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Abstract: The international migration network, comprising the movements of people between coun-
tries, is one of the most important global systems of interaction, which can reflect the complex
international relations of economics, cultures, and politics and has huge impacts on global sustainabil-
ity. However, the conventional gravity model cannot model its complicated interactions accurately.
In this article, we propose a novel reverse gravity model using genetic algorithm to reconstruct the
complicated interaction patterns with high accuracy. To verify the feasibility of our method, it was
applied to a series of international migration networks. We found that the derived node attractions
were highly correlated with socioeconomic factors and network metrics, and the calculated node
positions outperformed the geometric centers from the perspective of human migration that related
to economy and demography. Our approach could be a preferred choice to investigate the spatial—-
temporal interactive patterns in geographical space, facilitating comprehension of the mechanisms
underlying their generation and evolution.

Keywords: reverse gravity model; international migration; human geography; genetic algorithm;
spatial interaction networks

1. Introduction

International migration is a significant matter of interest, not only in the study of
demography but also in the domains of human geography, human mobility, and spatial
analysis [1,2]. It has a complex impact on global sustainability [3,4]. Constructing in-
ternational migration networks is an often-used approach [5,6]; the network structure is
a good representation of migration flows, and the complex network theory offers a rich
diversity of methodologies to examine the characteristics of population interactions. By
analyzing the small-world and scale-free properties of the network, as well as the central-
ity of nodes and community division, researchers can evaluate the structural features of
international migration [7-10].

The international migration networks, apart from the topological properties, are
also distinguished by their spatial interaction features and are typical instances of spatial
interaction networks. On the one hand, by taking spatial factors into account, the com-
munity structure and node centrality of the network are different from general complex
networks [11,12]. On the other hand, the simulating and modeling of spatial interactions
is also a research focus which could help to yield a better understanding of the spatial—-
temporal patterns within [13,14].

There are many models that migration networks could be fitted into [15], among
which the most famous are the gravity model [16], radiation model [17], and intervening
opportunity model [18]. The gravity model draws inspiration from Newton’s law of
gravitation, in that the strength of the interaction is in proportion to the mass of both sides
and the inverse of the squared distance between them; it was originally introduced to
study the correlations among population, distance, and intercity migrations [19]. Now this
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law has been empirically found to exist in various systems, including international trade
networks, communication networks, social tagging networks, and others [20-22]. From
the perspective of modeling, gravity is distinguished by its easily representable nature of
interaction [23]. There is a rich body of academic literature in this field, focusing on how
to implement this framework and get a better estimation [24]. The radiation model and
intervening opportunity model, drawing on the radiation and absorption process in solid
state physics, are also widely used and have proven to be effective in predicting human
mobility [25,26]. However, these two models are mainly used in urban and interurban
migration [27], while the gravity model is a more preferable choice on the international
scale. Despite their effectiveness, these three models still face challenges in finding the
appropriate instrumental variables [16]: a poor choice in instrumental variables may lead
to bad-fitting results. Another research gap for them is the calculation of distance [28]:
the suitability of distance representation between two irregular geographical units also
affects the modeling effect. Although the Euclidean distance between the centroids of
geographical units is the usual practice, the justification of centroids remains uncertain.

To tackle the first shortcoming, the reverse gravity model, or a reverse-fitting method
of the gravity model, is applied [29]. This approach attempts to reconstruct the theoretical
attractions of nodes from known spatial interactions and distances; it has also developed
many different algorithms [30]. This method is an easily conducted data-driven approach
aiming to obtain the best fit and is useful for interaction networks where the relations are
complex and factors are hard to identify. However, the proper representation of distance
remains a difficult task.

In this article, we proposed a modified reverse gravity model based on genetic algo-
rithm, where not only bidirectional attractions but also a practical position for each node
were identified, from which the distances could be calculated. This method was applied to
a series of international migration networks: the results revealed the latent spatial-temporal
interactive patterns and were compared to other socioeconomic observations. In Section 2,
the dataset and our proposed method are elucidated. In Section 3, the results on network
properties and reverse gravity fitting are presented, including patterns of node attractions
and positions. Sections 4 and 5 present the discussion and conclusions of our study.

