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Abstract: The coordinated control of PM2.5 and O3 pollution has become a critical factor restricting
the improvement of air quality in China. In this work, precursors and related influencing factors were
utilized to establish PM2.5 and O3 estimation models in the North China Plain (NCP), the Yangzi
River Delta (YRD), and the Pearl River Delta (PRD) using a multi-task-learning (MTL) model. The
prediction accuracy of these three MTL models was high, with R2 values ranging from 0.69 to 0.83.
Subsequently, these MTL models were used to quantitatively reveal the relative importance of each
factor to PM2.5 and O3 collaborative pollution simultaneously. Precursors and meteorological factors
were the two most critical influencing factors for PM2.5 and O3 pollution in three regions, with their
relative importance values larger than 29.99% and 15.89%, respectively. Furthermore, these models
were used to reveal the response of PM2.5 and O3 to each precursor in each region. In the NCP and the
YRD, the two most important precursors of PM2.5 pollution are SO2 and HCHO, while the two most
critical factors for O3 pollution are HCHO and NO2. Therefore, SO2 and VOC emissions reduction is
the most important measure for PM2.5 pollution, while VOC and NO2 emission reduction is the most
critical measure for O3 pollution in these two regions. In terms of the PRD, SO2 and NO2 are the
most important precursors of PM2.5 pollution, while the most important precursors for O3 pollution
are HCHO and SOX, respectively. Thus, NO2, SO2, and VOC emission reduction is the most critical
measure for PM2.5 pollution, while VOC and NO2 emission reduction is the most critical measure for
O3 pollution in the PRD. Overall, this study provides clues and references for the control of PM2.5

and O3 collaborative pollution in the NCP, the YRD, and the PRD.

Keywords: O3 pollution; PM2.5 pollution; multi-task learning; air quality management

1. Introduction

Nowadays, air pollution has become the most important environmental problem in
the world [1–4], and for China, PM2.5 and O3 are the two main air pollutants restricting
the improvement of air quality in China [5,6]. PM2.5 pollution harms human health and
ecosystems and affects climate change [7,8]. Previous studies have shown that PM2.5
pollution increases the risk of lower respiratory infections (LRIs) [9], coronary heart disease
(CHD) [10], and stroke [11] in humans. In addition, PM2.5 is one of the major causes of
hazy weather [12], and can lead to reduced visibility [8]. In order to effectively improve air
quality, the Air Pollution Prevention and Control Action Plan (APAP) has been promoted by
the government since 2013. Subsequently, PM2.5 pollution levels in China have improved
significantly after 2013 [13,14], while O3 pollution level has risen significantly and the area
affected by O3 pollution has expanded significantly in recent years [1,15–18]. O3 pollution
adversely affects crop growth [19,20], ecosystems [21,22], and human health by causing
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cardiovascular diseases in humans [23,24] and other issues. Furthermore, human health
and ecosystem gains from reduced PM2.5 pollution are offset by increased O3 pollution [25],
especially in densely populated and economically developed regions such as the North
China Plain (NCP), the Yangtze River Delta (YRD), and the Pearl River Delta (PRD) [21,26].
Therefore, it is necessary to reveal the main controlling factors behind PM2.5 and O3
collaborative pollution, and to propose corresponding measures.

There are similarities and differences between reducing air pollution caused by PM2.5
and O3. O3 and the secondary components in PM2.5 are both produced by atmospheric
chemical reactions, and they have similar precursors including NOX and VOC. However,
the response of O3 pollution to reductions in NOX and VOC emissions is different from that
of PM2.5 pollution. In addition, the emission reduction in ozone precursors should be in
accordance with local conditions and the corresponding proportion; unreasonable emission
reduction may lead to the exacerbation of O3 pollution [27]. For example, reductions
in NOX and VOC reduce PM2.5 pollution levels, but in the NOX-sensitivity regime, the
reduction in NOX significantly reduces O3 pollution levels, and the reduction in VOC
leads to an increase in O3 pollution levels. In contrast, in the VOC-sensitivity regime, the
reduction in VOC would significantly reduce O3 pollution levels, but the reduction in NOX
would result in an increase in O3 pollution levels [12,28].

Therefore, exploring the contribution and impact of PM2.5 and O3 precursor emissions
on PM2.5 and O3 collaborative pollution simultaneously can help to formulate synergistic
emission reduction strategies for PM2.5 and O3 precursors to be able to control PM2.5 and
O3 collaborative pollution in a better way. However, most previous studies only explored
the impacts of the influencing factors on PM2.5 pollution [29] or O3 pollution [15,16,30],
while there are fewer studies revealing the effects and contributions of the influencing
factors on PM2.5 and O3 collaborative pollution simultaneously [31–33]. Few previous
studies that simultaneously reveal the influence and contribution of influencing factors
to the synergistic pollution of PM2.5 and O3 mainly use atmospheric chemistry models,
and the accuracy of the models needs to be improved [32,33]. In addition, the few studies
that have used statistical modelling to reveal the influence and contribution of influencing
factors to PM2.5 and O3 collaborative pollution have mainly considered meteorological [10]
and precursor [34–36] factors. However, these statistical models are not able to estimate and
reveal the contribution of the same factor to both PM2.5 and O3 simultaneously, and more
than one model needs to be built to estimate and reveal the contribution of a particular
factor to both PM2.5 and O3 [35,36].

In this work, to better control PM2.5 and O3 collaborative pollution, the impacts of
precursors emissions, meteorological factors, population density, the normalized difference
vegetation index (NDVI), land use and land cover (LULC), and other influencing factors
of PM2.5 and O3 collaborative pollution are assessed comprehensively. Three regions,
including the NCP, the PRD, and the YRD, which generate more than 36% of GDP (Gross
Domestic Product) of China [37], and are the three most densely populated regions in
China, were selected as our study areas. Daily gridded PM2.5 and O3 (maximum daily 8 h
average ozone, MDA8) datasets from 2010 to 2020, daily gridded SO2 and NO2 datasets,
daily gridded Aerosol Optical Depth (AOD) products, NDVI datasets observed by Moder-
ate Resolution Imaging Spectroradiometer (MODIS), meteorological reanalysis datasets,
aerosol component dataset (AC), PM2.5 and O3 precursor reanalysis datasets, population
density, and LULC datasets of China were utilized to establish the PM2.5 and O3 estimation
model using a multi-task learning (MTL) model. Subsequently, the same PM2.5 and O3
estimation MTL model of each region (including the NCP, the PRD and the YRD) was used
to quantitatively reveal the relative importance of each factor to PM2.5 and O3 collabora-
tive pollution simultaneously, and the most critical influencing factors of PM2.5 and O3
pollution in three regions were revealed. Furthermore, the PM2.5 and O3 estimation MTL
model was used to quantitatively reveal the response of PM2.5 and O3 to each precursor
simultaneously, as well as the domain precursor pollutants of PM2.5 and O3 collaborative
pollution in the NCP, the PRD and the YRD.
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2. Data
2.1. Surface PM2.5 and O3 Estimation Products

In this study, a daily 1 km × 1 km resolution gridded PM2.5 concentration dataset
derived from the Long-Term Gap-Free High-Resolution Air Pollutant concentration dataset
(LGHAP) [14] (Bai et al., 2022) from 2010 to 2020 was utilized as one learning target of
the surface O3 and PM2.5 estimation MTL model. In addition, daily aerosol optical depth
(AOD) data derived from this LGHAP dataset during 2010 and 2020 were also utilized as
an influencing factor for PM2.5 pollution. Subsequently, PM2.5 and AOD datasets were also
uniformly resampled and upscaled to 0.1◦ for spatiotemporal matching with other model
input datasets. In addition, the daily gridded gap-free surface O3 concentration dataset
(0.1◦ × 0.1◦) from 2010 to 2020 derived from our previous study by Ma et al. (2023) [17] was
also used as another learning target of the surface O3 and PM2.5 estimation MTL model.
In this work, daily gridded surface PM2.5 and O3 concentration datasets were considered
as the surface measurements for PM2.5 and O3 pollution and were used as the modeling
targets for the surface O3 and PM2.5 estimation MTL models. For more details of the
LGHAP dataset and gap-free O3 concentration dataset, please refer to Bai et al. (2022) [14]
and Ma et al. (2023) [17].

2.2. Precursor Factors

To reveal the impact of precursor emissions on PM2.5 and O3 collaborative pollution,
precursor factor datasets including SOX, NOX, VOC, aerosol component, HCHO column
density, surface SO2, and surface NO2 were used in this study to estimate the impact of
precursors on PM2.5 and O3 collaborative pollution. Similar with surface O3, daily gridded
(0.1◦ × 0.1◦) gap-free surface SO2 and surface NO2 datasets from 2010 to 2020 were also
derived from our previous study [17]. Moreover, monthly SOX and NOX anthropogenic
emission inventories (0.1◦ × 0.1◦) were obtained from the Copernicus Atmosphere Moni-
toring Service (CAMS) atmospheric reanalysis datasets. Due to the absence of available
measurement datasets for VOC, 3 h CAMS reanalysis datasets (0.75◦ × 0.75◦) for hydrogen
peroxide (H2O2), methane (CH4), isoprene (C5H8), peroxyacetyl nitrate (PAN), hydroxyl
radical (OH), and propane (C3H8) were utilized as proxy datasets for VOC. However,
there were a large number of VOC, so using only the six VOC mentioned above instead
of all VOC would result in incomplete information on VOC, and it is widely believed
that HCHO is a by-product of the oxidation process of many VOC, so the CAMS daily
formaldehyde (HCHO) reanalysis data were also used here as an important proxy for VOC.
In addition, hourly aerosol component datasets (0.5◦ × 0.625◦) including black carbon sur-
face mass (BCSM), dust surface mass density of PM2.5 (DUSMASS25), and organic carbon
surface mass (OCSM) derived from the Modern-Era Retrospective analysis for Research
and Applications version 2 (MERRA-2) were used in this work as influencing factors for
PM2.5 pollution. MERRA-2 is the latest version of global atmospheric reanalysis for the
satellite era produced by NASA Global Modeling and Assimilation Office (GMAO) using
the Goddard Earth Observing System Model (GEOS). Finally, precursor factor datasets
were resampled to 0.1◦ for spatiotemporal matching with other model input datasets before
they were input into the PM2.5 and O3 estimation MTL model.

2.3. Meteorological Factors

In addition to precursor emission factors, PM2.5 and O3 collaborative pollution is also
governed by meteorological factors, and, therefore, a range of meteorological factors were
utilized to establish the PM2.5 and O3 estimation MTL models. Hourly meteorological
datasets (0.1◦ × 0.1◦) including surface UV radiation (UV), surface 2 m temperature (T),
boundary layer height (BLH), wind speed (WS), wind direction (WD), relative humidity
at 1000 hpa (RH), surface pressure (SP), total precipitation (TP), and total cloud cover
(TCC) derived from the fifth generation ECMWF reanalysis for the global climate and
weather reanalysis (ERA5) between 2010 and 2020 were utilized to establish the PM2.5 and
O3 estimation MTL models. Subsequently, daily accumulated UV and TP, daily averaged
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RH, SP, BLH, and TCC, daily maximum T, and hourly values of WS and WD at 14:00 p.m.
(at which the highest MDA8 and temperature is oftentimes observed) were extracted and
utilized in the PM2.5 and O3 estimation MTL models [17].

2.4. Auxiliary Data

In addition to precursors and meteorological factors, auxiliary factors including popu-
lation density, NDVI, AOD, land use and land cover datasets were utilized to establish the
PM2.5 and O3 estimation MTL models. Annual gridded population density (1 km × 1 km)
derived from the China Resource and Environmental Science Data Center (CRESDC) (Bei-
jing, China) was resampled to 0.1◦ × 0.1◦ for spatiotemporal matching with other model
input datasets. In addition, Yang and Huang (2021) [38] provided annual LULC datasets for
China, where LULC1 to LULC9 denote cropland, forests, shrubs, grasslands, watersheds,
snow and ice, wasteland, impervious surfaces, and wetlands, respectively. Moreover, NDVI
datasets derived from the 16-day product of MODIS with a grid resolution of 0.05◦ × 0.05◦

and daily AOD were two other influencing factors used in the PM2.5 and O3 estimation
MTL models. Finally, these auxiliary factor datasets were resampled to 0.1◦ for spatiotem-
poral matching with other input datasets before modelling. All datasets utilized in this
work were summarized in Table S1.

