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Abstract: Demands to advance toward more resilient and sustainable cities in terms of reducing
casualties, economic losses, downtime, and environmental impacts derived from earthquake-induced
damage are becoming more frequent. Indeed, accurate evaluations of the seismic performance
of buildings via numerical simulations are crucial for the sustainable development of the built
environment. Nevertheless, performance estimations could be influenced by alternative probabilistic
methods that can be chosen throughout the procedure of building-specific risk assessment, specifically
in the construction and validation of fragility functions. This study evaluates the numerical impacts
of selecting different probabilistic models on seismic risk metrics for reinforced concrete dual wall–
frame buildings. Specifically, alternative probabilistic models are implemented and evaluated for
(i) the identification and elimination of unusual observations within the simulated data (i.e., outliers);
(ii) the selection and implementation of different Probability Distribution Functions (PDFs) to estimate
fragility functions at different limit states (LSs); and (iii) the application of goodness-of-fit tests and
information criteria to assess the validity of proposed PDFs. According to the results, the risk
measures showed large variability at the extreme building LS (collapse). On the other hand, for a
lower LS (service level), the measures remain similar in all the cases despite the methods selected.
Further, the variability observed in the collapse response is up to two times that after eliminating data
outliers. Finally, the large variability obtained with the evaluated alternative probabilistic modeling
methods suggests re-opening the technical discussion over the state of the practice often used in
earthquake engineering to improve the decision-making process, mitigating earthquake-induced
consequences in an environmentally, economically, and socially beneficial manner.

Keywords: probability distribution function; fragility analysis; probabilistic uncertainty; outlier
detection method; sustainable cities; resilient environment

1. Introduction

Natural hazards such as earthquakes have struck and damaged the built environment
for millennia. Until the first half of the last century, major earthquakes caused significant
damage and collapse to a large fraction of man-made constructions. As a result, mas-
sive tolls of victims, huge costs, downtime, and environmental impacts were routinely
caused by significant seismic events [1]. However, modern societies demand more re-
silient and sustainable cities with limited casualties, environmental impacts and losses
due to earthquake-induced damage in buildings. Achieving a sustainable building that is

Sustainability 2024, 16, 1668. https://doi.org/10.3390/su16041668 https://www.mdpi.com/journal/sustainability

https://doi.org/10.3390/su16041668
https://doi.org/10.3390/su16041668
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com
https://orcid.org/0000-0001-9958-4883
https://orcid.org/0000-0003-4252-1341
https://orcid.org/0000-0001-6859-0009
https://doi.org/10.3390/su16041668
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com/article/10.3390/su16041668?type=check_update&version=3


Sustainability 2024, 16, 1668 2 of 25

resilient against earthquake damage (i.e., a building with higher levels of seismic perfor-
mance) involves integrating seismic design principles and assessment methodologies with
sustainability goals.

Indeed, there is a need for more accurate and refined methodologies, either experi-
mental or numerical, to evaluate the seismic behavior of structures [2,3]. Particularly in the
case of numerical methods, there has been significant research on developing and applying
sophisticated procedures such as detailed finite element models, refined seismic hazard
analysis, and numerical approaches to perform accurate nonlinear response evaluations [1].
All these methodologies address inherently probabilistic issues. However, the application
of these methodologies has been commonly simplified by considering determinist scenarios,
and there was no fully probabilistic framework to perform seismic assessment of structures
until the emergence of the Performance-Based Earthquake Engineering (PBEE) framework
developed by the Pacific Earthquake Engineering Research (PEER) Center through the
implementation of the FEMA P-58 methodology [4].

The PBEE framework considers several sources of uncertainty (both aleatory and
epistemic), and results are expressed in terms of the following four decision variables:
(i) casualties, (ii) direct economic losses, (iii) downtime, and (iv) environmental impacts.
A critical step in this framework is the generation of fragility functions (whose graphical
representations are called fragility curves) that, in the case of building-specific assessments,
are defined as the conditional probability of reaching a particular Damage State (DS) as a
function of a given Engineering Demand Parameter (EDP) such as Peak Story Drift Ratio
(PSDR) or Peak Floor Acceleration (PFA) [5,6]. Additionally, fragility functions are also
used to probabilistically represent the collapse performance of a given building (called in
this case, collapse fragility functions), where the conditional probability that a particular
building collapses is expressed as a function of an Intensity Measure (IM) such as the
pseudo-spectral acceleration at the fundamental period of the building (Sa(T1)).

