilient ecosystems (SDGs 13, 15). It is essential to note that strategies must
be tailored to the natural wildfire regime of ecological units, and our study area falls
into the category of non-fire-prone. Unlike fire-prone ecological units, which may benefit
from managed activities like prescribed burns but suffer from fire suppression [2,91], the
ecological units in our study area need to be isolated from fire and focused primarily on
wildfire prevention [103]. Therefore, restoring their original resistance by addressing their
structure and composition is imperative [104]. Various factors, including logging, burning,
and natural events, may have rendered certain zones susceptible to fire, with the potential
to become fire-prone.

Given this, the first vulnerability scenario (over the type and threat level of the strategic
ecosystem) is rooted in the introduction and invasion of non-native grasses, which has
resulted in a continuous fuel source. As fires become more frequent and extensive, cover
vegetation shifts towards more fire-prone vegetation [105,106]. In this way, reintroducing
native vegetation cover might enhance ecosystem resilience [107], contributing to the long-
term sustainability of the ecosystem. This aligns with global conservation efforts and
Sustainable Development Goal 15, which emphasizes the importance of protecting and
restoring terrestrial ecosystems.

The proposed strategy to mitigate vulnerability involves the restoration, preservation,
and conservation of low-flammable native plant species. For instance, in some ecosystems,
broad-leaved trees can aid in canopy closure, impeding the forest floor from drying out
and preventing the growth of flammable grasses and ferns [105,108]. This helps reduce
the accumulation of fine fuels on the forest floor. The careful selection of plant species is
crucial in this context [108,109]. In addition to native species restoration, a comprehensive
sustainability strategy necessitates the active management of invasive species, such as
pyrophilous grasses and shrubs. Invasive species, often exacerbated by previous fires, have
spread across various areas affected by severe deforestation [12]. For example, the northern
site of the park experienced extensive deforestation, with approximately 120,000 hectares
cleared during 1979–1985 [27]. This deforestation led to a significant increase in fire-prone
vegetation.

Additionally, the prevalence of class VII soils across the entire mountain system in-
dicates suitability for forestry purposes [27,110]. These soils are characterized by steep
slopes and have a high potential for severe water erosion due to heavy rainfall combined
with inadequate drainage. This suggests the potential for sustainable land use through
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restoration and conservation efforts, supported by habitat banks. Organizations required to
comply with mandatory environmental offsets and investments could establish extensive
land for preservation, restoration, and sustainable use activities for biodiversity conserva-
tion. Under this approach, the owner of the productive project only pays if the expected
environmental mitigation benefits are effectively achieved [111,112]. This strategy can
increase financial resources dedicated to conservation and reforestation efforts, aligning
with the objectives of SDG 15.

It is crucial to recognize that implementing such measures would require discontinu-
ing activities like agriculture and livestock farming in the Andean and Sub-Andean biomes.
These areas overlap with the National Park and indigenous reserves, encompassing both
crops and livestock at various altitudes, including paramo ecosystems [27]. Consequently,
a special management regime (REM) is in place, necessitating coordinated actions by the
environmental authority and the special indigenous public authority. This collaborative
effort aligns with global sustainability goals, emphasizing the harmonious coexistence of
human societies and ecosystems in Goal 15 [23], ensuring that the SNSM can accommo-
date social systems, including indigenous communities in the highest altitudes, without
compromising ecological systems.

As part of a strategy to provide alternatives for local farmers and indigenous commu-
nities, we recommend introducing mosaic agroforestry schemes in the lower regions of the
SNSM. This involves planting diverse native tree species, including both timber and fruit
trees, to create new economic opportunities for rural and indigenous populations [108].
Given that class VI soils designated for subsistence crops should also incorporate conser-
vation practices or be associated with tree cover [27], adopting such an approach ensures
that the land remains productive and ecologically sound. To implement this efficiently,
enhancing the transportation of agricultural products through infrastructure development
and strengthening business organizations among small producers is essential. This aligns
with the principles of the Colombian Green Growth Policy [113] and the integration of
ecosystems in poverty reduction and development processes (SDG 15).