3. Methods
3.1. Multi-Task Learning Modelling

As an extension of traditional statistical modelling, machine learning methods, due to
their excellent performance, have been widely used for air pollutant estimation modelling in
recent years [15,17,39,40]. However, these machine learning models are not able to estimate
and reveal the contribution of the same factor to both PM2.5 and O3 simultaneously, and
more than one model needs to be built to estimate and reveal the contribution of a particular
factor to both PM2.5 and O3. Therefore, the multi-task learning (MTL) model was applied
to this study to simulate both PM2.5 and O3 pollution in the same model and to reveal
the impact and contribution of each factor on PM2.5 and O3 pollution simultaneously.
Multi-task learning, known as inductive transfer or inductive bias learning, describes the
joint learning of multiple related tasks so that the knowledge contained in one task can
be utilized by the others, thus improving generalization of the model [41–43]. The hidden
layer of the MTL model consists of two parts: the shared layer and the split layer [44]. The
shared layer can learn from all tasks and capture the intrinsic features of the data. The split
layer can use latent features learnt from previous layers to learn task-specific information.
The model can share information between different tasks and be specialized for individual
tasks by sharing and splitting in layers [45]. The model can be represented simply as

PM2.5, O3 ∼ f (VOCs, Aerosol component, NOX , HCHO, SOX , NO2, SO2, AOD, LULC1, LULC2,
LULC3, LULC4, LULC5, LULC7, LULC8, LULC9, BLH, RH, SP, T, TCC, TP, UV, WD,

WS, NDVI, POPU, Month)
(1)

where PM2.5 and O3 denote the target time series of the MTL models in each region. SO2
and NO2 are daily gridded surface SO2 and NO2 estimation products. SOX and NOX are
monthly gridded CAMS total anthropogenic emissions. HCHO is the daily formaldehyde
from CMAS reanalysis data, while VOC represent six kinds of CAMS reanalysis Volatile
Organic Compounds, including Hydrogen peroxide (H2O2), Isoprene (C5H8), Peroxyacetyl
nitrate (PAN), Hydroxyl radicals (OH), Methane (CH4), and Propane (C3H8). In addi-
tion, aerosol component represents three kinds of a mainly primary aerosol composition,
including Black Carbon Surface Mass (BCSM), Dust Surface Mass Density of PM2.5 (DUS-
MASS25), and Organic Carbon Surface Mass (OCSM) derived from the MERRA-2 datasets.
The explanation of other variables can be found in Section 2.

To quantitatively evaluate the influence and contribution of each factor to the PM2.5
and O3 collaborative pollution in the NCP, the YRD, and the PRD, and further quantitatively
estimate the response of PM2.5 and O3 collaborative pollution of each region to each
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precursor factor, MTL estimation models between the PM2.5 and O3 and their influencing
factors for the NCP, the YRD, and the PRD were first established. Subsequently, PM2.5
and O3 MTL estimation models for these three regions were utilized to quantitatively
estimate the contribution and impact of each factor to PM2.5 and O3 collaborative pollution
in that corresponding region, and to quantitatively evaluate the responses of PM2.5 and O3
collaborative pollution to each precursor factor in that corresponding region. To establish
the PM2.5 and O3 MTL estimation models for the NCP, the YRD, and the PRD, precursor
emissions, meteorological factors, population density, AOD, NDVI, LULC, and other PM2.5
and O3-influencing factors were first resampled to 0.1◦ × 0.1◦ for spatiotemporal matching
with other model input datasets before they were input into the PM2.5 and O3 estimation
MTL model. Among these datasets, PM2.5 and O3 datasets in these three regions were
considered as the target variables of the PM2.5 and O3 estimation MTL models, while
the other influencing factors were used as model input-dependent variables. Taking the
MTL modelling in North China as an example, daily surface MDA8 and surface PM2.5
concentrations and related influencing factors for the corresponding location and date were
matched into a single data pair, with all pairs for the NCP including all datasets between
2010 and 2020. Considering that the input sample size of the MTL models of NCP is too
large (58,827,538 data pairs), the model input samples were temporally resampled and
spatially resampled to reduce the sample size of the model input datasets. For temporal
resampling, data pairs from 2010, 2012, 2014, 2016, 2018, and 2020 were selected. For
spatial resampling, one out of every two data rows in the latitudinal direction were selected.
Then, the 13,562,481 data pairs after spatiotemporal sampling were randomly divided into
10 parts, and 2 parts from all 10 parts were firstly selected as training samples, and then
1 part of the data pairs from the remaining 8 parts were randomly selected as validation
samples. All impact factors datasets were normalized prior to input into the PM2.5 and
O3 estimation MTL model of each region. The shared layer number for the PM2.5 and
O3 estimation MTL model was set to 100, while the task-specific tower layer number for
PM2.5 and O3 were set to 120, and 120, respectively. To improve the robustness of the
model, 10 random trials were conducted for the MTL model, and the average result of these
10 trials was considered as the final MTL model result of each region. The flowchart of this
work is shown in Figure 1, below.

3.2. MTL Modelling Accuracy Validation

After the PM2.5 and O3 estimation MTL models of three regions were established, the
prediction accuracy of these three models were evaluated. In this work, two commonly used
statistical indicators, including R2 and root-mean-squared error (RMSE), were calculated
between spatial-temporal co-located observed PM2.5 and O3, and the model estimated
PM2.5 and O3 to quantitatively evaluate the model accuracy and performance. These two
statistical indicators can be described as the following equations:

R2 = 1 − ∑n
i=1(oi − fi)

2

∑n
i=1(oi − o)2 (2)

RMSE =

√
1
n

n

∑
i=1

( fi − oi)
2 (3)

where oi denotes observed PM2.5 or O3, fi represents the estimated PM2.5 or O3, o is arith-
metic means of the observed PM2.5 or O3 values, and n denotes the number of data pairs.
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3.3. Relative Importance Evaluation and Estimation of the Impacts from Each Precursor

To evaluate the relative importance of each factor to the PM2.5 and O3 collaborative
pollution of each region, sensitivity analyses based on the PM2.5 and O3 estimation MTL
model are required to determine the contribution of each factor. Taking AOD as an example,
a scenario without AOD was simulated by replacing the time series of AOD with zero,
while all other factors remained unchanged (Equation (4)). Subsequently, the response
of PM2.5 and O3 to AOD (denoted as PM2.5−resp , O3−resp in Equation (5)) was modeled as
the PM2.5 and O3 difference between the original simulated PM2.5 and O3 (denoted as
YPM2.5 , YO3 in Equation (3)) and the later PM2.5 and O3 simulated with the AOD time series
was replaced with zero (denoted as Y

′
PM2.5 , Y

′
O3 in Equation (4)):

YPM2.5 , YO3 ∼ MTL(NOX , NO2, SOX , SO2, AOD, BLH, VOCs, LULC1, LULC2, LULC3, LULC4, LULC5,
LULC7, LULC8, LULC9, Aerosol component, NDVI, POPU, RH, SP, T, TCC, TP, UV, WD,

WS, Month)
(4)

Y′
PM2.5 , Y′

O3 ∼ MTL(NOX , NO2, SOX , SO2, AOD∗, BLH, VOCs, LULC1, LULC2, LULC3, LULC4,
LULC5, LULC7, LULC8, LULC9, Aerosol component, NDVI, POPU, RH, SP, T, TCC, TP,

UV, WD, WS, Month)
(5)

PM2.5−resp , O3−resp = YPM2.5 , YO3 − Y′
PM2.5 , Y′

O3 (6)

where AOD∗ represents the masked AOD time series. PM2.5-resp and O3-resp denote the
responses of PM2.5 and O3 to AOD. Likewise, PM2.5 and O3 responses to other influencing
factors were also evaluated through such a sensitivity analysis scheme.

In addition, a similar method to the sensitivity analyses described above was also
used to quantitatively estimate the impact of each precursor on PM2.5 and O3. Taking NOX
as an example, a scenario of changes in NOX concentration was modeled by replacing the
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NOx concentration in each day of 2011–2020 with NOx values from the corresponding date
in 2010, while all other factors remained unchanged. This scenario simulated a change
in NOx concentration using the NOx concentration in 2010 as a baseline. Subsequently,
the impact of NOX on PM2.5 and O3 (denoted as PM2.5−resp , O3−resp in Equation (8)) was
calculated as the PM2.5 and O3 difference between the simulated original PM2.5 and O3
(denoted as YPM2.5 , YO3 in Equation (6)) and the PM2.5 and O3 simulated with the NOx
time series replaced by NOx concentration in each day of 2010 (denoted as Y′

PM2.5 , Y′
O3 in

Equation (7)):

Y∗PM2.5 , Y∗O3 ∼ MTL(NOX , NO2, SOX , SO2, VOCs, Aerosol component) (7)

Y∗
′
PM2.5 , Y∗

′
O3 ∼ MTL(NO∗

X , NO2, SOX , SO2, VOCs, Aerosol component) (8)

PM2.5−resp
∗, O3−resp

∗ = Y∗PM2.5 , Y∗O3 − Y∗
′
PM2.5 , Y∗

′
O3 (9)

where NO∗
X represents masked values of NOx. PM2.5−resp

∗ and O3−resp
∗ denote the responses

of PM2.5 and O3 to NOx. Likewise, PM2.5 and O3 responses to other precursor factors were
evaluated through this sensitivity analysis scheme. A brief introduction to the sensitivity
analysis scheme can be found in the work of Ma et al. (2023) [17].

4. Results
4.1. Model Performance Verification

Figure 2 showed the sample-based validation results of these three MLT model-
estimated PM2.5 and O3 datasets in the NCP, the YRD, and the PRD. It indicated that
MTL model-estimated PM2.5 and O3 results exhibit a high correlation with the gridded
surface PM2.5 and O3 measurements in all three regions. The sample-based validation
results in Figure 2 indicate that the prediction accuracy of these three models is high, the R2

values of these three models were all larger than 0.69, and the RMSE values were all smaller
than 16.95 µg m−3. Among these three regions, the PM2.5 and O3 estimation MTL model
in the NCP had the highest predictive accuracy, with R2 values of 0.79 and 0.82 for PM2.5
and O3 estimation results, and RMSE values of 15.72 µg m−3 and 16.15 µg m−3 for PM2.5
and O3 estimation results, respectively. In addition to the NCP, the accuracy of the PM2.5
and O3 MTL estimation model for the YRD was the second highest among the models in
these three regions, with R2 values of 0.78 and 0.79, and RMSE values of 13.80 µg m−3 and
16.02 µg m−3 for PM2.5 and O3 estimation results, respectively. Additionally, the accuracy
of the PM2.5 and O3 estimation MTL model in the PRD was also high, with R2 values of 0.69
and 0.70, and RMSE values of 9.40 µg m−3 and 16.95 µg m−3 for PM2.5 and O3 estimation
results, respectively. In general, the PM2.5 and O3 MTL estimation models in these three
regions developed in this study can approximate the spatiotemporal variation patterns of
O3 and PM2.5 with high precision.

4.2. Relative Importance of Each Explanatory Variable

The relative importance of explanatory variables for surface PM2.5 and O3 pollution in
the NCP, the YRD, and the PRD are depicted in Figure 3. For PM2.5 and O3 pollution in
the NCP, the PRD, and the YRD, the PM2.5 and O3 precursor-related variables (including
HCHO, six kinds of VOC, aerosol component, SO2, NO2, SOX, and NOX) are the most
critical of all influencing factors, with their relative importance ranging from 29.99% to
40.65%. Among these precursors, VOC (including HCHO, C3H8, C5H8, CH4, H2O2, OH,
and PAN) and aerosol components (including BCSM, DUSMASS25, and OCSM) are found
to be the most important dominant precursors for both PM2.5 pollution and O3 pollu-
tion in these three regions, with their relative importance values ranging from 22.66% to
33.17%. These results indicate that surface O3 and PM2.5 pollution in these three regions are
largely regulated by VOC, aerosol components, SOX, and NOX, which means that reducing
the emissions of VOC, aerosols, SOX, and NOX can effectively reduce the O3 and PM2.5
pollution levels in the NCP, the PRD, and the YRD.



Sustainability 2024, 16, 2475 8 of 28

Sustainability 2024, 16, x FOR PEER REVIEW 8 of 28 
 

PM2.5 and O3 estimation MTL model in the PRD was also high, with R2 values of 0.69 and 
0.70, and RMSE values of 9.40 µg m−3 and 16.95 µg m−3 for PM2.5 and O3 estimation results, 
respectively. In general, the PM2.5 and O3 MTL estimation models in these three regions 
developed in this study can approximate the spatiotemporal variation patterns of O3 and 
PM2.5 with high precision.  

 
Figure 2. Density scatterplots of sample-based validation results of three PM2.5 and O3 pollution 
estimation MTL models in the NCP, the YRD, and the PRD. Sample-based validation results of the 
surface PM2.5 and O3 estimation results in the NCP are shown in (a,d), respectively, while (b,e) de-
note results for model-estimated surface PM2.5 and O3 in the YRD. (c,f) indicate validation results of 
estimated surface PM2.5 and O3 in the PRD. 

