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Abstract: With the goal of carbon peaking and neutrality, carbon productivity has become a means of
sustainability in manufacturing, and the impact of the synergy of digitalization and servitization (DSS)
on carbon productivity (CP) deserves in-depth study. Based on data with respect to manufacturing in
30 provinces in China from 2013 to 2020, a coupled coordination degree model is used to calculate
the degree of manufacturing coordination. A regression effect model is used to explore the intrinsic
mechanism of the impact of DSS on CP. The main results show the following: (1) The DSS in
manufacturing positively contributes to enhancing CP, and there are non-linear features in both.
(2) Technological innovation can contribute to the impact of DSS on CP, as does industry structure,
and there is a mediating effect between the two. (3) When economic growth is used as the threshold,
DSS and CP reflect a positive “U” relationship. Based on the above findings, policy recommendations
are made to promote the sustainable development of manufacturing.

Keywords: synergy of digitalization and servitization; coupling coordination degree; positive “U”
relationship; carbon productivity; manufacturing

1. Introduction

Serious environmental degradation has accompanied economic development [1]. Eco-
nomic growth has increased the emission of greenhouse gases [2], of which CO2 is repre-
sentative, exacerbating harm to the ecosystem. Environmental protection has also become
a widespread concern in the world. China has become a large CO2-emitting country due to
its rapid economic development and industrialization [3]. China proposes carbon peaking
and carbon neutrality targets to realize global environmental protection [4]. In order to
steadily achieve this goal, manufacturing in China needs to realize green and sustainable
development [5]. Carbon productivity improvement can be used as a sustainable develop-
ment indicator to coordinate economic growth and reduce CO2 emissions. It is a sustainable
development path for the green development of manufacturing in China [6].

Carbon productivity is mainly concerned with the economic efficiency of carbon emis-
sions and has a reciprocal relationship with carbon emissions. Its essence lies in achieving
the maximum economic output while minimizing carbon emissions [7]. The synergy of
digitalization and servitization can be a viable path to increasing carbon productivity.
Digitalization has the potential to enhance the carbon productivity of manufacturing by
improving its R&D intensity and efficiency [8]. Servitization, the process by which manu-
facturing firms integrate services into their offerings, can indeed contribute to increasing
carbon productivity by improving their competitive advantage [9]. Enterprises harness the
synergies between manufacturing and productive services to broaden and deepen their
impact in the industry, thereby fostering sustainable development [10]. This includes opti-
mizing industrial layouts through industrial synergies to increase carbon productivity [11],
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and it also includes promoting high-quality manufacturing through digitalization and
servitization synergies and increasing carbon productivity [12].

In an analysis of the influence path of digitalization and servitization on carbon produc-
tivity, both industrial structure and technological innovation have important transmission
roles. Technological innovation can delay the emergence of the servitization paradox and
promote the servitization of manufacturing [13]. Similarly, technological innovation posi-
tively regulates the influence of manufacturing digitalization on carbon emissions [14] and
improves the carbon productivity of manufacturing. The digitalization and servitization of
manufacturing can promote a low-carbon economy and improve carbon productivity by
optimizing industrial structures [15,16]. As a result, technological innovation and industrial
structure can be an effective pathway for the synergy of digitalization and servitization
to enhance carbon productivity. Drawing from the environmental Kuznets curve theory,
the investigation into economic growth and carbon emissions reveals that the relationship
between them is mostly nonlinear. Yu studied economic growth as a threshold variable
and found the threshold effect of manufacturing on carbon emissions [17].

Most research involving carbon productivity focuses on the enhancement effect of
digitalization [8]. Digitalization improves carbon productivity by fostering technological
innovation and transforming industrial structures [14]. There is a scarcity of research
focusing on the enhancing effect of servitization on carbon productivity [9]. Research on
the specific path of enhancing carbon productivity is unclear. Current research mostly
focuses on a single dimension of digitalization or servitization to verify the impact on
carbon productivity, and there is a lack of relevant research on both dimensions. We aim
to fill the research gap by exploring the impact of the synergy between digitalization and
servitization on carbon productivity.

To sum up, this paper reviews the theoretical mechanism of the synergy of digi-
talization and servitization (abbreviated as DSS) affecting carbon productivity (CP) in
manufacturing and explores the following aspects: First, based on the coupled coordination
degree model, the synergy level of digitalization and servitization in manufacturing is
measured across provinces in China, and the development degree of DSS in each province
is clarified. Second, the regression effect model is used to verify the influence of manu-
facturing DSS on CP. Third, in the intrinsic mechanism of the impact of DSS on CP, the
mediating effects of technological innovation and industrial structure are further investi-
gated, and we verify the threshold effect of economic growth in the effect of DSS on CP.
This will provide theoretical reference and advice for eliminating the development gap of
DSS among provinces and enhancing the CP of manufacturing.

The first part provides a literature review, which discusses the literature related to
DSS and carbon productivity. The second part measures the degree of manufacturing DSS
and evaluates the developmental status of manufacturing DSS in the provinces of China.
The third part uses a dual fixed-effect model to explore the internal mechanism of the
impact of DSS on CP in manufacturing. Finally, we offer pertinent policy recommenda-
tions to furnish manufacturing with a theoretical framework and guidance for advancing
carbon productivity.

2. Literature Review and Hypothesis
2.1. Manufacturing DSS and Carbon Productivity

The digitalization and servitization of manufacturing exert a beneficial influence on the
expansion of carbon productivity, and the relationship between digitalization, servitization,
and carbon productivity does not comprise simple linear relationships [18,19]. Through
the value-added and substitution effects of digitalization, manufacturing can improve
operation efficiency, reduce unnecessary energy consumption, and improve carbon produc-
tivity [20]. Heo and others [21] believe that digitalization can directly promote technological
innovation, and technological innovation and industrial structure positively contribute to a
reduction in carbon emissions and the enhancement of carbon productivity [18]. On the
one hand, the development of digitalization needs the support of technology, infrastructure,
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and other aspects. The development of digitalization, while increasing economic growth,
also increases carbon emissions. The contribution to carbon productivity in manufacturing
is therefore not significant [22,23]. On the other hand, digitalization makes rational use of
resources in manufacturing by means of digital technology, which reduces energy consump-
tion and improves energy utilization efficiency [24,25]. This promotes industrial economic
growth and improves carbon productivity [26]. Similarly, manufacturing promotes the
development of servitization and carbon productivity based on its own technological and
industrial advantages [27]. Servitization can curtail energy consumption and diminish
carbon emissions within the manufacturing sector by increasing the input of service el-
ements [28]. Technological innovation, energy structure optimization, and other means
are utilized to curtail energy consumption in manufacturing, enhance energy efficiency,
and increase carbon productivity [29]. However, some scholars have pointed out that
the technology required for the servitization of manufacturing to develop can accelerate
resource consumption, creating the servitization paradox [30]. This makes servitization
and carbon productivity reflect a non-linear relationship.

