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Abstract: The selection of the optimal equipment for discontinuous haulage systems is one of the
most important decisions that need to be made when an open-pit mine is designed. There are a
number of influencing factors, including natural (geological and environmental), technical, economic,
and social. Some of them can be expressed numerically, in certain units of measure, while others are
descriptive and can be stated by linguistic variables depending on the circumstances of the project.
These factors are characterized by a high level of uncertainty, associated with both exploration and
mining operations. The experience, knowledge, and expert judgment of engineers and specialists
are of key importance for the management of mining processes, consistent with the issues stemming
from the dynamic expansion of open-pit mines in space over time. This paper proposes an integrated
model that translates all the criteria that affect the selection of the optimal solution into linguistic
variables. By employing the multiple-criteria decision-making method and combining it with fuzzy
logic, we developed an algorithm that addresses all the above-mentioned uncertainties inherent
in various mining processes where the experience of experts forms the basis. The fuzzy analytic
hierarchy process is used in order to deal with trending decision problems, such as mining equipment
and management system selection. The entire algorithm was applied to a real case study—the
Ugljevik East 1 open-pit mine.

Keywords: equipment selection; mine mechanization; expert judgment; linguistic variables; MCDM; FAHP

1. Introduction

Mining is one of the base industries and in many countries, a key sector of the econ-
omy [1,2]. The excavation and haulage systems of open-pit mines deliver millions of
tons of useful material but also generate tens of billions of tons of waste rock per annum
globally [3]. This amount of material is accompanied by many problems [4], ranging from
geological to geopolitical. In recent times, the focus has been on environmental issues,
including transition to clean energy aimed at implementing renewable energy technolo-
gies [5] and defining stringent carbon dioxide emission restrictions. This topic has been
addressed in terms of both coals [6] and metallic ores [7,8].

Optimization of the entire system can determine whether a mining project is profitable
or not. Each stage of the process needs to be optimized (open-pit limits [9], the mining
method [10,11], the haulage system [12–14], the transportation equipment [15,16], the
drilling and blasting pattern [17], etc.).

The excavation of material from open-pit mines is accomplished by continuous or
discontinuous equipment, or a combination of the two. The type of equipment depends on
a large number of factors [18]. A discontinuous system largely relies on an excavator and a
number of dump trucks that haul the material [19]. Because of high capacities, excellent

Sustainability 2024, 16, 3156. https://doi.org/10.3390/su16083156 https://www.mdpi.com/journal/sustainability

https://doi.org/10.3390/su16083156
https://doi.org/10.3390/su16083156
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com
https://orcid.org/0000-0002-4839-1093
https://orcid.org/0000-0003-4387-9601
https://doi.org/10.3390/su16083156
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com/article/10.3390/su16083156?type=check_update&version=1


Sustainability 2024, 16, 3156 2 of 16

flexibility, and relatively low operating and capital costs, excavators and dump trucks
represent the most widely used load-and-haul method in open-pit mines [20]. Considerable
attention has been paid to the factors that affect excavator performance [21], especially
during the bucket cycle [22,23]. The most commonly used excavators are hydraulic and
electrical rope shovels [24] because of their compactness and a broad range of capacities and
possible bench heights. Another type of excavator that is often used is the dragline [25,26],
especially for surface coal mining [27–29]. A special feature of this excavator is that it can
operate independently (and transfer material) or work in tandem with dumpers that haul
the material.

One of the leading challenges of mining system optimization (including optimization
of the loading and haulage system) is the inability to consider criteria that cannot be
expressed numerically. It might be easier to use natural language and express the criteria
in linguistic variables, but their interaction needs to be determined. In jointly assessing
criteria that can and cannot be expressed numerically, the most convenient approach is to
apply multicriteria decision-making in combination with fuzzy logic.

Multicriteria decision-making methods take into account facts that are often ambigu-
ous and imprecise and with uncertainty factors, to which the response has been (in mining,
among other areas) to introduce fuzzy multicriteria decision-making (fuzzy MCDM).

An ever-present problem in mining practice is the optimization of the excavator–
truck system, which requires proper excavator and truck selection for existing mining
conditions [12,30]. In addition, optimization may focus on the selection of the truck type
and number for a given type of excavator or on the performance of multiple excavators and
several types of dump trucks [31]. The number of required bucket cycles is an important
factor when choosing a truck. According to research, the optimal number is 3–6 bucket
cycles [32]. The relationship between the capacities of the excavator and dump truck is
defined by a match factor [31], which needs to be within an appropriate range.