4.2. Relative Importance of Each Explanatory Variable 
The relative importance of explanatory variables for surface PM2.5 and O3 pollution 

in the NCP, the YRD, and the PRD are depicted in Figure 3. For PM2.5 and O3 pollution in 
the NCP, the PRD, and the YRD, the PM2.5 and O3 precursor-related variables (including 
HCHO, six kinds of VOC, aerosol component, SO2, NO2, SOX, and NOX) are the most crit-
ical of all influencing factors, with their relative importance ranging from 29.99% to 
40.65%. Among these precursors, VOC (including HCHO, C3H8, C5H8, CH4, H2O2, OH, 
and PAN) and aerosol components (including BCSM, DUSMASS25, and OCSM) are found 
to be the most important dominant precursors for both PM2.5 pollution and O3 pollution 
in these three regions, with their relative importance values ranging from 22.66% to 
33.17%. These results indicate that surface O3 and PM2.5 pollution in these three regions 
are largely regulated by VOC, aerosol components, SOX, and NOX, which means that re-
ducing the emissions of VOC, aerosols, SOX, and NOX can effectively reduce the O3 and 
PM2.5 pollution levels in the NCP, the PRD, and the YRD.  

In addition to precursor emission variables, meteorological factors are the second 
most important influencing variables on PM2.5 and O3 pollution in the NCP, the YRD and 
the PRD, with the relative importance values of these meteorological factors ranging from 
15.89% to 20.11%. These meteorological factors include surface UV radiation, surface 2 m 
temperature, relative humidity at 1000 hPa, boundary layer height, wind speed, wind di-
rection, surface pressure, total precipitation, and total cloud cover. Among these meteor-
ological variables, temperature, UV radiation, and relative humidity are the three most 
important meteorological factors for PM2.5 and O3 pollution in the NCP, the YRD, and the 
PRD, with their relative importance values ranging from 1.84% to 3.99%. These results are 

Figure 2. Density scatterplots of sample-based validation results of three PM2.5 and O3 pollution
estimation MTL models in the NCP, the YRD, and the PRD. Sample-based validation results of the
surface PM2.5 and O3 estimation results in the NCP are shown in (a,d), respectively, while (b,e) denote
results for model-estimated surface PM2.5 and O3 in the YRD. (c,f) indicate validation results of
estimated surface PM2.5 and O3 in the PRD.

In addition to precursor emission variables, meteorological factors are the second
most important influencing variables on PM2.5 and O3 pollution in the NCP, the YRD
and the PRD, with the relative importance values of these meteorological factors ranging
from 15.89% to 20.11%. These meteorological factors include surface UV radiation, surface
2 m temperature, relative humidity at 1000 hPa, boundary layer height, wind speed,
wind direction, surface pressure, total precipitation, and total cloud cover. Among these
meteorological variables, temperature, UV radiation, and relative humidity are the three
most important meteorological factors for PM2.5 and O3 pollution in the NCP, the YRD,
and the PRD, with their relative importance values ranging from 1.84% to 3.99%. These
results are consistent with previous studies [46–53], and high temperatures, strong UV
radiation, and suitable relative humidity provide an appropriate environment to promote
ozone photochemistry and the formation of ozone pollution. Similar to O3 pollution,
appropriate temperature and solar radiation, as well as high relative humidity also provide
a suitable environment for the generation and concentration of PM2.5 pollution, which
is also consistent with the results of previous studies [47,54–57]. Besides precursors and
meteorological factors, there are several factors such as AOD, land use and land cover,
NDVI, population, topography, and month that have a strong influence on PM2.5 and O3
pollution in the NCP, the YRD, and the PRD, and their relative importance ranges from
21.40% to 23.46%. Among these variables, LULC2 and month are revealed to the most
important influencing factors for O3 pollution in these three regions, with the relative
importance larger than 1.74%, and 1.77%, respectively, while AOD and LULC2 are revealed
to be the most important influencing factors for PM2.5 pollution in these three regions, with
the relative importance larger than 1.74% and 3.84%, respectively.
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Figure 3. The relative importance of each explanatory variable to PM2.5 pollution and O3 pollution
using the MTL estimation models in the NCP, the PRD, and the YRD. In this figure, VOC represent
HCHO and six kinds of Volatile Organic Compounds, including Hydrogen peroxide, Isoprene,
Peroxyacetyl nitrate, Hydroxyl radicals, Methane and Propane. Aerosol Components represent three
kinds of a mainly primary aerosol composition, including Black Carbon Surface Mass, Dust Surface
Mass Density of PM2.5, and Organic Carbon Surface Mass.

4.3. PM2.5 and O3 Collaborative Pollution Response to Each Precursor

To quantitatively estimate the impact of each precursor on the PM2.5 and O3 collabora-
tive pollution of each region, sensitivity analyses based on the PM2.5 and O3 estimation MTL
models are applied to determine the contribution of each factor. Taking the concentration
of each precursor in 2010 as a baseline, a scenario of changes in this precursor concentration
was modeled by replacing the concentration of this precursor in each day of 2011–2020
with values from the corresponding date in 2010, while all other influencing factors of
PM2.5 and O3 collaborative pollution remained unchanged. Subsequently, the impact of
this specific precursor on PM2.5 and O3 was calculated as the PM2.5 and O3 difference
between the simulated original PM2.5 and O3, and the PM2.5 and O3 simulated with this
special precursor time series were replaced by its concentration from the corresponding
date in 2010.

Figure 4 depicted the temporal patterns of the annual response of PM2.5 and O3
pollution to each precursor during 2011–2020 estimated by the MTL models in the NCP,
the PRD, and the YRD. The results showed that among these seven PM2.5 precursor factors,
four influencing factors with the largest PM2.5 pollution response in these three regions
were SO2, HCHO, NO2, and SOX, and a 10-year average value of PM2.5 response for these
four factors were larger than 0.30 µg m−3. The variations of these four precursors had
the greatest impact on PM2.5 pollution in these three regions, which means that emission
reduction in these four precursors is the most effective measure to mitigate PM2.5 pollution
in the NCP, the PRD, and the YRD. However, the two most crucial precursors of PM2.5 are
different across these three regions. The two most important influencing factors on PM2.5
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pollution in the NCP (YRD) are SO2 and HCHO, with 10-year averaged PM2.5 response
values of 2.64 µg m−3 (2.01 µg m−3), and 1.71 µg m−3 (0.95 µg m−3), respectively. However,
the two most important impact factors on PM2.5 pollution in the PRD are SO2 and NO2,
with 10-year averaged PM2.5 response values of 1.24 µg m−3 and 0.88 µg m−3, respectively.
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Figure 4. The annual response of PM2.5 and O3 pollution to each precursor in the NCP, the PRD, and
the YRD during 2011–2020. The annual response of PM2.5 pollution to each precursor in the NCP,
the YRD, and the PRD are shown in (a,c,e), respectively, while (b,d,f) denote results for the annual
response of O3 pollution to each precursor in the NCP, the YRD, and the PRD.

In terms of O3 pollution, it indicated that among these O3 precursors, three influencing
factors with the largest O3 pollution response in these three regions were HCHO (the
by-product of many VOC oxidation processes, and a critical proxy of VOC), NO2, and
SOX, and the 10-year average O3 response values for these three factors were larger than
0.6 µg m−3. The variations of these three precursors had the greatest impact on O3 pollution
in these three regions, which means that the emission reduction in VOC, NO2, and SOX
is the most effective measure to mitigate O3 pollution in the NCP, the PRD, and the YRD.
Moreover, the two most crucial precursors of O3 are different across these three regions.
The two most important influencing factors on O3 pollution in the NCP (YRD) are HCHO
and NO2, with 10-year averaged O3 response values of 1.00 µg m−3 (2.89 µg m−3) and
0.70 µg m−3 (0.55 µg m−3), respectively. However, the two most important impact factors
on O3 pollution in the PRD are HCHO and SOX, with 10-year averaged O3 response values
of 1.79 µg m−3 and 0.47 µg m−3, respectively.

In terms of the temporal patterns of PM2.5 and O3 pollution responses to precursor
variations, the responses of PM2.5 and O3 pollution to different precursor factors in different
regions have different temporal variation features. For PM2.5 pollution, the temporal
variation patterns of the PM2.5 pollution response to SO2 in the NCP, the YRD, and the
PRD were similar. And, the response values of PM2.5 pollution to SO2 in these three
regions increased from 2011 to 2015, peaked in 2015, decreased from 2015 to 2017, reached
a minimum value in 2017 (2018 for the PRD), then elevated again from 2017 (2018 for the
PRD) to 2020, and reached a second peak in 2020. However, the temporal variation patterns
of the response of PM2.5 to HCHO in these three regions were different. The response
values of PM2.5 to HCHO in the NCP increased from 2011 to 2015, peaked in 2015, and
decreased from 2015 to 2020, while the response values of PM2.5 pollution to HCHO in the
PRD and the YRD showed an overall decreasing trend from 2011 to 2020. The temporal
variation patterns of the response values of PM2.5 pollution to NO2 in these three regions
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were similar, and the response values of PM2.5 to NO2 increased from 2011 to 2015, peaked
in 2015, and then decreased from 2015 to 2020. In addition, the temporal variation patterns
of the response values of PM2.5 pollution to SOX in these three regions were different, and
the response values of PM2.5 to SOX in the NCP increased from 2011 to 2014, peaked in 2014,
and then decreased from 2014 to 2020, while the response values of PM2.5 to SOX in the
PRD decreased from 2011 to 2016, reached a minimum value in 2016, and then increased
from 2016 to 2020. Different from the response of PM2.5 to SOX in the NCP and the PRD, the
response values of PM2.5 to SOX in the YRD showed an overall decreasing trend from 2011
to 2020. For O3 pollution, the temporal variation patterns of the O3 response to HCHO in
the NCP, the YRD, and the PRD were similar. The response values of O3 to HCHO in these
three regions increased from 2011 to 2014, peaked in 2014, and decreased from 2014 to 2020.
The temporal variation patterns of the response values of O3 pollution to NO2 in these
three regions were similar, and the response values of O3 to NO2 increased from 2011 to
2015 (2014 for the PRD), peaked in 2015 (2014 for the PRD), and then decreased from 2015
(2014 for the PRD) to 2020. However, the temporal variation patterns of the response of O3
to SOX in these three regions were different. The response values of O3 to SOX in the NCP
and the YRD showed an overall increasing trend from 2011 to 2020, while the response
values of O3 pollution to SOX in the PRD decreased from 2011 to 2014, reached a minimum
value in 2014, and then increased from 2014 to 2020. In addition, the temporal variation
patterns of the response values of O3 pollution to SO2 in these three regions were different,
and the response values of O3 to SOX in the NCP and the YRD increased from 2011 to 2014,
peaked in 2014, and then decreased from 2014 to 2020, while the response values of O3 to
SO2 in the PRD increased from 2011 to 2015, reached a minimum value in 2015, decreased
from 2015 to 2017, reached a minimum value in 2017, and then increased from 2017 to 2020.
Different from the response of O3 to HCHO, SOX, NO2, and SO2 in these three regions, the
response values of O3 to VOC showed an overall increasing trend from 2011 to 2020.

Figure 5 depict the spatial patterns of the annual response of PM2.5 pollution to each
precursor during 2011–2020 estimated by the MTL models in the NCP. The results indicated
that among these precursors, SO2, HCHO, SOX, and NO2 were the four most important
precursors for PM2.5 pollution in the NCP, which was consistent with the results presented
in Figure 4a. Among these precursors, the amplitude of PM2.5 response to SO2 was the
largest, with the values of the PM2.5 response to SO2 higher than +12 µg m−3 in parts of
Shandong Province in 2015 and the PM2.5 response to SO2 lower than −18 µg m−3 in parts
of the Jing-Jin-Ji (Beijing, Tianjin, and Hebei provinces) region in 2020. This may be related
to the isotropic feedback of PM2.5 pollution on SO2 [58]. Compared with 2010, the SO2
concentration in (shown in Figure S1) 2011 in the NCP was relatively higher, so the response
value of PM2.5 to SO2 in 2011 was positive. From 2012 to 2013, SO2 concentrations in the
NCP were lower than those in 2010, especially in the Jing-Jin-Ji region (Beijing, Tianjin, and
Hebei provinces) and the Lu-Yu region (Shandong and Henan provinces), so the response
values of PM2.5 pollution to SO2 were negative from 2012 to 2013. During 2014–2017,
SO2 concentrations in the NCP increased significantly and were larger than those in 2010,
especially in Hebei, Shandong, Henan, and Shanxi provinces, so the response values of
PM2.5 to SO2 in 2014–2017 were positive, and the response value was largest in 2015. In
contrast, SO2 concentrations from 2014 to 2017 in Beijing and Tianjin were lower than those
in 2010, so the response values of PM2.5 to SO2 in Beijing and Tianjin were negative, and
the response value was largest in 2017. From 2018 to 2020, SO2 concentrations in the NCP
were smaller than those in 2010, especially in the Jing-Jin-Ji region and the Lu-Yu region, so
the response value of PM2.5 to SO2 in 2018–2020 was negative, and the amplitude of the
response value was largest in 2020.
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In addition to SO2, the amplitude of the response of PM2.5 pollution to HCHO (the
by-product of many VOC oxidation processes, and a critical proxy of VOC) was the
second largest among all precursors, with the PM2.5 response values to HCHO higher than
+6 µg m−3 in parts of the Ji-Lu-Yu (Hebei, Henan, and Shandong provinces) region in 2011.
This may be related to the positive feedback of PM2.5 pollution on HCHO (also known as
VOC). Compared with 2010, the HCHO (i.e., VOC) concentration in 2011–2020 in the main
region of Ji-Lu-Yu was relatively higher, so the response value of PM2.5 to VOC in 2011–2020
was positive. However, the response value of PM2.5 to VOC in the main regions of the NCP
increased during 2011–2015, reached the peak value in 2015, and then decreased during
2015–2020. Meanwhile, HCHO concentrations (shown in Figure S2) and the anthropogenic
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emissions of VOC (shown in Figure S3) showed an overall increasing trend from 2010 to
2020. This may be related to the nonlinear relationship between HCHO (VOC emissions)
and PM2.5 pollution in the NCP [57,59–61]. Before 2015, VOC emissions were not saturated
for PM2.5 pollution, and the positive response of PM2.5 pollution increased gradually with
the increase in VOC emissions. However, VOC emissions began to saturate for PM2.5
pollution after 2015, and the contribution of rising VOC emissions to the increase in PM2.5
pollution levels is gradually declining, where the positive response of PM2.5 pollution
gradually decreased with the increase in VOC emissions between 2015 and 2020.