2. Materials and Methods
2.1. Data

The international migration networks we used in this article were constructed from
a set of five-year estimations of international migration flows, ranging from mid-year 1990
to mid-year 2020; the bilateral flow data were estimated based on migration stock data
using a closed demographic accounting method with a pseudo-Bayesian approach [31].
This representative dataset has been widely used in recent studies, where the international
migration is defined based on changes in place of residence [32,33]. For example, if the
intensity of the flow from Country A to Country B in one period is 100, then there are
100 people who were first living in Country A but at the end were living in Country B. To
match up with other data, we chose 194 countries. We constructed six directed weighted
networks where nodes represented countries and edges indicated the migration flow from
the source country to the target country, and the weights of edges were equal to the amount
of people. These networks represented international migration in six periods: 1990-1995,
1995-2000, 2000-2005, 2005-2010, 2010-2015, and 2015-2020. All networks were strongly
connected. The visualization and basic statistics of these networks are shown in Figure 1
and Table 1.

The administrative areas of countries were primarily obtained from the GADM project
(https:/ /gadm.org/data.html, accessed on 10 March 2024), while the administrative area
of China was acquired from the Resource and Environment Science and Data Center
(https://doi.org/10.12078 /2023010103, accessed on 10 March 2024). These data were used
to calculate the geometric center.
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Figure 1. Example of the international migration network, with (a,b) displayed flows from west to
east and east to west presented separately in the same network. The geometric center of the country
is used as the position and the arrow indicates the direction of the edge. The color of the arrow
represents the weight. Edges with very low weight (<10,000) are discarded for better visualization.

Table 1. Basic statistics of international migration networks.

Period Number of Nodes Number of Edges Sum of Weights
1990-1995 194 24,937 66,160,782
1995-2000 194 25,372 66,025,147
2000-2005 194 25,729 71,575,382
2005-2010 194 26,088 83,411,284
2010-2015 194 26,371 90,879,826
2015-2020 194 26,598 93,155,493

The gross domestic product (GDP) and population data of all countries were down-
loaded from the World Bank. The inward and outward flow of foreign direct investment
(FDI) were downloaded from the United Nations Conference on Trade and Development.
These data could reflect the socioeconomic status of a country and could be used as the
determining factor in international migration [34,35].

2.2. Complex Network Theory
2.2.1. Scale-Free and Small-World Properties

For complex networks, there are two main properties of concern: scale-free and
small-world. The scale-free network is the one with a power-law degree distribution [36]:

Pr(X) = kX*, )

where X is the degree (or weighted degree), « is the scaling parameter, and k is a normaliza-
tion constant. This distribution means that a large fraction of the links (or weights) fall to
a small fraction of nodes, resulting in heterogeneity of the network [37]. A fitting technique
designed for empirical data is always used [38].

The small-world effect reflects the fact that the distances between pairs of nodes are
short. Mathematically speaking, if a network has a greater average clustering coefficient as
well as an equal or smaller average shortest path length compared to random networks
of the same size, it is a small-world network. The small-world-ness can be quantitatively
measured [39]. In a directed weighted network, the clustering coefficient is [40]
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where w;; denotes the weights of the edge from i to j, s;° is the sum of in-strength and

out-strength of node i, and s;” is the reciprocal strength of i, which is calculated as
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si7 = Lj+ wijwj;. This equation captures the fraction of all possible geometric means

of subgraph edge weights.

2.2.2. Betweenness Centrality

There are many centrality measures to evaluate the importance of a node [41]; of them,
the betweenness centrality has been proven to have a vital role in community detection [42],
finding influential nodes [43], and other tasks. Betweenness centrality is calculated as the
sum of the fractions of shortest paths that go through a given node [44]:

0’ .
b = Y, ®)

st Us,t

where 05+ is the number of shortest paths from node s to f, and 0 4; is the number of
shortest paths from s to ¢ that go through 7.