Current studies on carbon productivity found that there are positive “U” [31], positive
“N” [32], and other characteristics of carbon productivity. Xu and others [31] confirmed
that the interplay between manufacturing and producer services, along with carbon pro-
ductivity, exhibits “U” characteristics. Only a high level of synergies can promote carbon
productivity. Song and Han [32] found that environmental regulation has an “N” relation-
ship with carbon productivity across time and geography. Zhang [33] proposed that there
exists a positive “U“ feature between economic growth and carbon productivity, but the
conclusion has not been further empirically tested.

Based on the above theories, it becomes evident that digitalization and servitization
exert a positive promotional impact on carbon productivity. Digitalization can realize low-
carbon development and improve carbon productivity in manufacturing [34]. Similarly,
manufacturing uses its collaboration in the process of servitization development to promote
manufacturing production efficiency and enhance carbon productivity [35]. Therefore,
further research is carried out to verify the influence of DSS on carbon productivity and
explore the nonlinear relationship between DSS and carbon productivity.

H1. The DSS exerts a positive influence on carbon productivity, and the two have nonlinear
characteristics.

2.2. Conduction Path Analysis

Industrial structure and technological innovation are important paths for manufactur-
ing digitalization and servitization to reduce carbon emissions [15,29] and improve carbon
productivity. Digitalization development can stimulate enterprises to change the traditional
production model, develop a low-carbon model, and optimize industrial structure [36].
Through the upgrading of the enterprise’s industrial structure, improvements in the level
of technological innovation and carbon productivity can be achieved. [37]. The optimiza-
tion of industrial structure and improvements at the level of technological innovation can
improve resource utilization and reduce carbon emissions. They have a direct or indirect
impact on enhancing carbon productivity [14]. The advancement of servitization fosters
technological innovation within enterprises and optimizes their industrial structure, con-
tributing positively to enhancing carbon productivity in manufacturing [38]. Optimizing
industrial structure through the servitization approach has become a development trend
in manufacturing. The substitution effect of service factors is utilized to reduce the input
of energy factors and optimize the industrial structure of manufacturing. This provides
an important impetus to decrease carbon emissions and bolster carbon productivity [39].
Manufacturing servitization improves the level of technological innovation in manufac-
turing through the input of knowledge factors. It leverages the positive externality of
technological innovation to influence production activities positively, enhancing energy
efficiency and carbon productivity [40].
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H2. Industrial structure and technological innovation serve as effective strategies for DSS to
enhance carbon productivity.

There are many research studies on economic growth and carbon emissions, but
their conclusions are not consistent. Mujtaba and others [41] believe that there exists an
inverse relationship between economic growth and carbon emissions, while Adjei and
others [42] found a positive correlation between the two through empirical tests. Chen [43]
empirically established an inverted “U” feature between economic growth and carbon
emissions. However, Jiang [44] proposed that economic growth and carbon emissions
do not exhibit an inverted “U” feature; instead, long-term changes with other shapes
are exhibited. In the short term, economic growth raises carbon emissions at the cost of
energy consumption. In the long term, economic growth contributes positively to reducing
carbon emissions by changing the economic system and optimizing industrial structure [45].
Yu [17] verified that economic growth has a threshold effect on carbon emissions. He found
that when economic growth exceeded the threshold, carbon emissions from enterprises
relying on the development of highly polluting industries would increase. Li and Wang [46]
discovered a positive influence between GDP and carbon productivity, which indicates
that economic growth promotes carbon productivity. Wu and Yao [47] estimated economic
growth patterns through economic growth and carbon productivity. They concluded that
economic growth and carbon productivity had a two-way promoting effect. To sum up,
economic growth significantly contributes to the enhancement of carbon productivity. We
further verify the impact of DSS on carbon productivity with the development of the
manufacturing economy when economic growth is the threshold variable.

H3. There is a threshold effect in the relationship between DSS and carbon productivity, which
results in a positive “U” relationship between DSS and carbon productivity.

3. DSS Analysis for Manufacturing
3.1. The Coupling Coordination Degree

The coupling coordination degree measures the degree to which many elements
within a system interact with each other. Based on the practices of Ma and others [48],
by improving existing models, the DSS models of manufacturing industries in different
provinces are proposed as follows:

Cit = 2
√

uit × vit/(uit + vit) (1)

In Equation (1), Cit indicates the degree of coupling between digitalization and serviti-
zation in manufacturing, and a larger Cit indicates better coupling between the two systems.
uit is the digitalization score of province i in year t, and vit is the servitization score of
province i in year t.

Tit = α × uit + β × vit (2)

DSSit =
√

Cit × Tit (3)

The coupling coordination degree is a further confirmation of the relationship between
digitalization and servitization in manufacturing, and it more accurately reflects the DSS in
manufacturing for each province. In Equation (2), α and β are coefficients to be determined;
α represents the weighting in the manufacturing digitalization score and β represents
the weighting in the manufacturing servitization score: α + β = 1 and α = β = 0.5. In
Equation (3), DSSit represents the degree of the DSS development of province i in year t.

Combining the criteria for classifying the levels of coupling coordination by Yang and
others [49], this paper classifies manufacturing DSS into five types. The classification of
DSS is shown in Table 1.
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Table 1. DSS evaluation criteria.

Range of Values Grade Level Identification Synergy State Description

0 ≤ DSS < 0.2 Incongruity E No synergy, in a state of irrelevance, with a bias
towards disorderly development

0.2 ≤ DSS < 0.4 Severe disorder D Lower level of synergy, in a haphazard state, entering
a slow growth phase

0.4 ≤ DSS < 0.6 Primary coordination C General level synergy, in a state of loose partnership,
entering an accelerated growth phase

0.6 ≤ DSS < 0.7
Moderate coordination B

Medium–high-level synergy, in a state of healthy
cooperation, entering a phase of rapid growth.0.7 ≤ DSS < 0.8

0.8 ≤ DSS < 0.9 Good coordination
A

High synergy, in a highly cooperative state, entering a
period of growth and mutation that will result in a

new orderly structure0.9 ≤ DSS ≤ l High-quality
coordination

3.2. Index Selection and Data Source
3.2.1. Manufacturing Digitalization

In this paper, we select the indicators related to the regional digitalization level and
apply the entropy value method to obtain the scores of each indicator. Finally, the index
value of manufacturing digitization level in 30 provinces of China is obtained, as shown in
Tables 2 and 3.

Table 2. Manufacturing digitalization indicator system.

Type Indicator Description Indicator Description

Digital Input

Number of enterprises with R&D activities [50]
Reflects talent investmentNumber of enterprises with R&D activities [50]

Percentage of businesses with e-commerce trading activities [51]

Reflects infrastructure investment
R&D funding [50]

Computers per 100 people [52]
Number of websites per 100 businesses [52]

Digital Output

Revenue from sales of new products in manufacturing [53]
Reflects the output of technical and

economic benefits
Number of valid invention patents [53]

Operating income [53]
Unit energy consumption [54] Reflects the output of ecological benefits

Investment completed in industrial pollution control [55]

Table 3. Manufacturing digitalization level composite score.