In the context of the second vulnerability scenario (respond capacity increase), enhance-
ments to the risk management capacity index were implemented across each municipality.
The establishment of Municipal Committees for Disaster Risk Management, the develop-
ment of Municipal Disaster Risk Management Plans, and the formulation of Emergency
Response Management Strategies, combined with increased per capita investment in knowl-
edge and risk reduction, yielded significant reductions in vulnerability throughout the
region, within the scope of the respond capacity increase scenario.

The strategies related to the adoption of these measures encompass the establishment
of different measures, including mobility corridor signage in environmentally critical
areas, the continuous monitoring of potential high-risk zones, the control of pyrogenic
species, road maintenance, and public outreach campaigns, with a particular emphasis
on human–forest interactions, especially during dry conditions [114]. It is imperative to
keep the community informed about the ongoing risk management initiatives and the
progress being made by the pertinent institutions. Specific initiatives leveraging advanced
technologies, such as ML, have also been integrated into interventions. Examples include
the optimization of watchtower locations for forest fire monitoring and the development of
an interactive fire-spread simulation tool for fire managers [115].

In the context of the third vulnerability scenario (variation in climatic conditions),
where a +1.5 ◦C increase in average temperature is anticipated [64], there is an urgent need
to counteract the impacts of climate change. Shifting the focus towards adaptation efforts is
crucial as there has been a disproportionate emphasis on mitigation alone, especially in de-
veloping countries with a small percentage of pollution but potentially large impacts. Both
approaches play distinct roles in reducing damages [116]. Enhancing ecosystem resilience
can be achieved by intensifying the monitoring of stress precursors, promoting further
research, and advancing ecological education. These efforts will facilitate institutional
investment in critical areas to assess the future contributions of adaptation activities [117].
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It is essential that these endeavors complement programs established by administrative
institutions aiming to reduce anthropogenic stressors, including those related to people’s
lifestyles. Diverse options should be offered, independent of forest resources, to ensure
effective climate change adaptation.

4.6. Strategies for Managing Risk with Hazard Scenarios

Regarding hazard scenarios, it is essential to note that while various plant functional
traits influence vegetation flammability, the primary determinant is leaf moisture con-
tent [86]. Therefore, to reduce the risk, for the first scenario we increased leaf skin reservoir
content. This action favors vegetation’s natural tendency to suppress ignition and fire
spread, effectively minimizing flammability [105]. To this end, it must be recognized that
while soil water regulates root water uptake strategies, leaf skin reservoir content is highly
dependent on the intricate morphological and physiological mechanisms of individual
plant species [109,118]. This behavior is especially evident during drought periods [86] as
drought has proven to be the most critical threat to plants, surpassing other environmental
factors [119].

To support acclimatization, the promotion of increased leaf skin reservoir content can
be achieved by selecting native vegetation species with strong adaptability to soil water
fluctuations, especially in regions with variable climatic and meteorological conditions.
This approach may involve the incorporation of deep-rooted plants as their ability to access
water from deeper soil layers makes them well suited to thrive during stressful condi-
tions [120,121]. Examples of species might include Aspidosperma polyneuron (tropical dry
forest areas) with a positive response to spontaneous precipitation during dry months [122]
and Guaiacum officinale [89]. This promotes sustainable practices in afforestation, contribut-
ing to the broader goals of preserving and restoring terrestrial ecosystems outlined in
SDG 15. Such an approach may be combined with seed banks and nurseries to support
restorations, keeping the resources of high genetic variability species since some vegetation
mosaics prevent wildfire spread [123–125].

It is crucial to note that while specific vegetation types may dominate certain areas,
encouraging the coexistence of diverse species and cover types helps prevent soil water
deficits caused by competition among plants. Therefore, afforestation efforts should be
strategically planned, considering gradual planting and the removal of invasive species to
avoid water resource conflicts [121]. Enhancing water retention can also be achieved by
utilizing hydrogel material [126] and implementing soil structure management. Although
precipitation plays an important role in recharging water sources, it does not directly serve
vegetation. Instead, it is converted to soil moisture through the process of infiltration before
being absorbed by plant roots [98]. Moreover, the restoration and conservation of aquatic
systems are crucial for maintaining a sustainable water source available for vegetation.