2.2.3. PageRank

PageRank was initially designed to rank web pages based on links between them;
a web page is more important if it can be redirected from other important web pages [45].
This idea can be represented by the iterative formula below:
i 1-6
pri:5*2@+7N, (4)

jenei; 1

where nei; is the set of neighbors of node i, d; is the degree of node j, N is the number of
nodes, and ¢ is the dangling factor. For weighted networks, the scaling factor % should
j
wj,»
Yn Wi
is then defined as the stationary density of a discrete-time random walk on the network,
leading to an algebraic approach to the problem [46].

be

. The iterative process can be seen as a Markov process, and the PageRank vector

2.3. Reverse Gravity Model Based on Genetic Algorithm
2.3.1. The Gravity Model

There exist numerous variations of the gravity model; in this article, a basic form was
used. The gravity model considers differences between origins and destinations, and the
distance decay parameter f is not fixed [19,23]. The model can be written as

Gij = kPi"”tP]?”dZ.jﬁ, (5)
where G;; is the geographical flow, P! and P]?” are the theoretical importances for the
origin giving out flows and the destination taking in flows, and d;; is the distance between
them. The two factors are referred to as node attractions and are always denoted as P/
and P!, indicating the same variable with different exponents.

When applying the gravity model to analyze international phenomena such as mi-
gration and trade, where i and j stand for countries, the variables typically encompass
population size, GDP, or GDP-per-capita [47,48]. Additionally, distances are always cal-
culated between geometric centers or capital cities [28,49]. Using the logarithm form,
Equation (5) then becomes linear:

In(Gij) = In(k) + In(PP) + In (P} = B In(di) = In(k) + out In(P;) + i In(Py) — Bln(dy), ©6)

then ordinary least squares (OLS) and other linear regression methods can be used to solve
the parameters ao¢, jy;, and B.
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In many situations, the positive impact of GDP, population, or other variables on
the number of flows is likely to be found, but the model may not be well-fitted due to
a complex causal relationship. An alternative approach is to incorporate other factors into
the equation, such as the Global Innovation Index, the Environment Index, average life
expectancy, and dummy variables indicating whether the two countries are contiguous and
share a common official language [28,50].

2.3.2. The Reverse Gravity Model

The reverse gravity model refers to the same equation as mentioned above but applies
it in reverse to derive node attractions from the observed G;; and d;;. This approach
simplifies the task of identifying and combining multiple related factors into the calculation
of a single factor. Methods like linear programming [51], algebraic calculation [29,52],
and OLS regression based on dummy variables [53] have been considered. More recently,
a particle swarm optimization (PSO) approach was proposed and was found to achieve
a better reconstruction of node attractions [30].

In this article, we proposed a new reverse gravity model using genetic algorithms (GA).
GA, like PSO, is a heuristic algorithm aiming to find the best solution through an iterative
optimization process and has been widely applied in research and engineering [54]. This
algorithm is inspired by the genetic process in nature [55]. There are some terms in this
algorithm. A solution or individual is a set of values, known as genes, which can yield
a certain fitness. The population is a group of individuals. This algorithm operates as the
population evolves into new generations. During the process, individuals are mating and
mutating, which means genes are exchanging and changing randomly, leading to different
solutions and fitness, and the favorable ones will be kept. Finally, after enough generations
of searching, it will find the best solution.

To reverse fit the gravity model is to search for the best logarithm of P! and P!" for
every node, as well as the parameter . The goodness of fitness can be represented by the
adjusted R? between actual and simulated flows. Moreover, we have introduced a technique
to overcome the limitations of distance representation. By employing a similar genetic
algorithm approach, the positions of nodes are found, and consequently, the distances can
be calculated.