Province
Year

2013 2014 2015 2016 2017 2018 2019 2020

Beijing 0.1096 0.1703 0.3774 0.3890 0.3527 0.3159 0.1629 0.2207

Tianjin 0.1729 0.5785 0.4991 0.2929 0.2418 0.1605 0.6212 0.2814

Hebei 0.2583 0.1682 0.4176 0.1529 0.0763 0.1438 0.3527 0.2435

Shanxi 0.1636 0.2065 0.0761 0.0361 0.0945 0.1757 0.0276 0.0346

Inner Mongol 0.0114 0.0165 0.0196 0.0241 0.0241 0.0211 0.0227 0.0273

Liaoning 0.0508 0.0586 0.0543 0.0538 0.0563 0.0622 0.0657 0.0734

Jilin 0.0114 0.0170 0.0201 0.0244 0.0266 0.0212 0.0228 0.0256

Heilongjiang 0.0124 0.0165 0.0168 0.0194 0.0208 0.0188 0.0228 0.0286

Shanghai 0.0887 0.1053 0.1127 0.1181 0.1241 0.1282 0.1398 0.1495

Jiangsu 0.2799 0.3387 0.3767 0.4124 0.4209 0.4437 0.5023 0.5426

Zhejiang 0.2091 0.2363 0.2635 0.2872 0.2951 0.3197 0.3665 0.4128

Anhui 0.0595 0.0821 0.0977 0.1126 0.1256 0.1312 0.1489 0.1652
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Table 3. Cont.

Province
Year

2013 2014 2015 2016 2017 2018 2019 2020

Fujian 0.0580 0.0714 0.0819 0.0961 0.1019 0.1141 0.1316 0.1492

Jiangxi 0.0205 0.0283 0.0379 0.0467 0.0561 0.0688 0.0853 0.1002

Shandong 0.1752 0.2057 0.2291 0.2644 0.2845 0.2858 0.2365 0.2869

Henan 0.0634 0.0791 0.0916 0.1036 0.1146 0.1188 0.1211 0.1337

Hubei 0.0576 0.0737 0.0877 0.1036 0.1070 0.1180 0.1315 0.1457

Hunan 0.0528 0.0670 0.0796 0.0937 0.1037 0.1221 0.1336 0.1483

Guangdong 0.2572 0.3003 0.3468 0.4054 0.4810 0.5294 0.5999 0.6575

Guangxi 0.0137 0.0176 0.0165 0.0222 0.0233 0.0258 0.0292 0.0348

Hainan 0.0102 0.0132 0.0139 0.0152 0.0158 0.0139 0.0145 0.0146

Chongqing 0.0223 0.0337 0.0429 0.0531 0.0611 0.0653 0.0699 0.0807

Sichuan 0.0397 0.0552 0.0655 0.0819 0.0902 0.0919 0.1052 0.1212

Guizhou 0.0048 0.0095 0.0133 0.0221 0.0248 0.0259 0.0277 0.0315

Yunnan 0.0092 0.0150 0.0213 0.0273 0.0292 0.0310 0.0379 0.0399

Shanxi 0.0232 0.0321 0.0364 0.0450 0.0505 0.0528 0.0587 0.0672

Gansu 0.0038 0.0077 0.0107 0.0121 0.0107 0.0106 0.0134 0.0148

Qinghai 0.0002 0.0017 0.0034 0.0047 0.0063 0.0090 0.0112 0.0124

Ningxia 0.0016 0.0040 0.0070 0.0086 0.0101 0.0118 0.0107 0.0146

Xinjiang 0.0026 0.0060 0.0081 0.0091 0.0086 0.0103 0.0112 0.0132

3.2.2. Manufacturing Servitization

To assess the extent of servitization in manufacturing, we draw on the measures of
Li [56] and Oh [57] for empirical exploration. The DEA–Malmquist index is utilized to
assess the evolution of total factor productivity in servitization within the manufacturing
sector across 30 provinces in China over the period from 2013 to 2020. The relevant
indicators of regional service levels were selected, as shown in Table 4. The scores of each
index were obtained using the DEA–Malmquist index and the entropy value method, as
shown in Table 5.

Table 4. Manufacturing servitization indicator system.

Type Indicator Description References

Servicing Input Indicators

Selling costs [58]
Reflect capital investment in marketing,

after-sales, and others
Management costs [58]

Finance costs [58]
R&D funding [59] Reflect labor input in R&D, design, and others

R&D staff [59]

Servicing Output Indicators Operating income [60] Reflect the service output of manufacturing
Number of valid invention patents [59]

Table 5. Manufacturing servitization level composite score.

Province
Year

2013 2014 2015 2016 2017 2018 2019 2020

Beijing 0.6052 0.5791 0.9811 0.7431 0.7228 0.8505 0.6226 0.6488

Tianjin 0.4688 0.4340 0.7547 0.6386 0.7417 0.2235 0.6763 0.6284

Hebei 0.4848 0.3803 0.5370 0.4848 0.5356 0.5225 0.3672 0.4891
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Table 5. Cont.