Dump truck optimization can be divided into several stages, the first of which would
be the choice of dump truck model for the given operating conditions [33,34]. The choice
of truck size directly affects the road width, and to a lesser extent the road length, because
of different minimum turning radii. Next is the selection of the number of trucks [35] and
their distribution [30], as well as optimal routing from the point of loading to the point of
unloading [36,37]. Haulage systems can also be compared in terms of energy consumption
so that aspect can be included in equipment selection as well [38].

The primary goal of equipment selection optimization is to achieve the required ca-
pacity, which equipment of certain size and characteristics will allow. Additional objectives
include safety at work, environmental protection, and profitability [20]. Total costs are one
of the important parameters that affect equipment selection given that the operating cost
of load-and-haul systems amount to 60% of the overall expenses of an open-pit mine [39].
If the same production capacity can be achieved with different types of haulage systems,
then optimization boils down to optimizing costs.

The selection of load-and-haul equipment has been largely based on experience-proven
methods, especially if the mine already operates certain models of excavators and trucks.
However, as new variants of equipment with improved features are developed, selection
methods need to be perfected [40].

Taking into account the above-mentioned challenges associated with mining processes,
the objective of the paper is to describe and establish methodologies that can be used to
select and design the optimal haulage system for the complex geological, technological,
economic, and environmental conditions typical of open-pit mines. Generally speaking, the
paper comprises three parts: problem description and introductory comments, description
of methodology, and application to a real case study. The starting point of the research
was the assumption that fuzzy MCDA can be used effectively to optimize the selection of
mining equipment, specifically the type of dump truck for an existing excavator.
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2. Methodology

Chang and Deng [41,42] describe a fuzzy approach to solving problems of qualitative
multicriteria analyses as applied to bid selection and choice of employee candidates using
different criteria. Inspired by their research, an algorithm was developed to address
complex mining problems, such as the design of optimal machinery and excavator–truck
systems. In general, the algorithm comprises three phases.

The first phase is the evaluation of conditions that will lead to adequate deployment
of the type of equipment—dump trucks (options) for transportation management—and an
analysis of effectiveness. The second phase includes the identification and detailed analysis
of the factors that affect the selection of the optimal type of dump truck for a given excavator–
truck system. The following factors were deemed to be universal: deposit and working area
conditions, capital cost, operating cost, organizational complexity, and road infrastructure.
The third phase evaluates the criteria and alternatives by fuzzy optimization and makes
the final decision about the optimal type of dump truck for the excavator–truck system. In
order to facilitate complex mathematical calculations associated with the determination of
the optimal solution and the sensitivity analysis, an application specially developed for that
purpose, FUZZY-GWCS® [43,44], was used in the third phase. Mathematical optimization
calculations were based on the fuzzy-AHP extent analysis, namely the fuzzy analytic
hierarchy process presented by Chang [41]. The mathematical optimization and decision-
making procedures are described below according to the algorithm shown in Figure 1.
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Figure 1. Mining transportation management system algorithm.

Experts face diverse problems in surface mining investigations, both geological and
those associated with the management of different operations and processes. Successful
development and design of alternative solutions require a large amount of knowledge in
multiple areas of expertise, such as geology, hydrogeology/dewatering, rock mechanics,
construction of drains, mining methods, transportation systems, machinery, and manage-
ment processes in mining. As such, experts conduct various types of analyses of the factors
inherent in open-pit mining in order to fully define their characteristics. A quality analysis
of all these factors directly influences the efficiency of designing a mining transportation
management system.
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After expert judgments are analyzed, alternative solutions are generated and the
criteria that govern the selection of the optimal solution are identified.

The process continues with the creation of a fuzzy MCDM model (i.e., a fuzzy-AHP
model). This is a long process with several steps and mathematical procedures, which
are repeated as required by the set hierarchy. Matrices are created and the criteria evalu-
ated against each other and also relative to the alternative solutions. A scale of relative
importance [45], or the so-called fuzzified scale [41,42,46], is used for this purpose, where
there is a connection between numerical values of triangular fuzzy numbers and linguistic
variables. Each element of the matrix is evaluated to formulate a question for the expert
who is studying the problem, namely, “Is one criterion more important than another in a
pairwise comparison and, if so, to what extent?”