To develop fragility functions, FEMA P-58 initially recommends that the quality of data
be evaluated by identifying doubtful observations (i.e., outliers) through the application of
a statistical method called Peirce’s criterion, but there are other outlier detection methods
(e.g., leverage criterion) that can also be implemented. Naturally, the application or lack
thereof of an outlier detection method (or different methods) might lead to non-negligible
differences in the fragility functions. For example, a recent study [7] showed that outlier
replacement might halve the 50-year collapse probability of some particular Reinforced
Concrete (RC) buildings.

After identifying and eventually removing/replacing possible outliers from the data,
FEMA P-58 indicates that fragility functions are expressed in terms of lognormal distri-
bution functions, which are fully defined by only two parameters (i.e., the median and
the logarithmic standard deviation). However, some studies [7,8] have demonstrated that
fragility estimations could be significantly influenced by the choice of different probability
distributions (e.g., Weibull or Gamma instead of lognormal). It is worth noticing that even
though there are alternative statistical methods to estimate the parameters of an assumed
probability distribution function, such as the method of moments or the Maximum Likeli-
hood Method (MLM) [9], the consensus is that MLM is the most reliable and appropriate
method to estimate parameters of fragility functions based on observed data (experimen-
tal or simulated). Once the parameters have been estimated and the fragility functions
have been generated, FEMA P-58 suggests that the agreement between the observed data
and the generated fragility function be evaluated by applying a specific goodness-of-fit-
test (i.e., the Lilliefors test [10]), but again there is no consensus on this issue, and other
goodness-of-fit-tests (e.g., the Kolmogorov–Smirnov test [11]) have also been used.

In summary, FEMA P-58 suggests a series of probabilistic methodologies to generate
fragility functions. However, applying alternative (still technically valid) probabilistic
methodologies could significantly impact the fragility functions and, consequently, the
global seismic performance assessment of a particular building, but this impact has not
been evaluated thoroughly. Moreover, novel Probability Distribution Functions (PDFs) are
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seldom utilized in earthquake engineering applications to characterize building-specific
fragilities. For example, a combined PDF based on a stochastic approach of two weighted
distributions could be suitable to describe a seismic response phenomenon where a first
interval of data fits a specific distribution and a second interval fits an entirely different
distribution. Lastly, PBEE and sustainability development of the built environment are
closely interconnected, reflecting the integration of engineering, environmental, economic,
and social concerns in the quest for resilience and sustainability of modern cities. An accu-
rate quantitative assessment of the performance of buildings over their lifecycle promotes
sustainability, reducing the need for extensive repairs or reconstruction after seismic events,
thereby conserving resources and minimizing waste.

Therefore, this study aims to evaluate and discuss the impact of alternative proba-
bilistic/statistical methodologies on building-specific seismic fragility functions. As a case
study, simulated performance data of a set of eight archetype office RC dual wall–frame
buildings representative of the Chilean design and construction practice are considered.
These archetype buildings are defined based on the multifactorial combination of two
building heights (mid- and high-rise), two hazard sites (medium and high seismic risk),
and two soil types (stiff soil B and moderately stiff soil D as defined in the Chilean seismic
design regulations). Although extremely valuable, city or regional risk assessments [12,13]
that require more flexible PBEE methods to capture generalized average values are outside
the scope of this study. This study is organized as follows: Section 2 presents a review
of common PDFs, which can be adequate candidates as alternatives for the generation of
fragility functions. The methodology adopted to develop fragility functions is discussed
in Section 3, including alternative outlier detection methodologies. Section 4 shows the
estimation of risk metrics obtained by combining alternative fragility functions with the
specific seismic hazard. These are relevant because they might be susceptible to misesti-
mations of seismic fragilities. Finally, conclusions and closing remarks are discussed in
Section 5.