Province
Year

2013 2014 2015 2016 2017 2018 2019 2020

Shanxi 0.5428 0.5660 0.7634 0.3991 0.3614 0.6502 0.5907 0.5515

Inner Mongol 0.3817 0.5414 0.4615 0.4267 0.9536 0.2250 0.6328 0.5269

Liaoning 0.5152 0.6763 0.6488 0.3687 0.2729 0.5689 0.6183 0.7663

Jilin 0.5065 0.5254 0.5414 0.4485 0.7678 0.9086 0.0595 0.5022

Heilongjiang 0.4412 0.5588 0.5559 0.5385 0.6894 0.3280 0.5820 0.7083

Shanghai 0.2772 0.5849 0.6110 0.9637 0.5167 0.8171 0.8766 0.4136

Jiangsu 0.4775 0.3904 0.6633 0.6168 0.6792 0.6372 0.3991 0.4107

Zhejiang 0.4993 0.3991 0.6386 0.4877 0.5646 0.5152 0.5893 0.6226

Anhui 0.6807 0.6357 0.7460 0.6865 0.5936 0.6009 0.3759 0.5864

Fujian 0.4673 0.4412 0.7547 0.6546 0.5893 0.5559 0.6313 0.6415

Jiangxi 0.5080 0.4209 0.6734 0.4514 0.5428 0.4020 0.2946 0.5588

Shandong 0.5530 0.5399 0.6865 0.5791 0.6226 0.6226 0.2714 0.3309

Henan 0.4673 0.4804 0.7242 0.5225 0.5791 0.8433 0.0000 0.6575

Hubei 0.4949 0.5718 0.7286 0.6357 0.6749 0.5225 0.4049 0.7576

Hunan 0.5791 0.5573 0.6705 0.5007 0.6604 0.6531 0.3570 0.5515

Guangdong 0.5617 0.5965 0.9086 0.9086 0.6343 0.7504 0.4906 0.5646

Guangxi 0.6139 0.5922 0.8897 0.6415 0.6023 0.7997 0.2496 0.3861

Hainan 0.6212 0.7460 0.6734 1.0000 0.5007 0.2380 0.7765 0.5849

Chongqing 0.4978 0.3425 0.6691 0.6067 0.9042 0.4557 0.3556 0.5922

Sichuan 0.5022 0.6880 0.5486 0.5457 0.6444 0.5167 0.3774 0.5573

Guizhou 0.7358 0.7068 0.6821 0.5443 0.7141 0.4122 0.2961 0.5080

Yunnan 0.6212 0.5776 0.6096 0.4586 0.3962 0.4964 0.6604 0.4819

Shanxi 0.5254 0.4775 0.6328 0.5994 0.6226 0.8534 0.4659 0.7184

Gansu 0.6589 0.6328 0.6604 0.5109 0.4557 0.6952 0.5327 0.4369

Qinghai 0.7605 0.5327 0.9913 0.2482 0.5631 0.7199 0.3135 0.7228

Ningxia 0.5864 0.6589 0.5747 0.4165 0.4906 0.6255 0.6851 0.7286

Xinjiang 0.5530 0.5370 0.6502 0.4122 0.6096 0.8839 0.7678 0.6531

3.2.3. Data Source

The data in this paper cover the period 2013–2020. The main sources of data are the
China Statistical Yearbook (2014–2021), China Industry Statistical Yearbook (2014–2021),
China Energy Statistical Yearbook (2014–2021), China Statistical Yearbook on Science and
Technology (2014–2021), National Bureau of Statistics, and statistical yearbooks for each
region. Xizang has been excluded from the measurement due to more serious data deficien-
cies, while Hong Kong, Macau, and Taiwan are not included.

3.3. The Manufacturing DSS

According to the development level of the digitalization and servitization of man-
ufacturing measured in the previous section, this study used the coupling coordination
degree model to calculate DSS for the 30 provinces of China and their coordination levels,
as shown in Table 6. The specific trends are shown in Figure 1.
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Table 6. Degree of DSS and level of coordination in manufacturing.

Province
Year

2013 2014 2015 2016 2017 2018 2019 2020

Beijing 0.5075 (C) 0.5604 (C) 0.7801 (B) 0.7332 (B) 0.7106 (B) 0.7199 (B) 0.5644 (C) 0.6151 (B)

Tianjin 0.5336 (C) 0.7078 (B) 0.7834 (B) 0.6577 (B) 0.6507 (B) 0.4352 (C) 0.8051 (A) 0.6485 (B)

Hebei 0.5949 (C) 0.5029 (C) 0.6881 (B) 0.5218 (C) 0.4497 (C) 0.5235 (C) 0.5999 (C) 0.5874 (C)

Shanxi 0.5459 (C) 0.5847 (C) 0.4909 (C) 0.3464 (D) 0.4298 (C) 0.5814 (C) 0.3574 (D) 0.3716 (D)

Inner Mongol 0.2570 (D) 0.3072 (D) 0.3083 (D) 0.3184 (D) 0.3894 (D) 0.2626 (D) 0.3463 (D) 0.3465 (D)

Liaoning 0.4021 (C) 0.4461 (C) 0.4332 (C) 0.3753 (D) 0.3520 (D) 0.4337 (C) 0.4490 (C) 0.4870 (C)

Jilin 0.2754 (D) 0.3074 (D) 0.3230 (D) 0.3233 (D) 0.3780 (D) 0.3726 (D) 0.1919 (F) 0.3366 (D)

Heilongjiang 0.2718 (D) 0.3100 (D) 0.3109 (D) 0.3196 (D) 0.3460 (D) 0.2804 (D) 0.3393 (D) 0.3773 (D)

Shanghai 0.3960 (D) 0.4982 (C) 0.5123 (C) 0.5809 (C) 0.5032 (C) 0.5689 (C) 0.5917 (C) 0.4987 (C)

Jiangsu 0.6046 (B) 0.6030 (B) 0.7070 (B) 0.7102 (B) 0.7312 (B) 0.7292 (B) 0.6691 (B) 0.6871 (B)

Zhejiang 0.5684 (C) 0.5542 (C) 0.6405 (B) 0.6118 (B) 0.6389 (B) 0.6371 (B) 0.6817 (B) 0.7120 (B)

Anhui 0.4486 (C) 0.4780 (C) 0.5195 (C) 0.5273 (C) 0.5226 (C) 0.5299 (C) 0.4864 (C) 0.5579 (C)

Fujian 0.4057 (C) 0.4213 (C) 0.4987 (C) 0.5008 (C) 0.4951 (C) 0.5019 (C) 0.5369 (C) 0.5562 (C)

Jiangxi 0.3193 (D) 0.3304 (D) 0.3996 (D) 0.3811 (D) 0.4178 (C) 0.4078 (C) 0.3981 (D) 0.4864 (C)

Shandong 0.5579 (C) 0.5773 (C) 0.6298 (B) 0.6256 (B) 0.6488 (B) 0.6495 (B) 0.5034 (C) 0.5551 (C)

Henan 0.4150 (C) 0.4415 (C) 0.5075 (C) 0.4824 (C) 0.5076 (C) 0.5626 (C) 0.0079 (E) 0.5445 (C)

Hubei 0.4108 (C) 0.4530 (C) 0.5028 (C) 0.5066 (C) 0.5184 (C) 0.4983 (C) 0.4804 (C) 0.5764 (C)

Hunan 0.4182 (C) 0.4396 (C) 0.4807 (C) 0.4654 (C) 0.5115 (C) 0.5314 (C) 0.4673 (C) 0.5348 (C)

Guangdong 0.6165 (B) 0.6506 (B) 0.7492 (B) 0.7790 (B) 0.7432 (B) 0.7939 (B) 0.7365 (B) 0.7806 (B)

Guangxi 0.3026 (D) 0.3197 (D) 0.3478 (D) 0.3456 (D) 0.3440 (D) 0.3788 (D) 0.2922 (D) 0.3404 (D)

Hainan 0.2823 (D) 0.3149 (D) 0.3113 (D) 0.3509 (D) 0.2984 (D) 0.2396 (D) 0.3258 (D) 0.3038 (D)

Chongqing 0.3246 (D) 0.3279 (D) 0.4115 (C) 0.4237 (C) 0.4849 (C) 0.4153 (C) 0.3971 (D) 0.4675 (C)

Sichuan 0.3757 (D) 0.4415 (C) 0.4354 (C) 0.4597 (C) 0.4911 (C) 0.4669 (C) 0.4464 (C) 0.5098 (C)

Guizhou 0.2437 (D) 0.2863 (D) 0.3085 (D) 0.3311 (D) 0.3648 (D) 0.3215 (D) 0.3010 (D) 0.3558 (D)

Yunnan 0.2749 (D) 0.3050 (D) 0.3374 (D) 0.3345 (D) 0.3280 (D) 0.3522 (D) 0.3977 (D) 0.3725 (D)

Shanxi 0.3323 (D) 0.3519 (D) 0.3895 (D) 0.4054 (C) 0.4210 (C) 0.4608 (C) 0.4067 (C) 0.4687 (C)

Gansu 0.2240 (D) 0.2642 (D) 0.2898 (D) 0.2805 (D) 0.2646 (D) 0.2931 (D) 0.2908 (D) 0.2838 (D)