The next step is determining the fuzzy synthetic degree value as follows. Let
X = {x1, x2, . . . , xn} be the analyzed set and G = {g1, g2, . . . gn} the target set. An ex-
tent analysis is conducted for all the elements of set X and each element of set G [47]. This
results in m extent analysis values for each element of set X as follows:

Mgi
1, Mgi

2, . . . , Mgi
m, i = 1, 2, . . . , n

where all of Mgi
j, j = 1, 2, . . . , m are triangular fuzzy numbers.

Let Mgi
1, Mgi

2, . . . , Mgi
m signify the extent analyses of the elements of those sets for

m. In this case, the fuzzy synthetic degree values (for i elements) are calculated as follows
(Equation (1)):

Si = ∑m
j=1 Mgi

j ⊗
[
∑n

i=1 ∑m
j=1 Mgi

j
]−1

, (1)

Otherwise, if triangular fuzzy numbers of the form M = (l, s, d) are considered, then
the following is applied (Equations (2)–(5)):

(M1 = (l1, s1, d1), M2 = (l2, s2, d2) . . .) : (2)

∑m
j=1 Mj

gi =
(
∑m

j=1 lj, ∑m
j=1 sj, ∑m

j=1 dj

)
(3)

∑n
i=1 ∑m

j=1 Mgi
j =

(
∑n

i=1 li, ∑n
i=1 si,∑n

i=1 di

)
, (4)

where Mgi
j(j = 1, 2, . . . n)

[
∑n

i=1 ∑m
j=1 Mj

gi

]−1
=

(
1

∑n
i=1 dj

,
1

∑n
i=1 sj

,
1

∑n
i=1 lj

)
(5)

Ultimately, the fuzzy synthetic degree value is expressed as follows (Equation (6)):

Si =
(
∑m

j=1 lj, ∑m
j=1 sj,∑m

j=1 dj

)
⊗
(

1
∑n

i=1 dj
,

1
∑n

i=1 sj
,

1
∑n

i=1 lj

)
(6)

The next step is to determine the degree of possibility. The first task of the fuzzy-AHP
process is to decide on the relative importance of each pair of factors in the same hierarchy.

A fuzzy matrix A =
(
aij
)

n×m is created using triangular fuzzy numbers and making
a pairwise comparison (of elements), where aij =

(
lij, sij, dij

)
. This satisfies the following

condition (Equation (7)):

lij =
1
lji

, sij =
1
sji

, dij =
1

dji
(7)

The final step of the FAHP analysis is determining the weight priority vector of each
criterion. This requires consideration of the fuzzy number comparison principles, or a
“min” and “max” strategy operation. Based on the above, the degree of possibility of two
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fuzzy numbers is determined by applying the principle of fuzzy number comparison, as
described below.

If two triangular fuzzy numbers, M1 ≥ M2, are compared, then the degree of possibil-
ity can be described as follows (Equation (8)):

V(M1 ≥ M2) = sup
x≥y

[
min

(
µM1(x), µM2(y)

)]
(8)

where if there are (x, y) pairs, such that x ≥ y and µM1 (x) = µM2 (y) = 1, then
V(M1 ≥ M2) = 1. Given that M1 and M2 are convex triangular fuzzy numbers, the
following can be applied (Equations (9) and (10)):

V(M1 ≥ M2) = 1 i f s1 ≥ s2 (9)

V(M2 ≥ M1) = 1 = hgt(M1 ∩ M2) = µM1(c) (10)

where c is the ordinate of the highest intersection point C between the membership functions
µM1 and µM2 (Figure 2).
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Finally, the degree of possibility for the triangular fuzzy numbers M1 = (l1, s1, d1) and
M2 = (l2, s2, d2) can equally be expressed as follows (Equation (11), point C):

V(M2 ≥ M1) = hgt(M1 ∩ M2) = dM2(c) =


1, i f s2 ≥ s1
0, i f l1 ≥ d2

l1−d2
(s2−d2)−(s1−l1)

, otherwise
(11)

Both values, V(M1 ≥ M2) and V(M2 ≥ M1), are needed to compare triangular fuzzy
numbers M1 and M2.