2. Alternative PDFs to Generate Fragility Functions

A PDF model can be defined as a mathematical abstraction that describes the random-
ness of observations (data) of a particular physical phenomenon and makes it possible
to predict the potential occurrence of future outcomes [14]. A specific PDF is initially
selected as an adequate alternative based on analyzing a particular data set. Then, the
data (simulated data in most of the cases of PBEE) are used to estimate the parameters
that define the selected PDF via some estimation method, such as the method of moments
or the MLM (which is the most widely used in engineering applications [9] due to its
consistency and robustness). Based on the particularities of each engineering application
and the specific properties of given PDFs, there are preferred PDFs for each particular
engineering application. In the case of PBEE, it is expected to observe that simulated data
(building responses in this case) are always positively defined and non-symmetrically
distributed and exhibit a long tail at upper values (i.e., positive-skewed distribution) [15].
These characteristics have been confirmed by formal analyses [16–20]. Thus, the lognormal
distribution, fully described by just two parameters, is the most widely used PDF in seismic
fragility assessments. However, it is not the only PDF that exhibits the abovementioned
characteristics [21]; alternative PDFs exist that also fulfill such characteristics and could, in
principle, be used instead of the lognormal.

2.1. Lognormal Distribution

When a phenomenon is the result of the product of a large number of variables,
it usually follows a lognormal distribution. A continuous positive random variable is
lognormally distributed if its natural logarithm is normally distributed. This PDF is defined
by two parameters, θ and β, which are the expected value (i.e., median) and the logarithmic
standard deviation, respectively. Compared with a normal distribution, the lognormal PDF
has a skewed shape and avoids nonzero probabilities of negative values [14]. The lognormal



Sustainability 2024, 16, 1668 4 of 25

PDF has a long history in civil engineering applications [22]. As mentioned previously,
the lognormal distribution is, by far, the most used PDF within PBEE, particularly for
generating fragility functions [4].

2.2. Weibull Distribution

One of the main characteristics of the Weibull distribution is its flexibility in modeling
different distribution shapes. Just two parameters (scale and shape) are needed to define
this PDF [14], which provides an excellent model for failure data, such as the lifetime of
components and systems [23]. In the context of PBEE, it has been adopted for fragility
functions of concrete gravity dams [24] and precast concrete frames with concrete shear
walls cast in situ [25].

2.3. Gumbel Distribution

When a phenomenon is related to extreme values of random variables, it can usually
be adequately modeled by the Gumbel PDF. There are three types of Gumbel distribution
for large populations (i.e., above thirty observations), but these are not exhaustive [22]. The
Gumbel PDF has been adopted in many civil engineering applications, such as structural
safety, flood control programs, and predictive models of future conditions. It has also been
applied in PBEE to generate fragility models sensitive to extreme values [26].

2.4. Gamma Distribution

The Gamma PDF is similar to the Weibull distribution. If an event occurs after “n”
exponentially distributed events that have occurred sequentially, the resulting random
variable follows a Gamma PDF [14]. Its application in PBEE-related fragility functions has
also been considered [26].

2.5. Cauchy Distribution

The Cauchy PDF is heavy-tailed and is symmetric about the median value, resulting
in S-shaped curves [14]. The Cauchy PDF is recommended to model phenomena such as
the thermal conductivity of certain materials [14].

2.6. Inverse Weibull Distribution

The generalized form of the Inverse Weibull PDF was obtained by Keller et al. (1985)
while investigating failures of mechanical components subjected to degradation. This
distribution was proposed to limit the most prominent order statistic [27], i.e., Type II
asymptotic distribution of the most significant extreme [28,29]. The parameters of this PDF
are equal to those of the Weibull distribution. It applies to specific probabilistic problems
related to the lifetime of components, devices, or systems [30].

2.7. Inverse Gamma Distribution

The Inverse Gamma PDF has different forms and expressions, but the regularized-
inverted Gamma distribution is recommended for some risk analysis applications [31]. The
main characteristic of this PDF is that the principal inverse is a Pick function that tends
to increase or decrease in certain intervals depending on the parameters of the mapping
function [32].

3. Development of Fragility Functions of RC Buildings

This study evaluates the impact of alternative PDFs on the analytical seismic fragility
of a set of eight archetype RC buildings representative of the Chilean state of design and
construction practice. It is worth noting that the seismic performance of Chilean buildings
is of high interest worldwide because Chile is one of the most seismically active countries
in the world. The vast majority of Chilean mid- and high-rise buildings are RC structures.
The characteristics of the archetype buildings are defined based on data from the inventory
of RC buildings constructed in Chile between 2002 and 2020. More details can be found
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in previous studies [33,34]. The set of archetypes accounts for different building heights,
hazard sites, and soil types. The mid-rise archetypes are 7-story buildings, and the high-rise
archetypes are 16-story buildings. The archetypes are assumed to be located in seismic
zones 2 (moderate seismicity) and 3 (high seismicity) on soil types B (stiff soil) and D
(moderately stiff soil), as defined by the Chilean seismic design regulations [35,36]. Full
details of the archetypes can be found in previous studies [33,34]. The archetypes were
designated as “Bnxy”, where “B” indicates building, “n” indicates the number of stories
(i.e., 7 or 16), “x” represents the seismic zone (i.e., 2 or 3), and “y” expresses the soil type
(i.e., B or D); for instance, B073D denotes the 7-story archetype building located in seismic
zone 3 on soil type D. Finally, fragility functions were developed for the following two LSs:
an ultimate LS (collapse) and a Service Level (SL) LS, defined as PSDR ≥ 0.004 at any story
(i.e., when a 0.4% threshold of PSDR is reached at any story).