Besides SO2 and HCHO, the amplitude of the response of PM2.5 pollution to SOX is
the third largest among all precursors, with the PM2.5 response values to SOX higher than
+4 µg m−3 in parts of the Ji-Lu-Yu region in 2014. This may be due to the positive feedback
of PM2.5 pollution on SOX. Compared with 2010, the SOX concentration (shown in Figure
S4) in 2011–2020 in the main region of Ji-Lu-Yu was relatively higher, so the response value
of PM2.5 to SOX in 2011–2020 was positive. However, the response value of PM2.5 to SOX
in the main regions of the NCP increased during 2011–2014, reached the peak value in
2014, and then decreased during 2014–2020. Meanwhile, SOX concentrations (shown in
Figure S6) increased from 2010 to 2014, and then decreased during 2014–2020.

Moreover, the amplitude of the response of PM2.5 pollution to NO2 is the fourth largest
among all precursors, with PM2.5 response values to NO2 higher than +3 µg m−3 in parts
of the Ji-Lu-Yu region in 2015. This may be due to the positive feedback of PM2.5 pollution
on NO2 [33,62,63]. Compared with 2010, the NO2 concentration (shown in Figure S5) in
2011–2012 in the central and southern NCP was lower, so the response value of PM2.5 to
NO2 in 2011–2012 was negative. However, the NO2 concentration in 2013–2017 in the
main part of the NCP was relatively higher, so the response value of PM2.5 to NO2 in
2013–2017 was positive. From 2018 to 2020, the NO2 concentration in the main part of the
NCP was relatively lower, so the response value of PM2.5 to NO2 in 2018–2020 was negative.
Compared with these four precursors, the response of PM2.5 pollution to CAMS-VOC,
aerosol component, and NOX were relatively smaller.

Figure 6 depicts the spatial patterns of the annual response of O3 pollution to each
precursor during 2011–2020 estimated by the MTL models in the NCP. The results indicated
that among these precursors, HCHO, NO2, SOX, and VOC were the most important four
precursors for O3 pollution in the NCP, which was consistent with the results shown in
Figure 4b. Among these precursors, the amplitude of the O3 response to HCHO was the
largest, with O3 response values to HCHO higher than +5 µg m−3 in northwestern parts of
the NCP. This may be due to the different response patterns of O3 to HCHO in different
regions. In the Ji-Lu-Yu region, the response of O3 pollution to HCHO was negative, and
the level of O3 pollution decreased with the increase in HCHO concentration. Compared
with 2010, the HCHO concentration (shown in Figure S2) in 2011–2020 in the Ji-Lu-Yu
region was relatively higher, so the response value of O3 to HCHO was negative during
2011–2020. In contrast, the responses of O3 pollution to HCHO in the northwestern part of
the NCP (Shanxi province and northwest part of Hebei province) and southeastern part
of the NCP (Anhui province, the Jiangsu province, and the southeast part of Shandong
province) were negative from 2011 to 2016, and then turned positive from 2017 to 2020.
The level of O3 pollution in the northwestern and northwest parts of the NCP increased
with the decrease in HCHO concentration between 2011 and 2016, and then increased with
the increase in HCHO concentration between 2017 and 2020. Compared with 2010, the
HCHO concentration in 2011–2016 in the northwestern and northwest parts of the NCP
was relatively lower, and the response value of O3 to HCHO in this region was positive
during 2011–2016; however, the HCHO concentration in 2017–2020 in this region was
relatively higher, and the response value of O3 to HCHO in this region was positive during
2017–2020.
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For NO2, the response value of O3 pollution to NO2 in the main region of the NCP
decreased from 2011 to 2016, reached a minimum value in 2016, and then increased from
2016 to 2020. This may be related to the negative feedback of O3 pollution on NO2 [64,65].
The NO2 concentration in 2011–2012 in the main region of the NCP was relatively lower
than that in 2010, and the response value of O3 to NO2 in 2011–2012 was positive. Compared
with 2010, NO2 concentration (shown in Figure S5) in the NCP increased from 2013 to 2016
and was relatively higher, and the response value of O3 pollution to NO2 was negative
and decreased from 2013 to 2016. Compared to 2010, NO2 concentrations in the NCP
were relatively higher between 2017 and 2019 and relatively lower in 2020, and NO2
concentrations decreased from 2017 to 2020. Meanwhile, the response value of O3 pollution
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to NO2 decreased from 2017 to 2020, and the response value was negative between 2017
and 2019 and was positive in 2020.

During 2011–2020, the response value of O3 pollution to SOX in the NCP increased
between 2011 and 2014, reached the peak value in 2014, and then decreased from 2014
to 2020. This may be related to the isotropic feedback of O3 pollution on SOX. The SOX
emission in the northern Hebei province, Beijing, and Tianjin in 2011–2015 were smaller
than that in 2010 (shown in Figure S4), so the response value of O3 to SOX was negative in
this region from 2011 to 2015, while the SOX in the border area of the Hebei, Henan, and
Shandong provinces in 2011–2015 were larger than that in 2010, so the response value of
O3 to SOX was positive in this region during 2011–2015. Meanwhile, SOX emission in the
NCP during 2016–2020 was lower than that in 2010; therefore, the response value of O3 to
SOX in 2016–2020 is negative in the NCP.

For VOC, the response of O3 to VOC in the NCP increased from 0.1 µg m−3 in 2011
to 2 µg m−3 in 2020. This may be related to the isotropic feedback of O3 pollution on
VOC in the NCP [66–68]. VOC emissions in the NCP increased from 2011 to 2020 and
were relatively higher than that in 2010 (shown in Figure S3), and the response value of
O3 pollution to VOC was positive and increased from 2011 to 2020. Compared with these
four precursors, the response of O3 pollution to SO2, NOX, and aerosol components were
relatively smaller.

Figure 7 depicts the spatial patterns of the annual response of PM2.5 pollution to each
precursor during 2011–2020 estimated by the MTL models in the YRD. Similar with the
NCP, the results indicated that among these precursors, SO2, HCHO, NO2, and SOX were
the four most important precursors for PM2.5 pollution in the YRD, which was consistent
with the results presented in Figure 4c. Among all precursors, the amplitude of the PM2.5
response to SO2 was the largest, with the values of the PM2.5 response to SO2 higher than
+9 µg m−3 in the south part of Jiangsu province in 2015 and the PM2.5 response to SO2
lower than −12 µg m−3 in the north parts of the YRD in 2020. This may be due to the
isotropic feedback on PM2.5 pollution to SO2. Compared with 2010, the SO2 concentration
(shown in Figure S6) in 2011 in the YRD was relatively high, so the response value of PM2.5
to SO2 in 2011 was positive. From 2012 to 2013, the SO2 concentration in the YRD was
lower than that in 2010, especially in the north part of the YRD, so the response values of
PM2.5 pollution to SO2 were negative from 2012 to 2013. However, the SO2 concentration
in the YRD increased significantly in 2014–2017, and was larger than that in 2010, so the
response values of PM2.5 to SO2 in 2014–2017 were positive. Meanwhile, the amplitude
of the response value increased between 2014 and 2015, reached the peak value in 2015,
and then decreased in 2016–2017. From 2018 to 2020, the SO2 concentration in the YRD
decreased significantly and was lower than that in 2010, especially in the north part of the
YRD, so the response value of PM2.5 to SO2 in 2018–2020 was negative, and the response
value decreased in 2018–2020.

In addition to SO2, the amplitude of the response of PM2.5 pollution to HCHO is the
second largest among all precursors, with the PM2.5 response values to HCHO higher than
+2.5 µg m−3 in the north parts of the YRD in 2011. This may be due to the different response
patterns of PM2.5 pollution to HCHO in different regions. The response of PM2.5 to HCHO
in the southern part of the YRD (including the southern part of the Anhui province, the
northern part of Zhejiang province, and Shanghai) were likely due to negative feedback
between 2011 and 2020. HCHO concentration (shown in Figure S7) in the southern part
of the YRD increased in 2011–2020, and was higher than that in 2010, but the responses of
PM2.5 to HCHO were negative during 2011–2020 in this region. In the scenarios simulated
by the MTL model, simulated PM2.5 concentration decreased in 2011–2020 when it was
compared with that in 2010. However, the response of PM2.5 to HCHO in the northern part
of the YRD (including the northern part of the Anhui province and the Jiangsu province)
were likely due to negative feedback between 2011 and 2015 and turned to be positive
feedback between 2016 and 2020. The HCHO concentration in the northern part of the
YRD decreased in 2011–2015, and was lower than that in 2010, and the responses of PM2.5
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to HCHO were positive during 2011–2015 in this region, while HCHO concentration in
this region increased in 2016–2020, and was higher than that in 2010, and the responses of
PM2.5 to HCHO were positive during 2016–2020 in this region.
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Besides SO2 and HCHO, the amplitude of the response of PM2.5 pollution to NO2 is
the third largest among all precursors, with PM2.5 response values to NO2 higher than
+5 µg m−3 in the central and southern YRD in 2015. This may be due to the positive feedback
of PM2.5 pollution on NO2 [33,62,63]. Compared with 2010, the NO2 concentration (shown
in Figure S8) in 2011–2012 in the northeastern part of the YRD was lower, so the response
value of PM2.5 to NO2 in 2011–2012 was negative in this region, while the NO2 concentration
in 2011–2012 in the central part of the YRD was higher, so the response value of PM2.5 to
NO2 in 2011–2012 was positive in this region. Moreover, the NO2 concentration in 2013
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in the YRD was relatively higher than that in 2010, so the response value of PM2.5 to NO2
in 2013 was positive. From 2014 to 2020, the NO2 concentration in the northern YRD was
relatively lower than that in 2010, so the response value of PM2.5 to NO2 in 2014–2020 was
negative in this region, while NO2 concentration in the central and southern YRD was
relatively higher than that in 2010, so the response value of PM2.5 to NO2 in the central and
southern YRD was positive from 2014 to 2020.

Moreover, the amplitude of the response of PM2.5 pollution to SOX is the fourth largest
among all precursors, with PM2.5 response values to SOX higher than +3 µg m−3 in the
Anhui province in 2013. This may be due to the positive feedback of PM2.5 pollution to
SOX. SOX concentrations in 2011, 2013–2015, and 2019 in the YRD were relatively higher
than that in 2010 (shown in Figure S9), so the response values of PM2.5 to SOX in 2011,
2013–2015, and 2019 were positive. However, SOX concentrations in 2012 in the northern
YRD were relatively lower than that in 2010, so the response values of PM2.5 to SOX
in 2012 were negative in northern YRD, while SOX concentrations in 2012 in southern
YRD were relatively higher than that in 2010, so the response values of PM2.5 to SOX in
2012 were positive in the southern YRD. In addition, SOX concentrations in 2016–2018
and 2020 in the YRD were relatively lower than that in 2010, so the response values of
PM2.5 to SOX in 2016–2018 and 2020 were negative in the YRD. Compared with these four
precursors, the response of PM2.5 pollution to CAMS-VOC, aerosol components, and NOX
were relatively smaller.