The degree of possibility for a convex triangular fuzzy number to be greater than k of
convex fuzzy number Mi, where i = 1, 2, . . . , k, can be defined as follows (Equation (12)):

V(M ≥ M1, M2, . . . Mk) = V[(M ≥ M1) ∧ (M ≥ M2) ∧ . . . ∧ (M ≥ Mk)] = minV(M ≥ Mi) (12)

The above leads to the following (Equation (13)):

c′(Ai) = minV(Si ≥ Sk), k = 1, 2, . . . , n; k ̸= i (13)

The next step is to define the weight priority vector, as follows (Equation (14)):

W ′ =
(

c′(A1), c′(A2), . . . , c′(An)
T
)

where Ai(i = 1, 2, . . . n) (14)
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Following normalization, the normalized weight priority vector is as follows
(Equation (15)):

W =
(

c(A1), c(A2), . . . , c(An)
T
)

(15)

where W is a defuzzified, conventional non-fuzzy number.
As mentioned at the beginning, these mathematical operations are undertaken to

compare the criteria to each other, as well as compare the alternatives separately for each
criterion. This results in matrices and weight priority vectors.

The final weights of the alternatives are calculated at the end of the mathematical
optimization operations. They are derived by additive aggregation, namely by multiplying
the weight priority vectors from the criteria matrix by the weight priority vectors calculated
in the evaluation of the alternatives relative to all the criteria. The alternative with the
highest value of the weight priority vector is the best choice.

On the other hand, a sensitivity analysis can be undertaken by introducing the optimiza-
tion index λ and calculating the total integral values—I—which results in the weights of the
alternatives that reflect the risk assessment of the expert as follows (Equation (16)) [48,49]:

I =
(dλ + s + (1 − λ)l)

2
, λ ∈ [0, 1] (16)

In the above equation, l, s, and d stand for triangular fuzzy number parameters
(Figure 2). For the optimization index, a greater value is indicative of a higher degree of
optimism. The scientists mentioned in the paper generally take the following values: 0 for
pessimistic, 0–5 for moderate, and 1 for optimistic.

Experts ultimately sublimate the entire algorithm-based analysis and produce a mul-
tiyear mining transportation management system plan. If implemented successfully, ore
mining and other mine management processes are systematized and simplified.

3. Case Study

The study area for the proposed algorithm was the open-pit mine Ugljevik East 1,
located in the northeastern part of Bosnia and Herzegovina (Figure 3). Coal is mined at
Ugljevik East 1 for the thermal power plant (TPP) Ugljevik.
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Figure 3. Geographical map of the study area.

In terms of genesis and sedimentation, the Ugljevik East 1 coal deposit falls within
the central part of the Ugljevik coal-bearing zone. According to the lithology (Figure 4),
paleontology, and superposition, the geologic framework of the area comprises Paleocene–
Eocene deposits, a complex of freshwater coal-bearing sediments, and Tortonian marine
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deposits. Ugljevik East 1 is a continuous extension of the Ugljevik coal-bearing formation
toward the east. In its southern part, the spread of the productive part of the formation
was discontinued by tectonic activity, which resulted in uplifting and exposed this part of
the formation to erosion. Coal is found in three to five seams, whose structure is highly
complex. The seams trend north–northeast at an angle of about 20◦ (or more in the northern
district). The coal at Ugljevik East 1 is of the brown (lignite) type. The thickness of the main
coal seam is mostly 15 to 20 m but can be up to 38.8 m in some places.
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The production capacity (1.8 × 106 t/year) and identified coal reserves can support
mining over the next 20 years. Apart from the coal, some 23 × 106 tons of waste is excavated
at Ugljevik East 1. The production system at the mine comprises the following:

1. Excavation, haulage, crushing, and deposition of the coal at the TPP;
2. Excavation, haulage, and disposal of the waste rock.

The entire coal-mining process also includes transportation by a system of belt convey-
ors to the TPP, as shown in Figure 5. The coal is mined by three excavators, two Komatsu
PC 1250SP and one Liebherr R974B. The dump trucks are Belaz (Žodzina, Belarus) of 90 t
payload capacity.
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As shown in Figure 6, the waste is currently transported by three types of dump trucks.
This situation is not optimal because of the different characteristics of the trucks (payload
capacities, speeds, loading times, size of working areas, etc.), which affect the productivity
of the entire system. Dump truck standardization tends to play a key role in servicing and
repair-cost reduction [50]. With all these factors being considered, the type of waste dump
trucks was optimized in this research. Given the positive experience gained so far, as well
as the fact that there are currently five Komatsu PC3000 excavators at Ugljevik East 1, the
excavator type was not examined. The study focused only on the selection of the type of
dump truck.
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4. Results and Discussion

Given past experience and the existing infrastructure with regard to dump truck
maintenance, repair, and management, all the considered trucks are made by Belaz.
Four alternative solutions, or four types of dump trucks, were examined to optimize
equipment selection:

- Alternative 1 (A1): Belaz 75581 (payload capacity 90 t);
- Alternative 2 (A2): Belaz 75145 (110 t);
- Alternative 3 (A3): Belaz 75135 (136 t);
- Alternative 4 (A4): Belaz 7517 (160 t).