In summary, we proposed a reverse gravity approach with two stages of an alternate
renewal process, where the two stages represent searching for node attractions and posi-
tions, respectively, and GA is used in each stage. The flow chart of our method is shown
in Figure 2. (1) For a spatial interaction network of N geographic units, the first step is to
calculate the pairwise distances of all nodes with the geometric center. (2) Next, we prepare
a population with 2N + 1 genes for each individual, where the genes represent bidirectional
node attractions and the distance decay parameter 8, and we run GA to obtain the best
solution. (3) We prepare a population of identical individuals. Each has 2N genes with
the values of node positions, and we run GA given the previous best node attractions and
parameter S. (4) We run another GA to search for the best node attractions and parameter
B, based on the previous best positions of nodes. (5) We repeat Steps 3 and 4 until the
goodness of fitness converges, and the attractions and positions of nodes and the distance
decay parameter are obtained. In this article, the geographic units are countries.
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Figure 2. Flow chart of the reverse gravity approach with two stages of alternate renewal process.

3. Results
3.1. Structural Properties of the International Migration Networks
3.1.1. Scale-Free

We noticed that the weighted degrees of the United States, Russia, India, Germany, and
the United Kingdom added up to 25.5%, 28.0%, 26.2%, 25.3%, 23.1%, and 24.8% of the total
weights for six periods respectively; this may suggest a scale-free property. To investigate
this, weighted degrees along with weighted in-degrees and out-degrees were fitted. In
Figure 3, distributions of all periods are exhibited. We found that all distributions fitted
well with the power law, which demonstrates obvious scale-free properties in international
migration networks. The result indicates that a large amount of migration was related
to only a small number of countries. The heterogeneity of weighted degree distribution
declined from 1990 to 2010 as the scaling parameter decreased.
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Figure 3. Cont.
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Figure 3. The weighted degree distribution (along with the in-degree and out-degree) of international
migration networks can be well-fitted by a power-law distribution, indicating scale-free properties in
these networks; (a—f) refer to 6 periods.
3.1.2. Small-World
Migration networks should be compared to random networks of the same scale to
investigate the small-world property. Here we generated 100 random networks for each
period, with not only sums of edge weights but also distributions of edge weights kept the
same as the real networks. Then, the distributions of shortest path lengths and clustering
coefficients for both real networks and the averages of random networks were measured.
Results are shown in Figures 4 and 5.
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Figure 4. The shortest path length of real international migration networks (blue marker) and the
averages of random networks (green marker) of the same scale; (a—f) refer to 6 periods.
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Figure 5. The weighted clustering coefficient of real international migration networks (blue marker)
and the averages of random networks (green marker) of the same scale; (a—f) refer to 6 periods.

The shortest path lengths of real networks were slightly smaller than those of random
networks, while the clustering coefficients were bigger. Using the quantitative measure, the
small-world-ness values for each period were 4.58, 4.64,4.71, 5.01, 4.78, and 5.01. This result
showed that the international migration networks had a small-world effect. It should be
noted that the reciprocal of edge weight was used for calculating the shortest path length.
The existence of both scale-free and small-world properties in international migration

networks suggested a complex interactive pattern and emphasized the importance of our
subsequent research.

3.2. Interactive Patterns of the International Migration Networks
3.2.1. The General Results of Our Method

For six international migration networks, our method was used to find the node
attractions and positions, as well as the distance decay parameter. For each searching stage
in our method, the maximum number of iterations was set to 2000, and the population size
was 50, in which 20 individuals were selected for mating, and 10% of genes would mutate.
The goodness of fitness curves in Figure 6 demonstrate this procedure. We found that the
optimal solutions were likely to be roughly identified in the first two stages and to converge
in the subsequent stages. The final adjusted R? reached 0.67-0.69, which suggested that the
node attractions and positions our method found could interpret a significant portion of
the observed data.
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Figure 6. The goodness of fitness curves: different background colors represent different searching

stages, the dashed red line denotes the convergence value, and (a—f) refer to 6 periods.
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3.2.2. Node Attraction Patterns