Figure 8 depicts the spatial patterns of the annual response of O3 pollution to each
precursor during 2011–2020 estimated by the MTL models in the YRD. It indicated that
among these precursors, HCHO, NO2, SOX, and VOC were the most important four
precursors for O3 pollution in the YRD, which is consistent with the results presented
in Figure 4d. Among these precursors, the amplitude of the O3 response to HCHO was
the largest in 2015, with the O3 response to HCHO higher than +9 µg m−3 in eastern
parts of the Jiangsu province. This may be due to the different response patterns of O3
to HCHO in different regions. The response of O3 to HCHO in the southern part of the
YRD (including the southern part of the Anhui province, the northern part of the Zhejiang
province, and Shanghai) were likely due to negative feedback between 2011 and 2020.
HCHO concentration (shown in Figure S7) in the southern part of the YRD increased
in 2011–2020, and was higher than that in 2010, but the responses of O3 to HCHO were
negative during 2011–2020 in this region. However, the response of O3 to HCHO in the
northern part of the YRD (including the northern part of the Anhui province and the
Jiangsu province) were likely due to negative feedback between 2011 and 2015, and turned
to be positive feedback between 2016 and 2020. HCHO concentration in the northern part
of the YRD decreased in 2011–2015, and was lower than that in 2010, and the responses of
O3 to HCHO were positive during 2011–2015 in this region, while HCHO concentration in
this region increased in 2016–2020 and was higher than that in 2010, and the responses of
O3 to HCHO were positive during 2016–2020 in this region.

For NO2, the response value of O3 pollution to NO2 in the main region of the YRD
decreased from 2011 to 2016, reached a minimum value in 2016, and then increased from 2016
to 2020. This may be related to the negative feedback of O3 pollution on NO2 [64,65]. The NO2
concentration (shown in Figure S8) in 2011–2012 in northeastern YRD was relatively lower
than that in 2010, and the response value of O3 to NO2 in 2011–2012 was positive, while NO2
concentration in 2011–2012 in the central part of the YRD was higher, so the response value
of O3 to NO2 in 2011–2012 was negative in this region. Moreover, the NO2 concentration
in 2013 in the main part of the YRD was relatively higher than that in 2010, so the response
value of O3 to NO2 in 2013 was negative. From 2014 to 2020, the NO2 concentration in
northern YRD was relatively lower than that in 2010, and the response value of O3 to NO2 in
2014–2020 was positive in this region, while the NO2 concentration in central and southern
YRD were relatively higher than that in 2010, and the response value of O3 to NO2 in central
and southern YRD were negative from 2014 to 2020.
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Moreover, the amplitude of the response of O3 pollution to SOX is the third largest
among all precursors, with O3 response values to SOX lower than –3 µg m−3 in the Anhui
province in 2020. This may be due to the different response patterns of O3 pollution to SOX
in different regions. The responses of O3 to SOX in the YRD were likely due to negative
feedback in 2011. From 2012 to 2013, the responses of O3 to SOX in the Jiangsu province
were likely due to positive feedback, while the responses of O3 to SOX in the Anhui and
Zhejiang provinces were likely due to negative feedback. In addition, from 2014 to 2020,
the responses of O3 to SOX in the YRD were likely due to positive feedback. In 2011, SOX
concentrations in the southwestern region of the YRD were relatively higher than that in
2010 (shown in Figure S9), so the response values of O3 to SOX in 2011 were negative, while
SOX concentrations in the northeastern region of the YRD were relatively lower than that
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in 2010, and the response values of O3 to SOX in this region were positive. However, from
2012 to 2013, SOX concentrations in the northeastern region of the YRD were relatively
lower than that in 2010, so the response values of O3 to SOX in this region were negative,
while SOX concentrations in the other parts of the YRD were relatively higher than that
in 2010, and the response values of O3 to SOX in these regions were negative. In addition,
during 2014–2020, SOX concentrations in the main part of the YRD were relatively lower
than that in 2010, so the response values of O3 to SOX were negative in this region; however,
SOX concentrations in western YRD in 2014, and in Shanghai and the Jiangsu province in
2017, were higher than those in 2010, and, therefore, the values of the O3 response to SOX
were positive in these regions.

For VOC, the response of O3 to VOC in the YRD increased from 0.1 µg m−3 in 2011
to 1.5 µg m−3 in 2020. This may be related to the isotropic feedback of O3 pollution on
VOC in the YRD [66–68]. VOC emissions in the YRD increased from 2011 to 2020 and were
relatively higher than that in 2010 (shown in Figure S10), and the response value of O3
pollution to VOC was positive and increased from 2011 to 2020. Compared with these
four precursors, the response of O3 pollution to SO2, NOX, and aerosol components were
relatively smaller.

Figure 9 depicts the spatial patterns of the annual response of PM2.5 pollution to each
precursor during 2011–2020 estimated by the MTL models in the PRD. Similar with the
NCP and the YRD, the results indicated that among these precursors, SO2, NO2, HCHO,
and SOX were the four most important precursors for PM2.5 pollution in the PRD, which
are consistent with the results present in Figure 4e. Among these precursors, the amplitude
of the PM2.5 response to SO2 was the largest, with the values of the PM2.5 response to
SO2 higher than +6 µg m−3 in the western region of the PRD in 2015 and the PM2.5
response to SO2 lower than −12 µg m−3 in the central part of the PRD in 2020. This may
be due to the isotropic feedback of PM2.5 pollution on SO2 [58]. Compared with 2010, SO2
concentration (shown in Figure S11) in 2011, and 2013–2014, in the PRD was relatively
higher, so the response value of PM2.5 to SO2 in 2011, and 2013–2014, were positive. In 2012,
SO2 concentration in the PRD was lower than that in 2010, and the values of the PM2.5
response to SO2 were negative. In the northwestern part of the PRD, the SO2 concentration
was larger than that in 2010, but it decreased significantly from 2015 to 2020, and, therefore,
values of the PM2.5 response to SO2 were all positive in 2015–2020, but the spatial extent
covered by positive values gradually decreased. In contrast, the SO2 concentration in the
southeastern part of the PRD was lower than that in 2010, and it decreased significantly
from 2015 to 2020, and, therefore, values of the PM2.5 response to SO2 were all negative in
this period, but the spatial extent covered by negative values gradually increased.

In addition to SO2, the amplitude of the PM2.5 response to NO2 was the second largest
among all precursors, with values of the PM2.5 response to NO2 higher than +5 µg m−3

in western PRD in 2014. This may be due to the positive feedback of PM2.5 pollution on
NO2 [33,62,63]. In 2011–2013, NO2 concentration (shown in Figure S12) in the PRD was
lower than that in 2010, so values of PM2.5 response to NO2 were negative in this region.
From 2014 to 2020, the NO2 concentration in the main part of the PRD was relatively higher
than that in 2010, so value of the PM2.5 response to NO2 was positive. Moreover, NO2
concentrations in the southeastern part of the PRD between 2015 and 2019 and in the
southern part of the PRD in 2020 were relatively lower than that in 2010, so the response
value of PM2.5 to NO2 was negative.
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Besides SO2 and NO2, the amplitude of the response of PM2.5 pollution to HCHO is
the second largest among all precursors, with the PM2.5 response values to HCHO higher
than +2 µg m−3 in north parts of the PRD in 2011. This may be due to the different response
patterns of PM2.5 pollution to HCHO in different regions. The response of PM2.5 to HCHO
was likely due to negative feedback in northwestern PRD in 2011 and the entire PRD in
2013, while the response of PM2.5 to HCHO was likely due to positive feedback in central
and southeastern PRD in 2011, and in the entire PRD in 2012 and 2014–2020. The HCHO
concentration (shown in Figure S13) was lower in the northwestern YRD in 2011, and the
entire PRD in 2013, than that in 2010, and then values of the PM2.5 response to HCHO were
positive. Moreover, the HCHO concentration was higher in central and southeastern PRD
in 2011, and in the entire PRD in 2012 and 2014–2020, than that in 2010, and then values of
the PM2.5 response to HCHO were positive. HCHO concentration increased between 2014
and 2020; however, the positive values of the PM2.5 response to HCHO decreased in this
period. This may be related to the nonlinear relationship between HCHO (VOC emissions)
and PM2.5 pollution in the PRD [57,59–61]. After 2014, HCHO (VOC emissions) began to
saturate for PM2.5 pollution, and the contribution of rising HCHO (VOC emissions) to the
increase in PM2.5 pollution levels gradually declined, and the positive response of PM2.5
pollution gradually decreased with the increase in VOC emissions between 2015 and 2020.
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Moreover, the amplitude of the response of PM2.5 pollution to SOX is the fourth largest
among all precursors, with the PM2.5 response values to SOX higher than +1 µg m−3 in
the southwestern province in 2011. This may be due to the positive feedback of PM2.5
pollution on SOX. SOX concentrations decreased between 2011 and 2020 and were higher in
2011–2014 than that in 2010 (shown in Figure S14), so the response values of PM2.5 to SOX
in 2011–2014 were positive, while SOX concentrations were lower in 2015–2020 than that
in 2010, and, therefore, values of the PM2.5 response to SOX in 2015–2020 were negative.
Compared with these four precursors, the response of PM2.5 pollution to CAMS-VOC,
aerosol components, and NOX were relatively smaller.

Figure 10 depicts the spatial patterns of the annual response of O3 pollution to each
precursor during 2011–2020 estimated by the MTL models in the PRD. It indicated that
among these precursors, HCHO, NO2, SOX, SO2, and VOC were the most important five
precursors for O3 pollution in the PRD, which are consistent with the results present in
Figure 4f. Among these precursors, the amplitude of the O3 response to HCHO was the
largest in 2015, with the values of the O3 response to HCHO higher than +4 µg m−3 in
northern parts of the PRD. This may be due to the different response patterns of O3 to
HCHO in different regions. The response of O3 to HCHO in central PRD was likely due to
negative feedback in 2011–2012 and in 2014–2020, while the response of O3 to HCHO in
the other regions of the PRD, except the central part, was likely due to positive feedback
in 2012 and in 2014–2020. Except for the central region of the PRD, the response of O3
to HCHO was likely due to negative feedback in 2011, and in contrast, the response was
likely due to positive feedback in 2013. The HCHO concentration was higher in central
PRD in 2011–2012, and 2014–2020, than that in 2010, but the responses of O3 to HCHO
were negative, while the HCHO concentration was higher in the other regions of the PRD,
except the central part, in 2012 and 2014–2020 than that in 2010, and then the responses
of O3 to HCHO were positive. The HCHO concentration was lower in 2011 in the other
regions of the PRD, except the central part, than that in 2010, but the responses of O3 to
HCHO were positive. However, the HCHO concentration (shown in Figure S13) was lower
in central PRD in 2013 than that in 2010, and, therefore, the responses of O3 to HCHO were
negative, while the HCHO concentration was lower in the other regions of the PRD, except
the central part, in 2013 than that in 2010, but the responses of O3 to HCHO were positive.

Moreover, the amplitude of the response of O3 pollution to SOX is the second largest
among all precursors, with O3 response values to SOX lower than –3 µg m−3 in southern
PRD in 2011. This may be due to the positive feedback of O3 pollution on SOX. SOX
concentrations decreased between 2011 and 2020 and were higher in 2011–2014 than that in
2010 (shown in Figure S14), and, therefore, the response values of O3 to SOX in 2011–2014
were positive, while SOX concentrations were lower in 2015–2020 than that in 2010, and,
therefore, values of the O3 response to SOX in 2015–2020 were negative.

For NO2, the response value of O3 pollution to NO2 in the main region of the PRD
decreased from 2011 to 2016, reached a minimum value in 2016, and then increased from
2016 to 2020. This may be related to the different response patterns of O3 pollution to NO2
in the PRD [64,65]. The response of O3 to NO2 was likely due to negative feedback in
2011–2013, while the response of O3 to NO2 was likely due to positive feedback in central
PRD from 2014 to 2020. However, the response of O3 to NO2 was likely due to positive
feedback in northeastern PRD in 2014–2015 and 2017–2020, while the response of O3 to
NO2 was likely due to negative feedback in this region in 2016. In addition, the response of
O3 to NO2 was likely due to negative feedback in northwestern PRD in 2014–2020, while
the response of O3 to NO2 was likely due to positive feedback in southwestern PRD from
2015 to 2020. However, the response of O3 to NO2 was likely due to negative feedback
in southwestern PRD in 2014. The NO2 concentration in 2011–2013 was relatively lower
than that in 2010, and the response value of O3 to NO2 was positive (shown in Figure S12),
while the NO2 concentration in central PRD was higher during 2014–2020 than that in
2010, so the response value of O3 to NO2 was positive. Moreover, the NO2 concentration
in northeastern PRD was relatively higher than that in 2010, so the response value of O3
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to NO2 was positive, while the NO2 concentration was relatively higher in this region in
2016 than that in 2010, but the response value of O3 to NO2 was negative in 2016. The NO2
concentration was relatively higher in northwestern PRD in 2014–2020 than that in 2010, but
the response value of O3 to NO2 in 2014–2020 was negative, while the NO2 concentration
was relatively lower in southwestern PRD during 2015–2020 than that in 2010, and the
response value of O3 to NO2 was negative. However, the NO2 concentration was relatively
higher in southwestern PRD than that in 2010, and the response value of O3 to NO2 was
negative in this region from 2015 to 2020.
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For SO2, the response value of O3 pollution to SO2 in the main region of the PRD
increased from 2011 to 2015, reached the peak value in 2015, and then decreased from 2016
to 2020. This may be due to the different response patterns of O3 pollution to SO2. The
response of O3 to SO2 was likely due to negative feedback in 2012, while the response of
O3 to SO2 was likely due to positive feedback in 2011 and in 2013–2020. Compared with
2010, SO2 concentration in 2011 and 2013–2014 in the PRD were relatively higher (shown in
Figure S11), so the response value of O3 to SO2 in 2011 and 2013–2014 were positive. In 2012,
the SO2 concentration in the PRD was lower than that in 2010, and the values of the O3
response to SO2 were negative. In the northwestern part of the PRD, the SO2 concentration
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was larger than that in 2010, but it decreased significantly from 2015 to 2020, and, therefore,
values of the O3 response to SO2 were all positive in 2015–2020, but the spatial extent
covered by positive values gradually decreased. In contrast, the SO2 concentration in the
southeastern part of the PRD was lower than that in 2010, and it decreased significantly
from 2015 to 2020, and, therefore, values of the O3 response to SO2 were all negative in this
period, but the spatial extent covered by negative values gradually increased.