Qinghai 0.1055 (E) 0.1745 (E) 0.2409 (D) 0.1852 (F) 0.2441 (D) 0.2837 (D) 0.2432 (D) 0.3079 (D)

Ningxia 0.1741 (E) 0.225 (D) 0.2520 (D) 0.2448 (D) 0.2656 (D) 0.2930 (D) 0.2923 (D) 0.3213 (D)

Xinjiang 0.1956 (E) 0.2385 (D) 0.2691 (D) 0.2472 (D) 0.2690 (D) 0.3087 (D) 0.3046 (D) 0.3047 (D)

By calculating manufacturing DSS in 30 provinces of China, the degree of the man-
ufacturing DSS was measured. As depicted in Table 4, the manufacturing DSS across
30 provinces in China tends to rise from 2013 to 2020, but the overall level is low and in a
state of imbalance. The manufacturing DSS of most provinces is maintained in a state of
loose cooperation and low coordination, but the overall DSS comprises a stage of growth.
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Figure 1. Manufacturing DSS degree of 30 provinces in China, 2013–2020.
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In terms of distribution (Figure 2), Beijing, Tianjin, Jiangsu, Guangdong, and other
economically developed regions have a good economic foundation and technical support,
and DSS is relatively high. Their digitalization and servitization coupling coordination
degree is good, and they are in the general coordination stage. The DSS in Hebei, Shandong,
Sichuan, Shaanxi, and other regions is relatively low, and it is at a low level of coordination.
DSS relationships tend to develop in an orderly manner, but there is still a certain distance
to the high-level goal. The DSS in Gansu, Yunnan, Xinjiang, and other regions is at a
lower level as it is limited by economic and technological constraints, and the DSS is lower
than that in other regions. Therefore, while emphasizing rapid economic development,
manufacturing needs to pay special attention to injecting digital capabilities and service
capabilities into the industry.
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Figure 2. Average level of DSS in manufacturing, 2013–2020.

In general, the collaborative development of digitalization and servitization in man-
ufacturing is in the early stages, and it comprises good resources and industrial and sus-
tainable development. However, the development of DSS in manufacturing is a long-term
process, and the average DSS level within China’s manufacturing is far from a high level of
synergy. Hence, there is a need to expedite the coordinated advancement of digitalization
and servitization to a greater extent.

4. Empirical Study on The Impact of DSS on Carbon Productivity
4.1. Model Building

To explore the influence of DSS on carbon productivity in manufacturing, we have
constructed the following regression model, which is built upon the extended STIRPAT
model [61]:

CPit = α0 + α1DSSit + βXit + γyear + γpro + θit (4)

In Equation (4), CPit is the carbon productivity of province i in year t. DSSit is the DSS
score of province i in year t. Xit represents the control variables, including administrative
control, infrastructure development, profit performance, enterprise scale, and industry debt
ratios. γyear and γpro are the fixed effects of the province and time, and θit is an error term.

The above theories show that both technological innovation and industrial structure
exert a notable influence on carbon productivity in manufacturing. This paper further draws
on relevant studies on mediating effect tests [62] to set up a mediating effect test model:

CPit = α0 + α1DSSit + βXit + γyear + γpro + θit (5)
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Mit = α0 + α1DSSit + βXit + γyear + γpro + θit (6)

CPit = α0 + α1DSSit + α2Mit + βXit + γyear + γpro + θit (7)

In Equations (6) and (7), Mit is the mediating variable, including technological innova-
tion and industrial structure.

To examine the threshold effect between DSS and carbon productivity, we utilize the
threshold regression model proposed by Hansen [63]. The threshold effect test model is
described as follows:

CPit = α0 + α1DSSit × I(qit ≤ ε1) + α2DSSit × I(qit>ε1) + βXit + γyear + γpro + θit (8)

In Equation (8), qit is the threshold variable, and ε1 is the threshold value.

4.2. Variable Selection

The explained variable comprises carbon productivity (CP). According to the measure
of KAYA [64], carbon productivity is used to measure carbon productivity in manufacturing,
which is expressed as the ratio of sales revenue to carbon emissions in manufacturing.

The core explanatory variables comprise the synergy of digitalization and servitization
(DSS). The DSS is used as the core explanatory variable.

The mediating variables comprise technological innovation (sit) [65], measured as
a ratio of the number of valid invention patents to R&D expenditure in manufacturing
in each provincial administrative region. Industrial structure (str) [66] is expressed by
adopting the ratio of the added value of the tertiary industry to the added value of the
secondary industry.

The threshold variable, economic growth (income) [33], is expressed as the logarithm
of manufacturing operating income.

Control variables were included to reduce model estimation bias, and five control
variables were included in the empirical analysis.

Administrative control (gov) [67] is indicated by the share of government fiscal expen-
diture to GDP.

The enterprise scale (scal) [58] is expressed as the ratio of the main business income to
the number of business units in manufacturing.

Infrastructure development (tra) [68] is measured using the logarithm of the total
number of bus passengers traveling in the city at the year’s end.

Profit performance (pro) [69] is selected to express the share of profits relative to the
main business revenue in each province.

Industry debt ratios (idebt) [70] are selected as the ratio of total liabilities to total assets
for manufacturing.

4.3. Result Analysis
4.3.1. Descriptive Statistics

In Table 7, carbon productivity in manufacturing varies widely across provinces.
The mean of CP is 0.976, the minimum of CP is 0.163, and the maximum of CP is 3.678.
This indicates that overall carbon productivity in manufacturing needs to be improved.
Manufacturing DSS has a standard deviation of 0.151 and minimum and maximum values
of 0.008 and 0.803, respectively. This shows that the DSS level in manufacturing exhibits
substantial variations in different regions. The mean of DSS is 0.441, which indicates that the
vast majority of provinces have their DSS at a low level and that the DSS in manufacturing
in most regions has more room for development.
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Table 7. Descriptive statistics.

Variable N Mean Std.Dev. Min Max

CP 240 0.976 0.671 0.163 3.679
DSS 240 0.441 0.151 0.008 0.805

4.3.2. Correlation Analysis

The Pearson correlation coefficient was used to examine the relationship between vari-
ables, and the outcomes are presented in Table 8. The results show that DSS and CP are
positively correlated. This is a preliminary indication that DSS positively affects CP in manu-
facturing, and it lays the foundation for investigating the intrinsic link between the two.

Table 8. Correlation analysis.

CP DSS scal idebt pro gov tra

CP 1
DSS 0.506 *** 1
scal −0.123 * −0.063 1

idebt −0.644 *** −0.375 *** 0.007 1
pro 0.226 *** 0.126 * −0.037 −0.437 *** 1
gov −0.519 *** −0.600 *** 0.306 *** 0.491 *** −0.246 *** 1
tra 0.361 *** 0.530 *** −0.365 *** −0.304 *** 0.142 ** −0.701 *** 1

Note: *, **, and *** denote significance levels of 10%, 5%, and 1%, respectively.

4.3.3. Panel Data Model Selection

The model used needs to be screened before conducting the empirical test. As shown in
Table 9, the Hausman test is 678.42, and the p-value is 0.0000. As a result of this correlation,
the fixed-effect model was ultimately chosen for adoption, and the p-values of the F-test
statistics were all 0.00, so the two-way fixed-effect model was chosen.