The range of payload capacity (90 t to 160 t) was evaluated with respect to the size of
the mine, the properties of the coal deposit, and the required annual capacity of waste-rock
loading and haulage (22.3 × 106 t/year). The main characteristics of the considered trucks
are shown in Table 1.

Table 1. Main characteristics of the considered dump trucks.

Alternative
Payload
Capacity

(t)

Gross
Truck

Weight
(t)

Body
Volume

Heaped 2:1
(m3)

Engine
Power (kW)

Maximal
Speed
(km/h)

Truck Width
(m)

Turning
Radius

(m)

A1 90 164 53.3 895 60 5.36 11
A2 110 210 67 1194 64 6.4 13
A3 136 243 80 1194 50 6.4 13
A4 160 294 96.5 1492 65.6 6.9 14

To arrive at the optimal solution, dump truck performance was analyzed against
several criteria, including production performance, deposit and working-area conditions,
capital cost, operating cost, organizational complexity, and road infrastructure. It should be
noted that these criteria tend to be universal and applicable to many open-pit mines, albeit
with some adjustment of the relationships between the individual criteria depending on
the mining conditions. This was the approach followed in the assessment of the criteria
and their effect in accordance with the specific conditions at Ugljevik East 1. The criteria
that influenced the optimization of the dump truck type are briefly described below.

Production performance relates to the ability of each of the examined dump truck
types to achieve the given annual waste haulage capacity. Talpac–3D software 3.8 [51] was
used to simulate the operation of the PC3000 excavator with each of the four dump truck
types, providing data on production per operating hour and the number of needed trucks.
The results of the simulation showed that the production objectives can be achieved with
each of the four dump truck types, but the number of needed trucks varied depending on
truck productivity (Table 2).
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Table 2. Productivity and number of needed dump trucks.

Alternative
Payload
Capacity

(t)

Engine
Power
(kW)

Production per
Operating Hour

(t/h)

Number of
Needed Trucks

A1 90 895 137 29
A2 110 1194 151 27
A3 136 1194 172 25
A4 160 1492 244 19

Road infrastructure is a factor that influences, to a large extent, the selection of a
suitable dump truck type and size. The road infrastructure and dump truck type need
to be compatible in order to improve productivity and minimize production risks [52].
Dump trucks whose payload capacity is higher and whose size is consequently larger will
require wider roads and larger turning radii, as well as a higher load-bearing capacity of
the road. Such roads are more expensive due to the higher quality and larger quantity of
materials, higher maintenance spending, and the greater number of auxiliary equipment
units required. This analysis is based on the cost of constructing one meter of road, which
is governed by payload capacity (affecting the load bearing capacity of the road) and
the width of the truck (i.e., the width of the road). Table 3 shows the results of the road
infrastructure analysis relative to dump truck type.

Table 3. Cost of constructing one meter of road length depending on dump truck type.

Alternative
Payload
Capacity

(t)

Truck
Width

(m)

Road
Width

(m)

Road Cost
per 1 m of

Length
(€/m′)

A1 90 5.36 16.1 242
A2 110 6.4 19.2 288
A3 136 6.4 19.2 288
A4 160 6.9 20.7 311

Organizational complexity grows significantly as the number of units engaged in
waste haulage increases. A large number of haulage units have an adverse effect on
work organization given that equipment productivity may be impaired by bottlenecks,
delays, and additional losses during maneuvering at loading and unloading points. A
complex organization of operations requires considerable logistical support and encumbers
both maintenance and data and cost management [53]. Given that the organizational
complexity increases with the number of dump trucks, this criterion favors larger dump
trucks. However, a greater number of smaller dump trucks increase flexibility, which is
especially important where scheduling adjustments are nee, or where the application of
selective mining techniques is necessary (along structurally complex zones with a limited
working area).