For VOC, the response of O3 to VOC in the PRD increased from 0.1 µg m−3 in 2011
to 2.0 µg m−3 in 2020. This may be related to the isotropic feedback of O3 pollution on
VOC in the PRD [66–68]. VOC emissions in the PRD increased from 2011 to 2020 and were
relatively higher than that in 2010 (shown in Figure S15), and the response value of O3
pollution to VOC was positive and increased from 2011 to 2020. Compared with these
four precursors, the response of O3 pollution to SO2, NOX, and aerosol components were
relatively smaller.

5. Discussion

Most previous studies only explored the impact of the influencing factors on PM2.5
pollution [29] or O3 pollution [16,30], while there are few studies revealing the effects and
contributions of the influencing factors on PM2.5 and O3 collaborative pollution simul-
taneously [31–33]. In addition, statistical models have also been used by few studies to
reveal the influence and contribution of influencing factors to PM2.5 and O3 collaborative
pollution, with the mainly considered influencing factors being meteorological [10] and
precursor [34–36] factors. In this work, the relative importance of precursor emissions,
meteorological factors, population density, NDVI, LULC, and other factors on PM2.5 and O3
collaborative pollution in the NCP, the PRD, and the YRD were assessed comprehensively.
In addition, few previous studies using statistical models are not able to estimate and
reveal the contribution of the same factor to both PM2.5 and O3 simultaneously, and more
than one model needs to be built to estimate and reveal the contribution of a particular
factor to both PM2.5 and O3 [35,36]. In this work, daily gridded PM2.5 and O3 datasets
and their relative influencing factors were utilized to establish the PM2.5 and O3 MTL
estimation model. Subsequently, the same MTL model was used to quantitatively reveal
the relative importance of each factor to the PM2.5 and O3 collaborative pollution in each
region simultaneously. Furthermore, the response of PM2.5 and O3 to each precursor, as
well as the most important precursors for PM2.5 and O3 collaborative pollution, in the
NCP, the PRD, and the YRD were quantitatively revealed by the PM2.5 and O3 estimation
MTL model.

6. Conclusions

In this work, daily gridded PM2.5 and O3 (maximum daily 8 h average ozone, MDA8)-
estimated datasets, precursors, meteorological factors, AOD products, population density,
NDVI, and LULC from 2010 to 2020 in three typical regions, including the NCP, the YRD,
and the PRD, were utilized to establish the PM2.5 and O3 MTL estimation models for three
regions. The sample-based validation results indicated that MTL model-estimated PM2.5
and O3 concentrations exhibit a high correlation with surface PM2.5 and O3 measurements
in the NCP, the YRD, and the PRD. The prediction accuracy of these three MTL models
was high, with R2 values of these three models ranging from 0.69 to 0.83, and RMSE values
ranging from 9.40 µg m−3 to 16.95 µg m−3.

Subsequently, the PM2.5 and O3 estimation MTL models in the NCP, the PRD, and
the YRD were used to quantitatively reveal the influence and contribution of each factor
to PM2.5 and O3 collaborative pollution simultaneously. For PM2.5 and O3 pollution in
these three regions, precursors (including HCHO, six kinds of VOC, aerosol components,
SO2, NO2, SOX, and NOX) were revealed to be the most critical of all influencing factors,
with their relative importance ranging from 29.99% to 40.65%. Among these precursors,
VOC (including HCHO, C3H8, C5H8, CH4, H2O2, OH, and PAN) and aerosol components
(including BCSM, DUSMASS25, and OCSM) were found to be the most important dominant
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precursors for both PM2.5 pollution and O3 pollution, with their relative importance values
being larger than 22.66%. In addition to precursors, meteorological factors are the second
most important influencing variables on PM2.5 and O3 pollution in these three regions,
with their relative importance values ranging from 15.89% to 20.11%. Moreover, there are
several factors such as AOD, LULC, NDVI, population, topography, and month that have a
strong influence on PM2.5 and O3 pollution for these regions. These results indicate that
surface O3 and PM2.5 pollution in these three regions are largely regulated by VOC, aerosol
components, SOX, and NOX, which means that reducing the emissions of VOC, aerosols,
SOX, and NOX can effectively reduce the O3 and PM2.5 pollution levels in the NCP, the
PRD, and the YRD.

Furthermore, PM2.5 and O3 estimation MTL models were used to quantitatively reveal
the response of PM2.5 and O3 to each precursor pollutant in the NCP, the PRD, and the YRD.
The results showed that among these seven PM2.5 precursor factors, the four influencing
factors with the largest PM2.5 pollution response in these three regions were SO2, HCHO,
NO2, and SOX, which means that the emission reduction in these four precursors is the
most effective measure to mitigate PM2.5 pollution in the NCP, the PRD, and the YRD.
However, the two most crucial precursors of PM2.5 are different across these three regions.
The two most important influencing factors on PM2.5 pollution in the NCP and YRD are
SO2 and HCHO, with 10-year averaged PM2.5 response values of 2.64 µg m−3 (for SO2 in
the NCP) and 2.01 µg m−3 (for SO2 in the YRD), and 1.71 µg m−3 (for HCHO in the NCP)
and 0.95 µg m−3 (for HCHO in the YRD), respectively. However, the two most important
impact factors on PM2.5 pollution in the PRD are SO2 and NO2, with 10-year averaged
PM2.5 response values of 1.24 µg m−3 and 0.88 µg m−3, respectively.

In terms of O3 pollution, it indicated that HCHO, NO2, and SOX were the three
influencing factors that had the greatest response from O3 in these three regions, and
their 10-year average O3 response values were larger than 0.6 µg m−3, which means that
emission reduction in VOC, NO2, and SOX, are the most effective measures to mitigate O3
pollution in the NCP, the PRD and the YRD. Moreover, the two most crucial precursors
of O3 are different across these three regions. The two most important influencing factors
on O3 pollution in the NCP and the YRD are HCHO and NO2, with 10-year averaged
O3 response values of 1.00 µg m−3 (for HCHO in the NCP) and 2.89 µg m−3 (for HCHO
in the YRD), and 0.70 µg m−3 (for NO2 in the NCP) and 0.55 µg m−3 (for NO2 in the
YRD), respectively. However, the two most important impact factors on O3 pollution in the
PRD are HCHO and SOX, with 10-year averaged O3 response values of 1.79 µg m−3 and
0.47 µg m−3, respectively.

Overall, in the NCP and the YRD, VOC emission reduction is the most important mea-
sure to control PM2.5 and O3 collaborative pollution. In addition, SO2 emission reduction
is another critical measure to control PM2.5 pollution, while NO2 emission reduction is
another critical measure to control O3 pollution. For the PRD, NO2 emission reduction is
the most important measure to control PM2.5 and O3 collaborative pollution. In addition,
SO2 and VOC emission reduction is another critical measure to control PM2.5 pollution,
while VOC emission reduction is another critical measure to control O3 pollution. Overall,
this study provides clues and references for the control of PM2.5 and O3 collaborative
pollution in the NCP, the YRD, and the PRD.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/su16062475/s1, Figures S1–S21 and Table S1 are listed.

Author Contributions: Conceptualization, M.M. and Y.L.; methodology, M.M., M.L. (Mengnan Liu)
and M.L. (Mengjiao Liu); validation, M.M., M.L. (Mengnan Liu), M.L. (Mengjiao Liu), P.F., F.M. and
Z.Z.; formal analysis, M.M., F.M., H.X., J.B., Z.Z. and M.L. (Mengjiao Liu); data curation, M.M.;
writing—original draft preparation, M.M. and M.L. (Mengnan Liu); writing—review and editing,
M.M. and Y.L.; visualization, M.M., M.L. (Mengnan Liu), P.F. and M.L. (Mengjiao Liu); supervision,
M.M. and Y.L.; project administration, M.M. and Y.L.; funding acquisition, M.M., F.M., J.B. and H.X.
All authors have read and agreed to the published version of the manuscript.

https://www.mdpi.com/article/10.3390/su16062475/s1
https://www.mdpi.com/article/10.3390/su16062475/s1


Sustainability 2024, 16, 2475 25 of 28

Funding: This work was supported by the National Natural Science Foundation of China (Grant No.
42301382), the Shandong Provincial Natural Science Foundation (Grant No. ZR2021QD034, Grant
No. ZR2022YQ36), the Youth Innovation Team Project of Higher School in Shandong Province (Grant
No. 2022KJ201, Grant No. 2023KJ121), and the Jinan City and University Integration Development
Project (JNSX2023065).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data utilized in this study were obtained from the work of Bai et al.
(2022) [14] and Ma et al. (2023) [17], the MODIS group, and the China Resource and Environmental
Science Data Center (CRESDC) for providing DEM and population density data, Yang and Huang
(2021) [38] for providing land use and land cover datasets, ECMWF, the Modern-Era Retrospective
analysis for Research and Applications version 2 (MERRA-2), and the Copernicus Atmosphere
Monitoring Service (CAMS). Data are available from the authors upon request, and with permission
from Bai et al. (2022) [14], Ma et al. (2023) [17], Yang and Huang (2021) [38], the MERRA-2 group, the
MODIS group, the CRESDC, ECMWF, and CAMS.

Acknowledgments: The authors are grateful to Bai et al. (2022) [14] for providing surface PM2.5,
and AOD (https://doi.org/10.5194/essd-14-907-2022 (accessed on 20 January 2024)) estimation
products, Ma et al. (2023) for providing surface O3, surface NO2, and surface SO2 estimation products
(https://doi.org/10.1117/1.JRS.18.012004 (accessed on 20 January 2024)), the MERRA-2 group for pro-
viding aerosol component datasets (https://disc.gsfc.nasa.gov/datasets?project=MERRA-2 (accessed
on 20 January 2024)), the MODIS group for providing NDVI data (https://ladsweb.modaps.eosdis.
nasa.gov/search (accessed on 20 January 2024)), the China Resource and Environmental Science Data
Center for providing DEM and population density data (http://www.resdc.cn/Default.aspx (ac-
cessed on 20 January 2024)), ECMWF for providing ERA5 reanalysis (https://cds.climate.copernicus.
eu/#!/search?text=ERA5 (accessed on 20 January 2024)), and the Copernicus Atmosphere Monitoring
Service (CAMS, https://ads.atmosphere.copernicus.eu/cdsapp#!/search?text=CAMS (accessed on
20 January 2024)) for providing emissions reanalysis data.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Zhou, Y.; Chang, F.-J.; Chang, L.-C.; Kao, I.-F.; Wang, Y.-S.; Kang, C.-C. Multi-Output Support Vector Machine for Regional

Multi-Step-Ahead PM2.5 Forecasting. Sci. Total Environ. 2019, 651, 230–240. [CrossRef]
2. Morawska, L.; Zhu, T.; Liu, N.; Amouei Torkmahalleh, M.; De Fatima Andrade, M.; Barratt, B.; Broomandi, P.; Buonanno, G.;

Carlos Belalcazar Ceron, L.; Chen, J.; et al. The State of Science on Severe Air Pollution Episodes: Quantitative and Qualitative
Analysis. Environ. Int. 2021, 156, 106732. [CrossRef] [PubMed]

3. Zhang, Y.; Shi, T.; Wang, A.-J.; Huang, Q. Air Pollution, Health Shocks and Labor Mobility. Int. J. Environ. Res. Public Health 2022,
19, 1382. [CrossRef] [PubMed]

4. Ma, M.; Liu, M.; Song, X.; Liu, M.; Fan, W.; Wang, Y.; Xing, H.; Meng, F.; Lv, Y. Spatiotemporal Patterns and Quantitative Analysis
of Influencing Factors of PM2.5 and O3 Pollution in the North China Plain. Atmos. Pollut. Res. 2023, 15, 101950. [CrossRef]

5. Wu, B.; Liu, C.; Zhang, J.; Du, J.; Shi, K. The Multifractal Evaluation of PM2.5-O3 Coordinated Control Capability in China. Ecol.
Indic. 2021, 129, 107877. [CrossRef]