Table 9. Panel data model selection: test results.

Test Methods
Time Effect Individual Effect Double Effect

chi2() Prob > chi2()
F-Statistics Prob > F F-Statistics Prob > F F-Statistics Prob > F

Hausman Test 678.42 0.00
F Test 15.69 0.00 15.69 0.00 23.81 0.00

4.3.4. Basic Regression Analysis

This paper conducts regression analyses using panel data for 30 Chinese provinces
spanning the period 2013–2020. The sample is further analyzed by dividing the sample
into the East (China’s East region includes 12 provinces, autonomous regions, and munici-
palities directly under the Central Government, including Beijing, Tianjin, Hebei, Liaoning,
Shanghai, Jiangsu, Zhejiang, Fujian, Shandong, Guangdong, Guangxi, and Hainan) and
the Midwest (China’s Midwest region includes 19 provinces and autonomous regions,
including Shanxi, Inner Mongolia, Jilin, Heilongjiang, Anhui, Jiangxi, Henan, Hubei, Hu-
nan, Sichuan, Chongqing, Guizhou, Yunnan, Tibet, Shaanxi, Gansu, Ningxia, Qinghai, and
Xinjiang. This study does not include the Tibet Autonomous Region) according to the
classification of the Ministry of Finance’s “Opinions on Clarifying the Division of Eastern,
Midwestern and Western Regions”.

Column (1) in Table 10 shows that DSS has a significant positive relationship with CP
in manufacturing. Column (2) is a double fixed-effect regression controlling for time and
province. The results in column (2) show a positive correlation between DSS and carbon
productivity in China, the East, and the Midwest sample levels. This suggests that DSS
has a significant contribution to CP in manufacturing. The effect of enterprise scales on
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CP is not significant, and the industrial debt ratios has a significant negative influence on
CP in manufacturing in the East. The result shows that during the development of DSS in
manufacturing, the input of DSS elements reduces energy resource inputs. This reduces
carbon emissions, raises manufacturing revenues, and effectively increases manufacturing
carbon productivity. By region, each 1% increase in manufacturing DSS in the East is
associated with a 0.75% increase in CP, while the influence of DSS on CP is insignificant in
the Midwest. The East has abundant human capital elements and technological elements,
which guarantee the input of economic, technological, and service elements in the East.
These resources strongly support the development of DSS in manufacturing in the East
and promote the CP of manufacturing. Manufacturing in the Midwest is still mostly
resource-dependent, with insufficient inputs of service factors, and the level of technology
and human capital needs to be upgraded. Thus, a high degree of manufacturing DSS
is not present, and the Midwest has not yet paid dividends in terms of increased CP in
manufacturing [68].

Table 10. Fundamental regression results.

Variables
Full Sample The East The Midwest U-Shaped

Inspection
U-Shaped
Inspection

(1) (2) (1) (2) (1) (2) (3) (4)
CP CP CP CP CP CP CP CP

DSS 2.224 *** 0.265 ** 1.953 *** 0.750 * 0.992 *** 0.116 −0.859 ** −1.238 ***
(11.64) (2.512) (5.471) (1.861) (3.610) (0.933) (−2.293) (−3.602)

DSS2 1.606 *** 1.990 ***
(3.321) (4.575)

scal −0.126 ** 0.0136 −0.176 0.0416 −0.118 −0.0111 0.0136
(−2.093) (0.300) (−1.639) (0.834) (−1.538) (−0.183) (0.316)

idebt −3.411 *** −0.536 * −4.321 *** −0.533 −3.182 *** −0.259 −0.634 **
(−8.476) (−1.736) (−5.071) (−0.416) (−6.994) (−0.647) (−2.146)

pro −0.342 −0.243 3.394 6.186 ** −1.609 ** −0.515 −0.575 *
(−0.466) (−0.778) (1.554) (2.342) (−2.264) (−1.492) (−1.873)

gov 0.699 *** −1.401 *** −0.317 −6.347 *** 0.563 * −1.237 *** −1.491 ***
(2.642) (−6.456) (−0.462) (−4.353) (1.956) (−5.110) (−7.179)

tra −0.434 ** −0.973 *** −0.340 −1.158 *** −0.0585 0.674 −0.664 **
(−2.554) (−3.116) (−1.104) (−3.644) (−0.274) (1.286) (−2.178)

Constant 2.289 *** 3.005 *** 2.674 *** 9.561 *** 1.911 *** −0.371 0.715 *** 2.745 ***
(5.517) (4.839) (3.084) (5.376) (3.879) (−0.345) (9.834) (4.617)

Observations 240 240 88 88 152 152 240 240
R-squared 0.643 0.979 0.646 0.959 0.445 0.966 0.973 0.981

TE YES YES YES YES YES
FE YES YES YES YES YES

Note: *, **, and *** denote significance levels of 10%, 5%, and 1%, respectively; t-values in parentheses.

Columns (3) and (4) show the nonlinear effect of DSS on CP for the two cases in the
existence and nonexistence of control variables. The findings of the study indicate that the
coefficient of the primary term of DSS is negative at the 5% significance level, while the
coefficient of its quadratic term is positive at the 1% significance level, regardless of whether
the control variable is included or not. This reveals a positive “U” association between
DSS and CP. Upon further inspection, the extreme point of the positive “U” relationship
in column (4) is 0.311, and the values of DSS are in the range of [0.161, 0.579]. It can be
observed that the turning point lies within the range of the independent variable, and the
initial hypothesis is rejected at the 1% significance level, confirming the validity of the test.
A positive “U” relationship between DSS and CP is established, and there is a nonlinear
relationship between the two. As a result, H1 is valid.
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4.3.5. Robustness and Endogeneity

To alleviate the endogeneity problem of the model, the first-order lag of the DSS is
used. Column (1) in Table 11 demonstrates that the coefficient of the first-order lag of the
DSS is 0.184, with a significance level of 10%, thereby confirming the robustness of the
baseline regression results.

Table 11. Robustness tests.

Variables CP (1) CP (2)

L.CP 1.095 ***
(50.11)

L.DSS 0.184 *
(1.863)

DSS 0.270 ***
(3.242)

Control Variable YES YES
Constant 2.965 *** 0.120

(4.107) (0.798)
Observations 210 210

R-squared 0.983
TE YES YES
FE YES YES

AR(1)(p-value) 0.029
AR(2) (p-value) 0.117

Hansen (p-value) 0.078
Note: * and *** denote significance levels of 10% and 1%, respectively; t-values in parentheses.

Considering the model’s autocorrelation, a dynamic panel with the first-order lag of
CP was constructed using the systematic GMM model for regression tests. In model (2), the
regression results from the GMM model indicate that DSS continues to have a significant
promoting effect on CP, suggesting that the baseline results remain robust.