The derived node attractions, which indicate the ability of pushing and pulling mi-
gration flows, are shown in Figure 7 (full results in Table S1). In general, Py, and P;,, were
correlated, which consisted in the assumption of using the same variable in the classic grav-
ity model [19,56]. From the results, we could find some other patterns, which suggested
different roles for different countries in spatial interactions. (1) Countries like the United
States, Canada, Australia, and the United Kingdom ranked high in both attractions, indi-
cating their activeness in international migration at all times. (2) Developing countries like
China, India, and South Africa in most cases had a relatively stronger outward attraction.
(3) Developed countries such as Germany and France had a relatively stronger inward
attraction in the periods of 1995-2000, 2005-2010, and 2015-2020.

R2=0.48

P, P
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A medum ¥
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R2=0.53
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Figure 7. Geographical visualization of bidirectional node attractions. Triangles pointing up and
down indicate outward and inward attraction, respectively, and different colors demonstrate different
levels of attraction. Correlation plot of P,y and P;, in log-log coordinates are added. (a—f) refer to
6 periods.

Some socioeconomic variables and complex network metrics were used to evaluate
the feasibility of the attractions. The correlation matrices are shown in Figure 8.
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Figure 8. Correlation matrices of node attractions with socioeconomic variables and complex network
metrics. Py, and P;, were analyzed using the GDP, population size, FDI, degree, betweenness,
and PageRank score, separately. It should be noted that FDI and degree were both directional and
were only analyzed with corresponding directed node attraction. All scatter plots are in log-log
coordinates, and (a—f) refer to 6 periods.

The variable that consistently provided the most accurate interpretation of node
attractions for all periods, regardless of the direction, was GDP. The R? values were most
likely to be the greatest, which suggested that GDP is an effective and comprehensive
measure of a country. The correlations between population sizes and node attractions
were slightly poorer, and population sizes showed a stronger ability to interpret outward
attractions compared to inward attractions. This can be attributed to the fact that population
reflects not only opportunities but also competition and is not always the pulling factor.
Moreover, although the outward FDI underperformed in most cases, the inward FDI could
be a more effective factor in explaining inward attractions than population.

Regarding network metrics, the weighted in-degree and out-degree proved to be the
most effective. To test the potential of this metric, they were next used to fit the gravity
model, and the goodness of fitness values were 0.409, 0.425, 0.434, 0.437, 0.425, and 0.453 for
all networks. This suggested that degrees were still not a good proxy for node attractions.
Betweenness, although proven to be a useful measure of centrality, did not appear helpful
in this case. It was interesting that the PageRank score performed well, surpassing the
population in most periods, particularly in interpreting inward attractions.

To summarize, utilizing a single variable proved insufficient to represent node attrac-
tions. The concept of node attractions, which represents the inherent significance of a node,
was found to be associated with numerous factors and metrics. Only by using our method
can this intrinsic importance be discovered.
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3.2.3. Node Position Patterns

The positions of nodes were another important output of our method. We found this
position represented the actual migration centroid of a country. Due to the heterogeneous
distribution of population and economic activity, this centroid of migration did not match
the geometric center. In Figure 9, arrows starting from the geometric center and pointing to
the calculated position were drawn, indicating the migration bias in the country. It should
be noticed that the searching areas for node positions were set as the bounding box of the
administrative area. Full results are listed in Table S2.

Figure 9. Geographic visualization and statistical analysis for node positions. Blue arrows from
geometric centers to migration centroids were drawn on the map. On the left of the map, and from
top to bottom, we have (1) the complementary cumulative distribution of the distance from the
geometric center, normalized by the scale of the country; (2) the box plot of the distance in kilometers;
(3) the distribution of orientation away from the geometric center. (a—f) refer to 6 periods.

Several conclusions could be drawn from the results. Statistically speaking, the
normalized distance from the geometric center followed a power law distribution, over
70% of the distances were between 0.2 to 0.7. The box plots of distance reported a similar
result, revealing that the median distance was about 230 km, with about 27% exceeding
500 km. The distributions of orientations away from the geometric center, on the other
hand, showed a random distribution.