6. Wang, L.; Li, M.; Wang, Q.; Li, Y.; Xin, J.; Tang, X.; Du, W.; Song, T.; Li, T.; Sun, Y.; et al. Air Stagnation in China: Spatiotemporal
Variability and Differing Impact on PM2.5 and O3 during 2013–2018. Sci. Total Environ. 2022, 819, 152778. [CrossRef]

7. Qi, L.; Zheng, H.; Ding, D.; Ye, D.; Wang, S. Effects of Meteorology Changes on Inter-Annual Variations of Aerosol Optical Depth
and Surface PM2.5 in China—Implications for PM2.5 Remote Sensing. Remote Sens. 2022, 14, 2762. [CrossRef]

8. Ho, K.-F.; Lee, Y.-C.; Niu, X.; Xu, H.; Zhang, R.; Cao, J.-J.; Tsai, C.-Y.; Hsiao, T.-C.; Chuang, H.-C. Organic Carbon and Acidic Ions
in PM2.5 Contributed to Particle Bioreactivity in Chinese Megacities during Haze Episodes. Environ. Sci. Pollut. Res. 2022, 29,
11865–11873. [CrossRef]

9. Hu, J.; Zhou, R.; Ding, R.; Ye, D.-W.; Su, Y. Effect of PM2.5 Air Pollution on the Global Burden of Lower Respiratory Infections,
1990–2019: A Systematic Analysis from the Global Burden of Disease Study 2019. J. Hazard. Mater. 2023, 459, 132215. [CrossRef]

10. Chen, D.; Sandler, D.P.; Keil, A.P.; Heiss, G.; Whitsel, E.A.; Pratt, G.C.; Stewart, P.A.; Stenzel, M.R.; Groth, C.P.; Banerjee, S.; et al.
Fine Particulate Matter and Incident Coronary Heart Disease Events up to 10 Years of Follow-up among Deepwater Horizon Oil
Spill Workers. Environ. Res. 2023, 217, 114841. [CrossRef] [PubMed]

11. Chen, Z.; Liu, P.; Xia, X.; Wang, L.; Li, X. The Underlying Mechanism of PM2.5-Induced Ischemic Stroke. Environ. Pollut. 2022,
310, 119827. [CrossRef]

https://doi.org/10.5194/essd-14-907-2022
https://doi.org/10.1117/1.JRS.18.012004
https://disc.gsfc.nasa.gov/datasets?project=MERRA-2
https://ladsweb.modaps.eosdis.nasa.gov/search
https://ladsweb.modaps.eosdis.nasa.gov/search
http://www.resdc.cn/Default.aspx
https://cds.climate.copernicus.eu/#!/search?text=ERA5
https://cds.climate.copernicus.eu/#!/search?text=ERA5
https://ads.atmosphere.copernicus.eu/cdsapp#!/search?text=CAMS
https://doi.org/10.1016/j.scitotenv.2018.09.111
https://doi.org/10.1016/j.envint.2021.106732
https://www.ncbi.nlm.nih.gov/pubmed/34197974
https://doi.org/10.3390/ijerph19031382
https://www.ncbi.nlm.nih.gov/pubmed/35162398
https://doi.org/10.1016/j.apr.2023.101950
https://doi.org/10.1016/j.ecolind.2021.107877
https://doi.org/10.1016/j.scitotenv.2021.152778
https://doi.org/10.3390/rs14122762
https://doi.org/10.1007/s11356-021-16552-0
https://doi.org/10.1016/j.jhazmat.2023.132215
https://doi.org/10.1016/j.envres.2022.114841
https://www.ncbi.nlm.nih.gov/pubmed/36403648
https://doi.org/10.1016/j.envpol.2022.119827


Sustainability 2024, 16, 2475 26 of 28

12. Chuang, M.-T.; Chou, C.C.-K.; Lin, C.-Y.; Lee, J.-H.; Lin, W.-C.; Chen, Y.-Y.; Chang, C.-C.; Lee, C.-T.; Kong, S.S.-K.; Lin, T.-H. A
Numerical Study of Reducing the Concentration of O3 and PM2.5 Simultaneously in Taiwan. J. Environ. Manag. 2022, 318, 115614.
[CrossRef] [PubMed]

13. Bai, K.; Ma, M.; Chang, N.B.; Gao, W. Spatiotemporal trend analysis for fine particulate matter concentrations in China using
high-resolution satellite-derived and ground-measured PM2.5 data. J. Environ. Manag. 2019, 233, 530–542. [CrossRef] [PubMed]

14. Bai, K.; Li, K.; Ma, M.; Li, K.; Li, Z.; Guo, J.; Chang, N.-B.; Tan, Z.; Han, D. LGHAP: The Long-Term Gap-Free High-Resolution Air
Pollutant Concentration Dataset, Derived via Tensor-Flow-Based Multimodal Data Fusion. Earth Syst. Sci. Data 2022, 14, 907–927.
[CrossRef]

15. Ma, M.; Bai, K.; Qiao, F.; Shi, R.; Gao, W. Quantifying impacts of crop residue burning in the North China Plain on summertime
tropospheric ozone over East Asia. Atmos. Environ. 2018, 194, 14–30. [CrossRef]

16. Ma, M.; Yao, G.; Guo, J.; Bai, K. Distinct spatiotemporal variation patterns of surface ozone in China due to diverse influential
factors. J. Environ. Manag. 2021, 288, 112368. [CrossRef] [PubMed]

17. Ma, M.; Liu, M.; Liu, M.; Li, K.; Xing, H.; Meng, F. Resolving contributions of NO2 and SO2 to PM2.5 and O3 pollutions in the
North China Plain via multi-task learning. J. Appl. Remote Sens. 2023, 18, 012004. [CrossRef]

18. Yang, J.; Chen, X.; Li, M.; Yao, Q.; Lv, Q.; Gao, B.; Chen, Z. The Division of PM2.5-O3 Composite Airborne Pollution across China
Based on Spatiotemporal Clustering. J. Clean. Prod. 2023, 401, 136706. [CrossRef]

19. Zhao, H.; Zhang, Y.; Qi, Q.; Zhang, H. Evaluating the Impacts of Ground-Level O3 on Crops in China. Curr. Pollut. Rep. 2021, 7,
565–578. [CrossRef]

20. Xu, B.; Wang, T.; Gao, L.; Ma, D.; Song, R.; Zhao, J.; Yang, X.; Li, S.; Zhuang, B.; Li, M.; et al. Impacts of Meteorological Factors and
Ozone Variation on Crop Yields in China Concerning Carbon Neutrality Objectives in 2060. Environ. Pollut. 2023, 317, 120715.
[CrossRef]

21. Shen, L.; Zhao, T.; Liu, J.; Wang, H.; Bai, Y. Meteorological Impacts on Interannual Anomalies of O3 Import over Twain-Hu Basin.
Sci. Total Environ. 2023, 888, 164065. [CrossRef] [PubMed]

22. Cao, Y.; Zhao, X.; Su, D.; Cheng, X.; Ren, H. A Machine-Learning-Based Classification Method for Meteorological Conditions of
Ozone Pollution. Aerosol Air Qual. Res. 2023, 23, 220239. [CrossRef]

23. Sicard, P.; Khaniabadi, Y.O.; Perez, S.; Gualtieri, M.; De Marco, A. Effect of O3, PM10 and PM2.5 on Cardiovascular and Respiratory
Diseases in Cities of France, Iran and Italy. Environ. Sci. Pollut. Res. 2019, 26, 32645–32665. [CrossRef] [PubMed]

24. Hu, J.; Chen, G.; Li, S.; Guo, Y.; Duan, J.; Sun, Z. Association of Long-Term Exposure to Ambient Air Pollutants with Cardiac
Structure and Cardiovascular Function in Chinese Adults. Ecotoxicol. Environ. Saf. 2023, 249, 114382. [CrossRef]

25. Liu, Y.; Geng, G.; Cheng, J.; Liu, Y.; Xiao, Q.; Liu, L.; Shi, Q.; Tong, D.; He, K.; Zhang, Q. Drivers of Increasing Ozone during the
Two Phases of Clean Air Actions in China 2013–2020. Environ. Sci. Technol. 2023, 57, 8954–8964. [CrossRef]

26. Han, H.; Liu, J.; Shu, L.; Wang, T.; Yuan, H. Local and Synoptic Meteorological Influences on Daily Variability in Summertime
Surface Ozone in Eastern China. Atmos. Chem. Phys. 2020, 20, 203–222. [CrossRef]

27. An, J.; Shi, Y.; Wang, J.; Zhu, B. Temporal Variations of O3 and NOx in the Urban Background Atmosphere of Nanjing, East China.
Arch. Environ. Contam. Toxicol. 2016, 71, 224–234. [CrossRef]

28. Dong, Z. Synergetic PM2.5 and O3 Control Strategy for the Yangtze River Delta, China. J. Environ. Sci. 2023, 123, 281–291.
[CrossRef]

29. Wei, J.; Li, Z.; Cribb, M.; Huang, W.; Xue, W.; Sun, L.; Guo, J.; Peng, Y. Improved 1 km resolution PM2.5 estimates across China
using enhanced space—Time extremely randomized trees. Atmos. Chem. Phys. 2020, 20, 3273–3289. [CrossRef]

30. Ou, S.; Wei, W.; Cheng, S.; Cai, B. Exploring drivers of the aggravated surface O3 over North China Plain in summer of 2015–2019:
Aerosols, precursors, and meteorology. J. Environ. Sci. 2023, 127, 453–464. [CrossRef]

31. Li, K.; Jacob, D.J.; Liao, H.; Zhu, J.; Shah, V.; Shen, L.; Bates, K.H.; Zhang, Q.; Zhai, S. A two-pollutant strategy for improving
ozone and particulate air quality in China. Nat. Geosci. 2019, 12, 906–910. [CrossRef]

32. Wang, P.; Guo, H.; Hu, J.; Kota, S.H.; Ying, Q.; Zhang, H. Responses of PM2.5 and O3 Concentrations to Changes of Meteorology
and Emissions in China. Sci. Total Environ. 2019, 662, 297–306. [CrossRef] [PubMed]

33. Duan, W.; Wang, X.; Cheng, S.; Wang, R.; Zhu, J. Influencing Factors of PM2.5 and O3 from 2016 to 2020 Based on DLNM and
WRF-CMAQ. Environ. Pollut. 2021, 285, 117512. [CrossRef]

34. Gong, S.; Zhang, L.; Liu, C.; Lu, S.; Pan, W.; Zhang, Y. Multi-Scale Analysis of the Impacts of Meteorology and Emissions on
PM2.5 and O3 Trends at Various Regions in China from 2013 to 2020 2. Key Weather Elements and Emissions. Sci. Total Environ.
2022, 824, 153847. [CrossRef]

35. Xu, T.; Zhang, C.; Liu, C.; Hu, Q. Variability of PM2.5 and O3 Concentrations and Their Driving Forces over Chinese Megacities
during 2018–2020. J. Environ. Sci. 2023, 124, 1–10. [CrossRef]

36. Duan, W.; Wang, X.; Cheng, S.; Wang, R. Regional Collaboration to Simultaneously Mitigate PM2.5 and O3 Pollution in Beijing-
Tianjin-Hebei and the Surrounding Area: Multi-Model Synthesis from Multiple Data Sources. Sci. Total Environ. 2022, 820, 153309.
[CrossRef]

37. Zhang, L.; Zhao, N.; Zhang, W.; Wilson, J.P. Changes in Long-Term PM2.5 Pollution in the Urban and Suburban Areas of China’s
Three Largest Urban Agglomerations from 2000 to 2020. Remote Sens. 2022, 14, 1716. [CrossRef]

38. Yang, J.; Huang, X. The 30 m Annual Land Cover Dataset and Its Dynamics in China from 1990 to 2019. Earth Syst. Sci. Data 2021,
13, 3907–3925. [CrossRef]

https://doi.org/10.1016/j.jenvman.2022.115614
https://www.ncbi.nlm.nih.gov/pubmed/35779296
https://doi.org/10.1016/j.jenvman.2018.12.071
https://www.ncbi.nlm.nih.gov/pubmed/30594898
https://doi.org/10.5194/essd-14-907-2022
https://doi.org/10.1016/j.atmosenv.2018.09.018
https://doi.org/10.1016/j.jenvman.2021.112368
https://www.ncbi.nlm.nih.gov/pubmed/33773209
https://doi.org/10.1117/1.JRS.18.012004
https://doi.org/10.1016/j.jclepro.2023.136706
https://doi.org/10.1007/s40726-021-00201-8
https://doi.org/10.1016/j.envpol.2022.120715
https://doi.org/10.1016/j.scitotenv.2023.164065
https://www.ncbi.nlm.nih.gov/pubmed/37196942
https://doi.org/10.4209/aaqr.220239
https://doi.org/10.1007/s11356-019-06445-8
https://www.ncbi.nlm.nih.gov/pubmed/31576506
https://doi.org/10.1016/j.ecoenv.2022.114382
https://doi.org/10.1021/acs.est.3c00054
https://doi.org/10.5194/acp-20-203-2020
https://doi.org/10.1007/s00244-016-0290-8
https://doi.org/10.1016/j.jes.2022.04.008
https://doi.org/10.5194/acp-20-3273-2020
https://doi.org/10.1016/j.jes.2022.06.023
https://doi.org/10.1038/s41561-019-0464-x
https://doi.org/10.1016/j.scitotenv.2019.01.227
https://www.ncbi.nlm.nih.gov/pubmed/30690364
https://doi.org/10.1016/j.envpol.2021.117512
https://doi.org/10.1016/j.scitotenv.2022.153847
https://doi.org/10.1016/j.jes.2021.10.014
https://doi.org/10.1016/j.scitotenv.2022.153309
https://doi.org/10.3390/rs14071716
https://doi.org/10.5194/essd-13-3907-2021