4.3.6. Intermediary Effects Test

This paper further studies the impact of DSS on CP in manufacturing through two
factors: technological innovation and industrial structure. Columns (2) and (3) of Table 12
demonstrate a notable positive impact of DSS on industrial structure, and DSS has a
non-significant relationship with technological innovation. Column (4) and column (5)
show that on the basis of basic regression, with the addition of the mediator variable,
DSS and the mediator variable still have a contributing effect on CP. The boosting effect
remains significantly positive at the 1% level. This suggests a mediating effect. Comparing
column (1), the coefficients in columns (4) and (5) drop to 0.268 and 0.281 when technological
innovation and industrial structure are added. This indicates that technological innovation
and industrial structure are mediators in the influence of DSS on CP. The improvements in
industrial structure and technological innovation can improve the effect of DSS on CP. As a
result, H2 is valid.
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Table 12. Intermediary effect test.

Variables CP (1) sit (2) str (3) CP (4) CP (5)

DSS 0.334 *** −0.478 0.184 ** 0.268 *** 0.281 ***
(3.067) (−1.530) (2.062) (2.658) (2.620)

sit −0.138 ***
(−6.098)

str 0.290 ***
(3.461)

Constant 0.510 *** 4.231 *** 0.564 *** 1.093 *** 0.347 ***
(12.93) (37.40) (17.46) (10.69) (5.700)

Observations 240 240 240 240 240
R-squared 0.972 0.916 0.931 0.976 0.973

TE YES YES YES YES YES
FE YES YES YES YES YES

Note: **, and *** denote significance levels of 5%, and 1%, respectively; t-values in parentheses.

Table 13 shows the findings of the Soble test for mediating effects. According to the
Z-statistic, Z is significant at the 0.05% level, so the Soble test passes the hypothesis of
mediating effects. The indirect effects of DSS on carbon productivity through technological
innovation and industrial structure are 0.166 and 0.120, respectively. The direct effects
were 1.959 and 2.005, respectively. The intermediary effects accounted for 7.79% and
5.63%, respectively. This shows that technological innovation and industrial structure are
important ways for DSS to improve CP. As a result, H2 is again valid.

Table 13. Soble test results.

Intermediate
Variables

Indirect
Effects

Direct
Effects Total Effect Percentage of

Intermediary Effect Z Statistic

sit 0.166 *** 1.959 *** 2.125 *** 7.79% 3.071 ***
str 0.120 ** 2.005 *** 2.125 *** 5.63% 2.392 **

Note: **, and *** denote significance levels of 5%, and 1%, respectively.

4.3.7. Threshold Effect Analysis

Through the above tests, it is evident that there exists a positive “U” relationship
between DSS and CP. This paper takes DSS as the independent variable and DSS and
economic growth as the threshold variables to conduct the threshold test.

Table 14 displays the test’s outcomes. We find that the test results for the single
threshold of the DSS are significant at the 1% level. Nonetheless, the double and triple
thresholds do not show significance. Hence, there exists a single threshold for DSS with an
estimated threshold of 0.2383. Single threshold regression is used for the next analysis. The
tests for economic growth indicate significance for both the single and double thresholds,
while the triple threshold test is non-significant. Therefore, there are single and double
thresholds for economic growth, and these thresholds are 6.5937 and 10.8619, respectively.
Double threshold regression was used for further analysis.

The threshold effect was tested by drawing the likelihood ratio function graph of DSS
and economic growth. The likelihood ratio function was used to express the relationship
between LR values and threshold values. As shown in Figures 3 and 4, the 95% confidence
interval for the threshold estimate is the interval formed by the critical value of 7.35
(corresponding to the dotted line in Figures 3 and 4) for all LR values less than the 5%
significance level. It indicates that the threshold value of threshold regression is equivalent
to the actual threshold value, which is in agreement with the findings from the earlier
significance test.
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Table 14. Test results of the threshold effect.

Independent
Variable

Threshold
Variable

Hypothesis
Testing RSS MSE F-Statistics p-Value Threshold

Value
95% Confidence

Interval

DSS DSS single threshold 0.5788 0.0025 36.86 *** 0.0000 0.2383
[0.2350, 0.2433]double threshold 0.5437 0.0023 14.96 0.1133 0.3471

triple threshold 0.5230 0.0023 9.20 0.6033 0.5011
DSS income single threshold 0.6019 0.0026 26.53 ** 0.0267 6.5937

[5.9234, 7.1117]
[10.7945, 11.0311]

double threshold 0.5567 0.0024 18.86 ** 0.0500 10.8619
triple threshold 0.5417 0.0023 6.42 0.7633 11.2032

Note: **, and *** denote significance levels of 5%, and 1%, respectively.
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We conducted regression analyses using the threshold model, and the outcomes are
presented in Table 15.

Column (1) shows that when DSS is used as the threshold variable, a significant posi-
tive correlation exists between DSS and CP at the 1% significance level when DSS < 0.2383,
with a coefficient of 0.864. When DSS ≥ 0.2383, DSS and CP are still significantly positively
correlated at the 1% level, but the coefficient is 0.418, and its contribution decreases as DSS
increases. Currently, most of the DSS in manufacturing is in the low-synergy stage, and the
effect of DSS on CP does not reach a higher level of facilitation for the time being. The effect
is differentiated by the development stage of DSS. Therefore, there is a nonlinear positive
correlation between DSS and CP, and H1 is again valid.
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Table 15. Parameter estimation results of the threshold regression model.

Dependent Variable CP (1) CP (2)

Independent Variable DSS DSS
Threshold Variable DSS income

DSS (DSS < θ1) 0.864 ***
(5.741)

DSS (DSS ≥ θ1) 0.418 ***
(3.160)

DSS (income < γ1) −0.073
(−0.482)

DSS (γ1 ≤ income < γ2) 0.250 **
(2.251)

DSS (income ≥ γ2) 0.059
(0.452)

Control Variable YES YES
Constant −1.907 *** −1.768 ***

(−4.476) (−4.209)
Observations 240 240

R-squared 0.677 0.687
Note: **, and *** denote significance levels of 5%, and 1%, respectively; t-values in parentheses.

Column (2) demonstrates that when economic growth is taken as the threshold vari-
able, there is a negative correlation between DSS and CP when economic growth is <6.5937,
with a coefficient of −0.073. When economic growth is at [6.5937, 10.8619], DSS was signifi-
cantly and positively correlated with CP at 5%. When economic growth ≥ 10.8619, DSS
has a positive correlation with CP, but its promoting effect is not significant. Therefore,
with the economic growth of manufacturing, DSS has a positive “U” relationship with CP.
Economic growth has a threshold effect on the impact of DSS on CP, and H3 is valid.

5. Discussion

This paper empirically analyzes the influence of manufacturing DSS on carbon pro-
ductivity in 30 provinces of China from 2013 to 2020 and divides manufacturing DSS levels.
The conclusion is as follows.

First, the level of DSS in China’s manufacturing is low, and the average level is still
far from a high level of cooperation. China’s manufacturing DSS faces the challenge of
uneven development, with obvious regional differences [71]. In developed eastern regions
like Beijing, Guangdong, and other regions, the level of DSS implementation surpasses that
in less developed areas, yet it still has a certain gap from a high level of coordination.