Deposit and working-area conditions, such as the type, depth, angle, and engineering
geology characteristics of the deposit, have a significant effect on the selection of the mining
equipment types and sizes. Even though the focus of this research was on the selection of
the optimal dump truck for waste, the production conditions are largely determined by the
structure of the coal seams. In this regard, it should be noted that the geological structure
of the Ugljevik East 1 coal deposit is largely determined by the presence of numerous faults
(Figure 4) and the consequent high complexity (steep seam, extensive layering, loss of
geological continuity). This kind of structure impedes mining from slope-stability and
bearing-capacity perspectives and requires selective excavation. Such excavation of coal
and overburden along zones of often small size due to the presence of faults favors small-
size equipment, whereas the need to excavate large amounts of waste (high overburden
coefficient) gives preference to high-capacity equipment [54].
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Operating cost has a major effect on the profitability, sustainability, and efficiency of
mining operations. It includes expenses associated with labor and equipment operation
and maintenance. They are incurred throughout the life cycle of the equipment and largely
depend on the equipment size, number of units in operation, extent of use, and quality
of maintenance. In the present case study, the operating cost estimate was based on past
experience from Ugljevik East 1 and equipment manufacturer’s assessments [55].

Table 4 shows the labor cost by dump truck type and number. Based on data obtained
from the mine, the estimated gross labor cost of a single truck driver is EUR 2000 per month.
The labor costs in Table 4 favor larger dump trucks because they are more productive
(i.e., fewer dump trucks and fewer drivers needed).

Table 4. Labor costs by type of dump truck.

Alternative
Payload
Capacity

(t)

Number of
Needed
Trucks

Number of
Needed
Drivers

Labor Cost
per Year

(EUR/year)

A1 90 29 145 3,480,000
A2 110 27 135 3,240,000
A3 136 25 125 3,000,000
A4 160 19 95 2,280,000

The cost of materials is defined based on parameters such as engine power, fuel,
lubricants, and tires. They were calculated per ton of waste and then multiplied by the total
planned annual capacity for waste (23 × 106 t) to obtain the total annual cost of materials.
Table 5 shows the total cost of materials by type of dump truck.

Table 5. Cost of materials by type of dump truck.

Alternative
Payload
Capacity

(t)

Engine
Power
(kW)

Fuel
(EUR/t)

Lube
(EUR/t)

Tires
(EUR/t)

Total
(EUR/t)

Total
per Year

(EUR/Year)

A1 90 895 0.520 0.026 0.016 0.562 12,917,000
A2 110 1194 0.661 0.033 0.020 0.714 16,420,000
A3 136 1194 0.580 0.029 0.017 0.627 14,415,000
A4 160 1492 0.511 0.026 0.015 0.552 12,698,000

Capital cost refers to the procurement of equipment and is a very important factor
of the planning process. The objective is to achieve a balance between investment in and
productivity of mining equipment. Large expenditures, such as for the purchasing of large
dump trucks with a high payload capacity, often require unfavorable bank loans and have
an adverse effect on the economics of a project. On the other hand, the purchase price of
smaller dump trucks will be lower but so will the capacity. In addition, a larger number of
units will be required. As a result, smaller dump trucks, with a lower payload capacity, can
often generate a higher capital cost. The optimization of financial performance depends
to a large extent on efficient capital cost management coupled with the achievement of
an appropriate level of equipment productivity and reliability. Capital cost estimates are
generally based on the equipment buyer’s requirements and market research [56]. The
following parameters were analyzed in this regard: dump truck payload capacity, unit cost,
and the required number of dump trucks. Table 6 shows the total capital cost by the type of
dump truck.

As mentioned above, the range of payload capacity (from 90 t to 160 t) was consistent
with the size of the open-pit mine, the properties of the coal deposit, and annual require-
ments relating to waste loading and haulage. The decision to consider dump trucks made
by Belaz was justifiable according to past experience and the existing infrastructure for
vehicle maintenance, repair, and management.
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Table 6. Capital cost of dump truck procurement.

Alternative
Payload
Capacity

(t)

Purchase Price
per Unit

(EUR)

Number of
Needed Trucks

Total Truck
Capital Cost

(EUR)

A1 90 1,270,000 29 36,830,000
A2 110 1,400,000 27 37,800,000
A3 136 1,600,000 25 40,000,000
A4 160 1,770,000 19 33,630,000

The optimal solution in the present case was based on analyses of the performance of
the excavator–truck system against the following criteria:

Production performance;
Road infrastructure (K1);
Organizational complexity (K2);
Deposit and working-area conditions (K3);
Operating cost (K4);
Capital cost (K5).
The production performance criterion was analyzed in order to determine whether

each of the dump truck types could be used to haul waste. This analysis, completed by
means of Talpac software [51], showed that in technical terms, all the considered types
would be capable of handling the given volume of waste. After production performance
was assessed for each dump truck type, optimization proceeded with analyses of the other
five criteria.