Sustainability 2024, 16, 2475 27 of 28

39. Yan, X.; Zuo, C.; Li, Z.; Chen, H.W.; Jiang, Y.; He, B.; Liu, H.; Chen, J.; Shi, W. Cooperative Simultaneous Inversion of Satellite-
Based Real-Time PM2.5 and Ozone Levels Using an Improved Deep Learning Model with Attention Mechanism. Environ. Pollut.
2023, 327, 121509. [CrossRef]

40. Ma, X.; Longley, I.; Gao, J.; Salmond, J. Evaluating the Effect of Ambient Concentrations, Route Choices, and Environmental
(in)Justice on Students’ Dose of Ambient NO2 while Walking to School at Population Scales. Environ. Sci. Technol. 2020, 54,
12908–12919. [CrossRef] [PubMed]

41. Mei, B.; Xu, Y. Multi-Task Least Squares Twin Support Vector Machine for Classification. Neurocomputing 2019, 338, 26–33.
[CrossRef]

42. Zhang, Y.; Yang, Q. A Survey on Multi-Task Learning. IEEE Trans. Knowl. Data Eng. 2022, 34, 5586–5609. [CrossRef]
43. Zhang, Y.; Yang, Q. An Overview of Multi-Task Learning. Natl. Sci. Rev. 2018, 5, 30–43. [CrossRef]
44. Vafaeikia, P.; Namdar, K.; Khalvati, F. A Brief Review of Deep Multi-Task Learning and Auxiliary Task Learning. arXiv 2020,

arXiv:2007.01126.
45. Yang, Q.; Yuan, Q.; Gao, M.; Li, T. A New Perspective to Satellite-Based Retrieval of Ground-Level Air Pollution: Simultaneous

Estimation of Multiple Pollutants Based on Physics-Informed Multi-Task Learning. Sci. Total Environ. 2023, 857, 159542. [CrossRef]
46. Wu, X.; Xin, J.; Zhang, W.; Gao, W.; Ma, Y.; Ma, Y.; Wen, T.; Liu, Z.; Hu, B.; Wang, Y.; et al. Variation Characteristics of Air

Combined Pollution in Beijing City. Atmos. Res. 2022, 274, 106197. [CrossRef]
47. Yang, X.; Wang, L.; Ma, P.; He, Y.; Zhao, C.; Zhao, W. Urban and Suburban Decadal Variations in Air Pollution of Beijing and Its

Meteorological Drivers. Environ. Int. 2023, 181, 108301. [CrossRef]
48. Zhang, L.; An, J.; Liu, M.; Li, Z.; Liu, Y.; Tao, L.; Liu, X.; Zhang, F.; Zheng, D.; Gao, Q.; et al. Spatiotemporal Variations and

Influencing Factors of PM2.5 Concentrations in Beijing, China. Environ. Pollut. 2020, 262, 114276. [CrossRef]
49. Wang, S.; Zhang, Y.; Ma, J.; Zhu, S.; Shen, J.; Wang, P.; Zhang, H. Responses of Decline in Air Pollution and Recovery Associated

with COVID-19 Lockdown in the Pearl River Delta. Sci. Total Environ. 2021, 756, 143868. [CrossRef]
50. Wei, J.; Li, Z.; Li, K.; Dickerson, R.R.; Pinker, R.T.; Wang, J.; Liu, X.; Sun, L.; Xue, W.; Cribb, M. Full-Coverage Mapping and

Spatiotemporal Variations of Ground-Level Ozone (O3) Pollution from 2013 to 2020 across China. Remote Sens. Environ. 2022,
270, 112775. [CrossRef]

51. Lu, X.; Zhang, L.; Chen, Y.; Zhou, M.; Zheng, B.; Li, K.; Liu, Y.; Lin, J.; Fu, T.-M.; Zhang, Q. Exploring 2016–2017 Surface Ozone
Pollution over China: Source Contributions and Meteorological Influences. Atmos. Chem. Phys. 2019, 19, 8339–8361. [CrossRef]

52. Lin, X.-Y.; Xia, S.-Y.; Luo, Y.; Han, H.-X.; He, L.-Y. Evaluation of Key Factors Influencing Urban Ozone Pollution in the Pearl River
Delta and Its Atmospheric Implications. Atmos. Environ. 2023, 305, 119807. [CrossRef]

53. Liu, Q.; Liu, T.; Chen, Y.; Xu, J.; Gao, W.; Zhang, H.; Yao, Y. Effects of Aerosols on the Surface Ozone Generation via a Study of the
Interaction of Ozone and Its Precursors during the Summer in Shanghai, China. Sci. Total Environ. 2019, 675, 235–246. [CrossRef]
[PubMed]

54. Mu, G.; Wang, B.; Yang, S.; Wang, X.; Zhou, M.; Song, W.; Qiu, W.; Ye, Z.; Zhou, Y.; Chen, W. Assessment for Personal PM2.5
Exposure with a Modeling Method: A Panel Study in Wuhan, China. Atmos. Pollut. Res. 2020, 11, 1991–1997. [CrossRef]

55. Zhu, J.; Chen, L.; Liao, H.; Dang, R. Correlations between PM2.5 and Ozone over China and Associated Underlying Reasons.
Atmosphere 2019, 10, 352. [CrossRef]

56. Lou, C.; Liu, H.; Li, Y.; Peng, Y.; Wang, J.; Dai, L. Relationships of Relative Humidity with PM2.5 and PM10 in the Yangtze River
Delta, China. Environ. Monit. Assess. 2017, 189, 582. [CrossRef]

57. Luo, Y.; Zhao, T.; Yang, Y.; Zong, L.; Kumar, K.R.; Wang, H.; Meng, K.; Zhang, L.; Lu, S.; Xin, Y. Seasonal Changes in the Recent
Decline of Combined High PM2.5 and O3 Pollution and Associated Chemical and Meteorological Drivers in the Beijing–Tianjin–
Hebei Region, China. Sci. Total Environ. 2022, 838, 156312. [CrossRef]

58. Gui, K.; Che, H.; Wang, Y.; Wang, H.; Zhang, L.; Zhao, H.; Zheng, Y.; Sun, T.; Zhang, X. Satellite-Derived PM2.5 Concentration
Trends over Eastern China from 1998 to 2016: Relationships to Emissions and Meteorological Parameters. Environ. Pollut. 2019,
247, 1125–1133. [CrossRef]

59. Wei, W.; Chen, S.; Wang, Y.; Cheng, L.; Wang, X.; Cheng, S. The Impacts of VOCs on PM2.5 Increasing via Their Chemical Losses
Estimates: A Case Study in a Typical Industrial City of China. Atmos. Environ. 2022, 273, 118978. [CrossRef]

60. Zhao, K.; Yuan, Z.; Wu, Y.; Huang, J.; Yang, F.; Zhang, X.; Huang, D.; Jiang, R. Identification of Synergistic Control for Ozone and
PM2.5 Pollution during a Large-Scale Emission Reduction in China. Atmos. Res. 2023, 295, 107025. [CrossRef]

61. Meng, Z.; Dabdub, D.; Seinfeld, J.H. Chemical Coupling between Atmospheric Ozone and Particulate Matter. Science 1997, 277,
116–119. [CrossRef]

62. Chu, B.; Zhang, S.; Liu, J.; Ma, Q.; He, H. Significant Concurrent Decrease in PM2.5 and NO2 Concentrations in China during
COVID-19 Epidemic. J. Environ. Sci. 2021, 99, 346–353. [CrossRef] [PubMed]

63. Li, S.; Liu, N.; Tang, L.; Zhang, F.; Liu, J.; Liu, J. Mutation Test and Multiple-Wavelet Coherence of PM2.5 Concentration in
Guiyang, China. Air Qual. Atmos. Health 2021, 14, 955–966. [CrossRef]

64. Wang, Y.; Yang, X.; Wu, K.; Mei, H.; De Smedt, I.; Wang, S.; Fan, J.; Lyu, S.; He, C. Long-Term Trends of Ozone and Precursors
from 2013 to 2020 in a Megacity (Chengdu), China: Evidence of Changing Emissions and Chemistry. Atmos. Res. 2022, 278, 106309.
[CrossRef]

https://doi.org/10.1016/j.envpol.2023.121509
https://doi.org/10.1021/acs.est.0c05241
https://www.ncbi.nlm.nih.gov/pubmed/32966051
https://doi.org/10.1016/j.neucom.2018.12.079
https://doi.org/10.1109/TKDE.2021.3070203
https://doi.org/10.1093/nsr/nwx105
https://doi.org/10.1016/j.scitotenv.2022.159542
https://doi.org/10.1016/j.atmosres.2022.106197
https://doi.org/10.1016/j.envint.2023.108301
https://doi.org/10.1016/j.envpol.2020.114276
https://doi.org/10.1016/j.scitotenv.2020.143868
https://doi.org/10.1016/j.rse.2021.112775
https://doi.org/10.5194/acp-19-8339-2019
https://doi.org/10.1016/j.atmosenv.2023.119807
https://doi.org/10.1016/j.scitotenv.2019.04.121
https://www.ncbi.nlm.nih.gov/pubmed/31030131
https://doi.org/10.1016/j.apr.2020.08.016
https://doi.org/10.3390/atmos10070352
https://doi.org/10.1007/s10661-017-6281-z
https://doi.org/10.1016/j.scitotenv.2022.156312
https://doi.org/10.1016/j.envpol.2019.01.056
https://doi.org/10.1016/j.atmosenv.2022.118978
https://doi.org/10.1016/j.atmosres.2023.107025
https://doi.org/10.1126/science.277.5322.116
https://doi.org/10.1016/j.jes.2020.06.031
https://www.ncbi.nlm.nih.gov/pubmed/33183713
https://doi.org/10.1007/s11869-021-00994-z
https://doi.org/10.1016/j.atmosres.2022.106309


Sustainability 2024, 16, 2475 28 of 28

65. Li, Y.; Wu, Z.; Ji, Y.; Chen, T.; Li, H.; Gao, R.; Xue, L.; Wang, Y.; Zhao, Y.; Yang, X. Comparison of the Ozone Formation Mechanisms
and VOCs Apportionment in Different Ozone Pollution Episodes in Urban Beijing in 2019 and 2020: Insights for Ozone Pollution
Control Strategies. Sci. Total Environ. 2024, 908, 168332. [CrossRef]

66. Zhang, X.; Ma, Q.; Chu, W.; Ning, M.; Liu, X.; Xiao, F.; Cai, N.; Wu, Z.; Yan, G. Identify the Key Emission Sources for Mitigating
Ozone Pollution: A Case Study of Urban Area in the Yangtze River Delta Region, China. Sci. Total Environ. 2023, 892, 164703.
[CrossRef]

67. Xie, Y.; Cheng, C.; Wang, Z.; Wang, K.; Wang, Y.; Zhang, X.; Li, X.; Ren, L.; Liu, M.; Li, M. Exploration of O3-Precursor Relationship
and Observation-Oriented O3 Control Strategies in a Non-Provincial Capital City, Southwestern China. Sci. Total Environ. 2021,
800, 149422. [CrossRef]

68. Liu, Z.; Hu, K.; Zhang, K.; Zhu, S.; Wang, M.; Li, L. VOCs Sources and Roles in O3 Formation in the Central Yangtze River Delta
Region of China. Atmos. Environ. 2023, 302, 119755. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.scitotenv.2023.168332
https://doi.org/10.1016/j.scitotenv.2023.164703
https://doi.org/10.1016/j.scitotenv.2021.149422
https://doi.org/10.1016/j.atmosenv.2023.119755

	Introduction 
	Data 
	Surface PM2.5 and O3 Estimation Products 
	Precursor Factors 
	Meteorological Factors 
	Auxiliary Data 

	Methods 
	Multi-Task Learning Modelling 
	MTL Modelling Accuracy Validation 
	Relative Importance Evaluation and Estimation of the Impacts from Each Precursor 

	Results 
	Model Performance Verification 
	Relative Importance of Each Explanatory Variable 
	PM2.5 and O3 Collaborative Pollution Response to Each Precursor 

	Discussion 
	Conclusions 
	References