Second, DSS makes a notable positive contribution to carbon productivity, and the two
show a strong and then weak non-linear relationship. The reason is that the development
of DSS relies on electricity, computing power, high and new technologies, and others [22].
These supporting factors require a large amount of energy consumption to a certain extent,
and the technology development cycle is long, which will hinder the contribution of DSS to
carbon productivity in the short term. Currently, DSS in most provinces is at a low level;
DSS in developed provinces such as Beijing and Guangdong is only at a general level, and
it has not reached a high level of cooperation. Therefore, the next inflection point of carbon
productivity increase has not yet appeared.

Third, economic growth has a threshold effect between DSS and carbon productiv-
ity. With the economic growth of manufacturing, DSS has a positive “U” feature of first
inhibiting and then promoting carbon productivity. In the early years of the manufacturing
economy, most of its industrial structure was resource-intensive or labor-intensive, which
increased energy consumption [27,72]. Thus, DSS had an inhibitory impact on carbon pro-
ductivity at this stage. With the economic growth of manufacturing, its industrial structure
has become technology-intensive, and DSS has entered a stage of rapid development. It
has improved energy efficiency and carbon productivity. As the manufacturing economy
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grows rapidly beyond the upper limit of its own production elasticity, carbon emissions
increase, and carbon productivity decreases.

Fourthly, through the mediation effect test, it was found that technological innovation
and industrial structure have partial mediation effects between DSS and carbon productivity.
Therefore, manufacturing can increase its investment in technological R&D and optimize
its industrial structure, thereby increasing the contribution of DSS to carbon productivity.

6. Conclusions and Policy Recommendations
6.1. Conclusions

This paper identifies the relationship between DSS and carbon productivity. In con-
trast to earlier studies of carbon productivity, this paper is not limited to the effects of
single factors of digitalization or servitization. It is based on synergy theory and explores
the role of the synergistic effect of both digitalization and servitization factors on carbon
productivity. The empirical test concludes that there is a non-linear relationship between
DSS and carbon productivity [19,73–75]. DSS has a positive “U” relationship with carbon
productivity when economic growth is the threshold effect. The conclusion is similar
to the research of other scholars [73,76]. Based on the contribution of digitalization and
servitization to carbon productivity [8,9] and the development mechanism of digitalization
and servitization [77,78], this paper further explores the effect of DSS on carbon produc-
tivity. The conclusion contributes to the carbon productivity development pathway. DSS
can be used to improve carbon productivity, and it is an implementable path that can
promote economic growth and environmental protection together. It provides a strong
impetus for the sustainable development of manufacturing and a theoretical basis for global
sustainable development.

This paper considers the influence path of DSS to enhance carbon productivity from
multiple perspectives. Unlike previous studies considering a single variable, this paper
considers both technological innovation and industrial structure to verify their mediating
role in DSS on carbon productivity [15,36–38]. Based on the environmental Kuznets curve
theory, the threshold effect is further explored [73,79]. Therefore, it can provide multiple
implementable paths for DSS to enhance carbon productivity by considering various aspects
such as technological innovation, industrial structure, and economic growth. It provides
feasible solutions for manufacturing to achieve carbon peaking and carbon neutrality.

This paper provides valuable suggestions for the sustainable development of man-
ufacturing. Firstly, manufacturing can develop DSS according to the actual situation of
the enterprise. Instead of focusing on the development of one side only, managers use
the dynamic development of digitalization and servitization to drive the development of
enterprise DSS [80]. Heavily polluting enterprises can complete their transformation and
development as quickly as possible through DSS. Enterprises can deepen the use of technol-
ogy, knowledge, and other resources through digitalization and servitization collaboration
platforms to maximize the use of digitalization and servitization and solve the problem of
economic and environmental sustainability in manufacturing. Second, the research results
verify the threshold effect of economic growth. Managers should always pay attention to
the upper limit of production elasticity when carrying out DSS development [73]. It is true
that DSS can enhance carbon productivity, but if enterprises pursue economic growth too
quickly, it will be difficult for them to achieve sustainable development.

6.2. Policy Recommendations

The above conclusions provide a feasible path for manufacturing to enhance carbon
productivity and develop a green economy. This paper examines the implementation path
for DSS to enhance carbon productivity. This provides a sustainable development path for
manufacturing, including low-carbon development enterprises. It also provides policy-
makers with a strategy for economically and environmentally sustainable development.
The implementation path to boost carbon productivity through the development of DSS is
as follows.
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First, manufacturing DSS is developed, and the level of DSS is improved. At present,
synergies are low in most provinces. Therefore, the government, through policy guidance,
increases the support for the development of DSS to attract more enterprises to participate
in the development of DSS. At the same time, it strengthens the publicity and promotion of
DSS development, enhances the awareness and participation of enterprises, and promotes
DSS. Manufacturing actively establishes a flexible organizational structure and accelerates
the construction of advanced production factors, such as human resources and technology,
through resource integration, information sharing, and technology research and develop-
ment. DSS development conditions are then constructed to accelerate DSS development
in manufacturing.

Second, DSS should be made the most out of, and the carbon productivity of man-
ufacturing should be promoted with DSS. Simultaneously with economic development,
manufacturing should rationally develop DSS according to its own economic development
level. Along with rapid economic development, manufacturing should be promoted to
shift to technology-intensive industries, changing the economic development model. The
DSS level of manufacturing should be accelerated, improving energy utilization efficiency
and, thus, carbon productivity.

Thirdly, optimizing industrial structure and improving technological innovation are
important links for DSS in manufacturing to promote carbon productivity. The government
should support the collaborative development of technological innovation capabilities
carried out by enterprises and research institutions and promote the development of
manufacturing in the direction of low energy consumption and low pollution and high
efficiency. Manufacturing should adhere to a combination of market regulation and policy
guidance, make full use of the basic role of the market in allocating resources, and achieve
the optimal allocation of resources. Policy guidance should be used to promote cooperation
and exchanges between all links and the outside world, increase investments in research
and development, and promote the sustainable development of manufacturing.

Fourth, the East and the Midwest should carry out overall planning, reasonably guide
the inflow of resources, reduce regional differences, and improve the DSS level of China’s
manufacturing. The government should exert its role in the regulation and management of
resources to prevent a large amount of resources from flowing into developed provinces,
which would further aggravate regional differences. The government of the Midwest can
increase investment incentives, guide the inflow of resources between regions, and avoid the
surplus of resources in developed regions. Cooperation and alliances between enterprises
in various regions are encouraged, the maximization of redundant resources should be
promoted, and the DSS level of manufacturing in each region should be improved.

6.3. Limitation and Future Research

This study starts from the synergy of digitalization and servitization to derive a feasible
path to enhance carbon productivity. However, the synergistic path of digitalization and
servitization has not been explored in depth in the synergistic development of digitalization
and servitization. The characteristics of digitalization and servitization in the synergistic
path with dynamic development can be further explored in subsequent related studies.
In addition, the impact of corporate greening on carbon productivity has been studied.
We can further explore the synergy between digitalization and greening based on the
synergy theory. Hence, these matters warrant further discussion and exploration in future
research endeavors.
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