The subsequent strategy involves the rigorous management of buffer zones and the
strategic placement of forest corridors to establish connectivity among all the ecological
units. This approach enhances the efficient flow of water, promotes microclimate restoration,
and mitigates the impacts of forest edges resulting from fragmentation [89,94]. These
edge effects, which extend 2–3 km deep into the forest, have been shown to influence
soil temperature, wind, sub-canopy humidity, and moisture levels, ultimately reducing
desiccation risk and minimizing fuel accumulation [106,127]. Given the direct correlation
of these effects with the increased occurrence of megafires [128], the implementation of the
aforementioned strategies is of paramount importance for mitigating their impacts.

To increase relative humidity, the second scenario, a crucial strategy involves preserv-
ing the integrity of water bodies such as rivers and lakes as they naturally contribute to
higher humidity levels as a result of continuous water evaporation. This is particularly
important in areas with a pronounced hydric deficit, in the warm lands of the western
and southeastern sides, mainly caused by extensive agro-industrial monocultures [27].
Moreover, restoring and conserving dense vegetation can enhance relative humidity by
facilitating substantial water release through plant transpiration. The canopy layer also
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retains humidity within the forest by minimizing its exchange with the external atmo-
sphere [120].

To address the third hazard scenario, mitigating soil temperature rise involves employ-
ing shade-providing vegetation and reducing direct exposure to solar radiation. This can
be coupled with watering practices or controlled supplemental irrigation systems, which
help alleviate thermal stress [108]. Enhancing water retention through improvements in
soil’s physical and chemical properties can further optimize this approach [98]. Proper land
use planning should ensure that areas near restored ecosystems are compatible with conser-
vation and reducing soil temperature. This planning is essential since soil exposure caused
by factors like cattle trampling can diminish the soil’s water retention capacity, ultimately
favoring fire incidents. These burns, often associated with grazing, significantly influence
the composition and structure of ecosystems such as paramo ecosystems in Colombia [12],
leading to species mortality and soil exposure. The undertaken measures align with specific
SDGs, including SDG 15 (Life on Land) for biodiversity conservation and SDG 13 (Climate
Action) for mitigating thermal stress.

To mitigate scenarios involving reduced wind velocity, the fourth scenario, strategic
approaches can be employed, including the use of tree belts or a green fire barrier tech-
nique [108,128]. These strategies are particularly effective in high-risk areas with strong
winds, often associated with drought conditions. The concept involves planting low-
flammable broadleaf evergreen trees strategically, creating barriers approximately 20–35 m
wide to prevent and obstruct the spread of wildfires. This supports a substantial increase in
afforestation efforts aligned with SDG 15 targets. This not only acts as a firebreak but also
promotes a moister microclimate. This approach has demonstrated successful outcomes,
especially when implemented in areas adjacent to locations where human activities are
prevalent as these are typically linked to wildfire incidents.

Our findings deepen our understanding of the intricate dynamics within complex sys-
tems, revealing crucial connections that clarify the interplay between various factors. This
increased clarity enables a more comprehensive visualization of key policies and interven-
tions, establishing a cohesive framework that strengthens sustainability through synergistic
strategies. Specifically, our research sheds light on the genesis of a leverage chain—a
scenario where interconnected points of influence mutually reinforce each other [129].
These implications extend to the improvement of strategic initiatives and interventions,
promoting a more integrated and harmonized approach to sustainability across diverse
domains.

5. Conclusions

In this study, we examined wildfires in a Caribbean region known for its diverse
ecology, topography, and weather. The area’s ecosystems lack adequate defenses against
increasing wildfires, posing a concern. To tackle this, we created risk scenarios to gauge
how changing conditions could lower overall risk.

We found that wildfires are influenced by various factors, with solar radiation, air, and
soil temperatures being notably higher during wildfire days throughout the year. Wildfires
occur in both high and low air temperature areas but are more common in conditions of
low humidity, precipitation, leaf moisture, and soil water, especially during certain seasons.
Northeast winds in winter and spring raise humidity in the north, lessening fire risk there
but exacerbating it in the southwest and east. Improving spatial data resolution through
regional modeling or downscaling is essential to reduce uncertainty, though in situ data
are crucial for validation.