For different countries, the calculated position revealed different patterns. Three
representative countries were selected as examples to illustrate the varying patterns and
meanings of migration centroids. Using nighttime light data of 2020 as background, these
three countries are shown in Figure 10. (1) China, as a country covering vast territory,
has its population concentrated in southeastern coastal areas, and we found the trajectory
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of the migration centroid moved around the same area, especially around Shanghai, the
financial and foreign trade center of China. Similar countries were Russia (Figure Sla),
Egypt (Figure S1b), Argentina (Figure Slc), etc.; these suggested the ability of migration
centroids to indicate the imbalanced demography distribution within a country. (2) For
the United States, the migration centroids moved across the country from the northeast,
where the traditional industrial area was located, to the southwest, where the electronics
industry has increased over the years. This example showed that migration centroids can
be used to study the imbalanced developing patterns within a country. (3) The migration
centroids of Germany always lay in the east part of the country, which was the area with
a relatively low GDP; this may indicate that more migration happened in the less wealthy
regions of the country. Other countries such as the United Kingdom (Figure S2a) and
India (Figure S2b) shared similarities; here, the migration centroids moved to the north
and southeast coastal regions, respectively. For these countries, the migration centroids
revealed the heterogeneous economic distribution.
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Figure 10. Spatial-temporal patterns of migration centroids of (a) China, (b) the United States, and
(c) Germany. Nighttime light data of 2020 were taken as background, and arrows with different
colors indicate the movement of the migration centroid in different years.

3.3. Comparative Analysis of Our Method

Next, the accuracy of our method was tested. Compared with different methods, the
goodness of fitness of our method is the highest. For the traditional gravity model, we
tested the performance of GDP and population as instrumental variables. The results in
Table 2 show that GDP and population size can only account for 24-31% of migration, and
population always serves as a better factor than GDP. Putting together GDP and population
to get a multivariable model, the goodness of fitness elevated slightly. It is interesting
that in this case the parameter «,,; was always bigger than «;, for population variables,
but for GDP variables it was always the opposite. For example, in 2015, a,*, a!°%, aSDP,
and ang P were 0.389, 0.345, 0.075, and 0.106, which indicated that the population of the
source country and the GDP of the target country had a greater influence on migration.
This correlated with the common-sense idea that people tend to seek fortune and avoid
competition via migration. Our method had also been compared with a reverse gravity
method with dummy variables [53]; by introducing O; and D; such that O; = D; =1
when G;; > 0 and O; = D; = 0 otherwise, Equation (6) can be converted into a linear
regression problem:

In(Gij) =Y In(P") «O0;+)_In (P}”) * Dj— B In(dyj) + e, (7)

where ¢;; is the error. To avoid multicollinearity and overfitting, ridge regression was used.
The goodness of fitness in this method was better than that in the gravity model mentioned
before. Our method also outperforms an improved gravity model including contiguity,
sharing a common official language, colonial relationships, and other factors, as it was
reported to reach a R? of 0.604 for migration flows between 200 countries [28].
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Table 2. The comparison of our method and other methods.

Gravity Model Reverse Gravity Model
Period
erto GDP Population GDP & Population Multivariable = Dummy Variables Our Method
1990-1995 0.249 0.310 0.327 0.444 0.668
1995-2000 0.249 0.316 0.329 0.454 0.683
2000-2005 0.271 0.319 0.335 0.461 0.682
2005-2010 0.285 0.314 0.335 0.463 0.684
2010-2015 0.305 0.309 0.334 0.464 0.688
2015-2020 0.248 0.308 0.322 0.476 0.696

4. Discussion

By reconstructing the attractions and positions of countries, the gravitational relation
that determines migration flow was found. This simple yet effective model could be used
to simulate the complex international migration networks. As verified in the geographi-
cal preferential attachment model and geographical non-growing network model with vertex
weights, this relation may also be the reason for scale-free and small-world properties [57,58].