The conditions prevailing at Ugljevik East 1 needed to be defined in order to assess
the other criteria. These criteria would not affect each other equally at another open-pit
mine. In effect, the conditions and their impact are individual features of each mine.

The fuzzy optimization methodology described above was followed using the identi-
fied criteria and alternatives. The calculations were made applying the specially developed
software FUZZY-GWCS [43,44]. The inputs were numerical values of linguistic variables,
represented by triangular fuzzy numbers. Table 7 shows the values of the criteria matrices
and the calculated values of their weight priority vectors.

Table 7. Analysis of criteria.

Criterion K1 K2 K3 K4 K5 Values of Weight
Coefficients

K1 1 1 1 1 2 3 2 3 4 4 5 6 5 6 7 0.215 0.348 0.550
K2 0.33 0.50 1 1 1 1 1 2 3 4 5 6 5 6 7 0.187 0.297 0.472
K3 0.25 0.33 0.50 0.33 0.50 1 1 1 1 3 4 5 4 5 6 0.142 0.222 0.354
K4 0.17 0.20 0.25 0.17 0.20 0.25 0.20 0.25 0.33 1 1 1 2 3 4 0.059 0.095 0.153
K5 0.14 0.17 0.20 0.14 0.17 0.20 0.17 0.20 0.25 0.25 0.33 0.50 1 1 1 0.028 0.038 0.056

Table 8 shows the evaluation of each alternative relative to each criterion. It also
includes the values of weight priorities.

Following evaluation, the final values of all the alternatives were calculated in the form
of triangular fuzzy numbers as were the final “weights” of the alternatives as non-fuzzy
numbers and the optimization indices shown in Table 9. Based on the interpreted results,
the largest “weight” was the “best” score. Alternative 4 (Belaz 7517 truck, payload capacity
160 t) was proposed as the best choice—the optimal haulage system. The runner up was
Alternative 2, and the least favorable solution was Alternative 1.

Figure 7 shows the total integral value for a moderate, pessimistic, and optimistic
expert’s risk assessment and the weights of the alternatives relative to the optimization
index. For an optimistic assessment (α = 1) of the decision-maker, the weights of the
alternatives vary over a very narrow range as compared to the pessimistic (α = 0) and
moderate (α = 0.5) assessments. Based on the sensitivity analyses of all the alternatives, on
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average, the differences in weight vary up to 1.03% for an optimization index of 0.5 and up
to 5.64% for an optimization index of 0.

Table 8. Analysis of alternatives relative to criteria.

Criterion A1 A2 A3 A4 Values of Weight
Coefficients

K1
A1 1 1 1 0.25 0.33 0.50 0.25 0.33 0.50 0.17 0.20 0.25 0.057 0.081 0.130
A2 2 3 4 1 1 1 1 1 1 0.33 0.50 1 0.148 0.241 0.404
A3 2 3 4 1 1 1 1 1 1 0.33 0.50 1 0.148 0.241 0.404
A4 4 5 6 1 2 3 1 2 3 1 1 1 0.239 0.437 0.750

K2
A1 1 1 1 2 3 4 4 5 6 7 8 9 0.342 0.494 0.711
A2 0.25 0.33 0.50 1 1 1 2 3 4 5 6 7 0.202 0.300 0.445
A3 0.17 0.20 0.25 0.25 0.33 0.50 1 1 1 3 4 5 0.108 0.161 0.240
A4 0.11 0.13 0.14 0.14 0.17 0.20 0.20 0.25 0.33 1 1 1 0.035 0.045 0.059

K3
A1 1 1 1 0.20 0.25 0.33 0.17 0.20 0.25 0.13 0.14 0.17 0.037 0.048 0.064
A2 3 4 5 1 1 1 0.25 0.33 0.50 0.17 0.20 0.25 0.111 0.166 0.249
A3 4 5 6 2 3 4 1 1 1 0.20 0.25 0.33 0.181 0.277 0.418
A4 6 7 8 4 5 6 3 4 5 1 1 1 0.352 0.509 0.738

K4
A1 1 1 1 0.14 0.17 0.20 0.20 0.25 0.33 1 2 3 0.061 0.108 0.180
A2 5 6 7 1 1 1 3 4 5 5 6 7 0.365 0.538 0.793
A3 3 4 5 0.20 0.25 0.33 1 1 1 3 4 5 0.188 0.293 0.449
A4 0.33 0.50 1 0.14 0.17 0.20 0.20 0.25 0.33 1 1 1 0.044 0.061 0.100

K5
A1 1 1 1 0.33 0.50 1 0.20 0.25 0.33 3 4 5 0.127 0.200 0.329
A2 1 2 3 1 1 1 0.20 0.25 0.33 3 4 5 0.146 0.253 0.418
A3 3 4 5 3 4 5 1 1 1 4 5 6 0.309 0.488 0.762
A4 0.20 0.25 0.33 0.20 0.25 0.33 0.17 0.20 0.25 1 1 1 0.044 0.059 0.086

Table 9. Ranking and selection of the optimal approach.