We evaluated two machine learning models and found artificial neural networks
(ANNs) to be the most effective, especially when combined with Monte Carlo simulations,
for predicting wildfire occurrences. We assessed global vulnerability, finding medium
vulnerability across the region, varying with altitude. Lower altitudes are most vulnerable
due to combustible fuels and wildland–urban interface (WUI) areas. Vulnerability de-
creases with altitude, indicating human interventions and past fires may have heightened
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vulnerability. Integrating wildfire probability and global vulnerability, we developed risk
scenarios to identify influential variables in fire regimes across different zones and seasons.
Managing leaf moisture may mitigate risk at higher altitudes, while soil temperature and
wind management are crucial at lower altitudes.

Our strategies align with Sustainable Development Goals, emphasizing reintroducing
native vegetation and agroforestry at lower altitudes and institutional interventions for
vigilant monitoring and management. For hazard scenarios, restoring adaptable vegetation,
conserving water bodies, and establishing green fire barriers are recommended. Adapting
policies and interventions requires a holistic approach, focusing on data collection in high-
altitude environments and habitat preservation. Comprehensive data acquisition is crucial
for predicting and analyzing wildfires in the face of growing human and climate pressures,
supporting landscape protection efforts.
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Appendix A

Table A1. Results of the variance inflation factor (VIF) for the selected variables.

Variable Variance Inflation Factor

Evaporation 2.14
Precipitation 3.58

Leaf area index high vegetation 1.55
Leaf skin reservoir content 6.38

Solar radiation 4.04
WIND 2.95
DMC 4.63
DSR 3.37
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Appendix B

Table A2. Probability distribution of the selected ERA5 variables.

Variable Probability Distribution

Evaporation Burr
U component of wind Norm
V component of wind Norm

Precipitation Expon
Soil temperature Norm

Leaf area index high vegetation Norm
Dew point (used in FWI index) Burr

Air temperature (used in FWI index) Burr
Skin reservoir content Norm

Solar radiation Burr

Appendix C

Table A3. Reclassification of the cover type according to the dominant fuel type.

Type of Cover (Corine Land Cover Lever 3) Dominant Fuel Type

3.3.2. Stone outcrops Non-combustible
3.1.1. Dense forest Trees

3.1.3. Fragmented forest Trees
3.1.4. Gallery and riparian forest Trees

3.2.2. Shrubland Shrubbery
5.1.2. Natural ponds, lakes, and marshes Non-combustible

2.4.3. Mosaic of crops, pastures, and natural areas Grass/herbs
2.4.4. Mosaic of pastures with natural spaces Grass/herbs

2.4.2. Mosaic of pastures and crops Grass/herbs
2.4.1. Crop mosaic Herbs

2.3.3. Grassland with weeds Grass
2.3.1. Clean pastures Grass

3.2.1. Herbage Herbs
3.3.5. Glacial and snow zones Non-combustible

Table A4. Categories and rating of intrinsic variables of susceptibility obtained from the fuels model.

Vegetal Fuel Type Duration Fuel Load Fire Influence
on Ecosystems

1 Non-combustible Non-combustible Very low Not influenced
2 Trees >100 h Low Independent
3 Trees/shrubbery 10–100 h Medium Sensible
4 Shrubbery, herbs 1–10 h High Influenced
5 Grass/herbs 1 h Very high Dependent
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Table A5. Multicriteria matrix to evaluate the importance of the criteria according to multiple articles.

Ecological Vulnerability Socio-Economic Vulnerability

Reference
Net

Susceptibility of
Vegetation

Threatened
Ecosystems

Wildland–
Urban Interface

Response
Capacity

[130] 1 0 0 0
[131] 1 1 1 1
[132] 1 0 1 0
[133] 1 1 0 0
[134] 1 0 0 1
[58] 1 0 0 0

[135] 1 0 1 0
[136] 1 1 0 0
[137] 1 0 0 1
[138] 1 0 1 1
[139] 1 1 0 1
[140] 0 0 1 1
[141] 1 0 0 1
Total 12 4 5 7
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