The distance decay parameter § is an important indicator of the model. This parameter
differs in spatial networks of different scales: for intra-urban trips collected from taxi
trajectory data and social media check-in data, § is around 1.2-1.5 [59,60]; for inter-urban
trips via flights or social media check-in data, B decreases to 0.8-0.9 [30,61]. For migration
systems, this value varies from 1 to 4 for different countries [62,63], and it suggests that
migration, unlike daily commuting, is more likely to be held back by the cost associated
with distance. Here, we found f values were 2.98, 3.06, 2.76, 2.82, 3.03, and 2.92 for each
period, respectively, implying a rapid decay in the amount of migration when moving
distance increased.

Based on analysis of the results and the comparison with other methods, it can be
concluded that the method we proposed is effective and of high accuracy. However, in
terms of R?, there is still room for improvement in this approach. On the one hand, the
gravity model has inherent limitations. This model does not take into account factors
like cultural or historical relations between countries, which are distance-independent
and may influence the interaction. In addition, the radiation model [17], spatial Durbin
model [64], and other improvements of the gravity model are widely used in spatial
interaction research, which may also be used in the reverse gravity model. On the other
hand, international migration as a whole is a complicated system, and there are community
and other mesoscale structures in the network. This suggests that a single global model
may not be enough, and instead, different models should be fitted to different sub-network
structures. For example, if we extract the subgraph of 35 countries of the Organization
for Economic Co-operation and Development from the migration network and apply
our method to it, the goodness of fitness could reach about 0.78 for all periods, which is
significantly superior to the global fitness.

Node attractions from our calculations correlated differently with various socioeco-
nomic variables and network metrics; these six factors could only partly interpret the node
attraction. A previous study also pointed out that in spatial interaction networks, degrees
are the result of both attractions and locations [65]. This suggests that node attraction might
be used as a criterion for evaluating node centrality. There are many centrality measures;
however, the lack of ground truths on the importance of nodes makes it difficult to compare
different metrics. The node attractions, as the determinant of interactive strength between
nodes, participate in the generation of the network, which makes it a persuasive indicator.

Node positions may also have further implications. Using Equation (5), we found that
the position of a node might not only be influenced by its domestic heterogeneity but could
also be pulled by other nodes of great power. This phenomenon is more commonly seen in
small countries. In other words, the meaning behind node positions may not only be the
migration centroid, and further effort should be paid to this conception.
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5. Conclusions

In this article, we proposed a reverse gravity approach based on genetic algorithm
and applied this method to international migration networks from 1990 to 2020. Our
method would model the interactive patterns with high accuracy, and the reconstructed
node attractions and positions could reveal the characteristics of the country. The node
attractions were highly correlated with socioeconomic factors and network metrics, and
the node positions outperformed the geometric centers from the perspective of human
migration. This method can be used in any other spatial interaction network, which are
found extensively in sustainable systems in the real world. Our research presents a tentative
solution to the problem of distance calculation when fitting gravity models in migration
networks. The limitation of this method is that the node position is influenced both by the
domestic heterogeneous distributions of economy and demography and foreign attractions;
this complexifies interpretation, especially for small countries. In future research, the
implications behind node position should be further investigated, aiming to obtain a more
accurate model fitting and a deeper understating of interactive patterns.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/su16062502 /s1, Figure S1: Spatial-temporal patterns of migration
centroids of (a) Russia, (b) Egypt, and (c) Argentina. Nighttime light data of 2020 were taken as
background, and arrows with different colors indicate the movement of migration centroid in different
years; Figure S2: Spatial-temporal patterns of migration centroids of (a) the United Kingdom and
(b) India. Nighttime light data of 2020 were taken as background, and arrows with different colors
indicate the movement of migration centroid in different years; Table S1: Node attractions; Table S2:
Node positions; Table S3 distance away from geometric center.
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