Fuzzy Number Value of Weight
Priority Vector

Final
Ranking

Sensitivity Analysis
L S D α = 0.0 α = 0.5 α = 1.0

A1 0.014 0.068 0.340 0.194 4 0.206 0.197 0.195
A2 0.017 0.090 0.476 0.271 2 0.271 0.271 0.271
A3 0.015 0.080 0.426 0.242 3 0.239 0.241 0.242
A4 0.017 0.096 0.517 0.294 1 0.284 0.291 0.293
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5. Conclusions

The selection of optimal equipment for a discontinuous haulage system is a complex
task of mining engineering. Decision-making requires reliable knowledge about all the
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required parameters of open-pit mining operations. This paper discusses all the criteria
for selecting the optimal dump truck for a predefined type of excavator. The criteria used
for the optimization model were based on the characteristics of the ore deposit, the work
conditions, the road infrastructure, the operational complexity, and the operating and
capital costs.

The FAHP method was used to create an integrated model capable of optimizing the
selection of optimal equipment for a discontinuous haulage system. Modeling included
defining of criteria of relevance to the loading and haulage operations, as well as options.
This created the conditions for further calculations that provided alternatives and ultimately
the optimal solution. The model combines multiple factors (criteria) that can be expressed
numerically and factors that are descriptive, which are expressed by linguistic variables.
FAHP is characteristic in that it solves problems in stages until the target is reached and is
based on expert judgment and assessment of priorities.

After the choice of dump trucks for an excavator-truck system at an open-pit coal
mine was optimized, Alternative A4 (Belaz 7517 truck, 160 t) was found to be optimal. The
result indicated that future procurement should be focused on larger trucks for overburden
haulage than for coal transportation.

The model was very efficient for dump truck selection for optimizing the excavator–
truck system. It can be applied to many open-pit mines where the type of truck needs to
be selected or where there is already an excavator–truck system in place that requires inte-
grated insight into as many factors of influence as possible, which cannot all be expressed
numerically for comparison purposes. In the presented case study, the model could be
used to determine the optimal alternative for the renewal of an overburdened dump truck
fleet or the unification of truck size.

The model has many advantages, but its application largely depends on the parame-
ters associated with an open-pit mine. As such, continuous production monitoring and
data collection are required and recommended. The presented study can be useful for
defining the evaluation criteria for an existing open-pit mine or for selecting and optimizing
excavator–truck systems in new mines with similar operating conditions.

The proposed model is universal in that it can be applied to all open-pit mines where
an excavator–truck system is used, with some adjustments to the evaluation criteria being
needed to reflect the specific case.

Contemporary conditions in the mining industry are characterized by a continuous
decline in the quality of deposits (reduced mineral content, unfavorable structural charac-
teristics of deposits, greater mining depths, etc.), progressively restrictive environmental
and other administrative norms, and a turbulent sociopolitical environment. These chang-
ing business conditions necessitate ongoing research and the development of enhanced
optimization methods. In this regard, future research should focus on the proper selection
and assessment of influential criteria, which, with the help of advanced mathematical tools
(optimization algorithms), are capable of determining the choice of an optimal solution
from a set of considered alternatives.

Despite the similarities among many mining projects, the set of influential criteria is a
unique characteristic of each location. This means that not only will different sets of criteria
be relevant, but their impact will also vary depending on the nature of the problem, i.e., the
characteristics of specific mining projects. For this reason, parameters related to mining
production, which affect evaluation criteria, must be continuously collected, statistically
processed, and systematically analyzed. Based on the gathered information, a database
needs to be formed to assist in selecting relevant parameters and in accurately assessing
their values. Optimization of a technological process should be re-executed as needed
based on changes in the values of influential parameters. The presented mathematical
model must be continuously improved to be robust enough to encompass all influential
parameters and thereby ensure the generation of optimal solutions.
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The presented interdisciplinary approach that connects surface mining (specifically
mining mechanization) with fuzzy optimization contributes to the sustainable and im-
proved handling of optimal equipment selection in mine management.
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