The development of the fragility functions follows the methodology proposed by
FEMA P-58 [4]. Fragility functions are conditional probabilities expressed in terms of
Cumulative Distribution Functions (CDFs) that describe the likelihood that a real-value
random variable takes a value that is less than (or at most equal to) a determined value
within the domain of the variable [37]. For the specific case of PBEE, as mentioned before,
fragility functions (whose graphical representations are called fragility curves) are defined
as the conditional probability of reaching or exceeding a particular DS (or a specific LS) [38]
as a function of a given EDP such as PSDR or PFA. Additionally, fragility functions are also
used to probabilistically represent the collapse performance of a given building structure
(called in this case, collapse fragility functions), where the conditional probability of collapse
of a particular building is expressed as a function of an IM such as Sa(T1) [34].

3.1. Fitting of Fragility Functions Procedure

The observations used in this study to develop the fragility functions were obtained
from the results of Incremental Dynamic Analyses (IDAs). The simulated data represent
the response of 3D nonlinear models subjected to a suit of Chilean subduction ground
motions. For brevity, details about the probabilistic seismic hazard analysis, ground motion
selection, 3D nonlinear models, collapse criteria, IDA results, etc., are not provided here
but can be found in [33,34]. In order to limit the amount of bias, the Hazen formulation was
adopted to calculate percentiles of the observations [39]. Then, the alternative PDFs were
fitted to the data. The parameters of each alternative PDF were calculated by the MLM
because of its already-described advantages [40].

Based on a literature review on performance-based procedures, four main PDFs were
identified as follows: (i) Lognormal, (ii) Weibull, (iii) Gumbel, and (iv) Gamma. These PDFs
are represented by Equations (1)–(4), respectively. Further, based on a literature review
on probability theory, three other extreme-value PDFs were also identified as possible
alternatives as follows: (v) Cauchy, (vi) Inverse Weibull, and (vii) Inverse Gamma. The
latter PDFs are represented by Equations (5)–(7), respectively. Finally, this study also
explores a combination of Lognormal and Weibull PDFs, which, to the best of the authors’
knowledge, has never been implemented in PBEE applications.

In Equation (1), i.e., Lognormal PDF, Φ is the standard normal CDF. In Equation
(4), i.e., the Gamma PDF, γ(ai, bix) is the lower incomplete Gamma function, and Γ(ai) is
the Gamma function. In Equation (7), i.e., Inverse Gamma PDF, Γ(ai, 1/bix) is the upper
incomplete Gamma function, and Γ(ai) is the Gamma function. The two parameters of
each PDF are defined in Table 1.

Regarding the innovative mixture PDF proposed in this study, empirical observations
suggest that the data may fit better a PDF #1 at a given interval and a different PDF #2
at another interval, where PDF #1 and PDF #2 are identified as marginal PDFs [41]. This
study proposes to assume that the Lognormal PDF fits better at probabilities between 0%
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and 50% and that the Weibull PDF fits better at probabilities between 50% and 100%. For
this purpose, a stochastic approach of weighted distributions is adopted as follows:

FSa(T1)w
(x, θi) =

2

∑
j=1

wj(x, θi)FSa(T1) j
(x)

E
(
wj(X, θi)

) , (8)

where the mixture PDF FSa(T1)w
depends on the weight function wj(x, θi) of each j marginal

PDF, given an expectation E
(
wj(X, θi)

)
[41]. To achieve a smooth transition between the

marginal PDFs, wj(x, θi) is defined based on the distance from the median value θi and in
such a way that a constant rate of transition is kept so that E

(
wj(X, θi)

)
= 1 [42]. Figure 1

shows an example of a mixture PDF, where it can be observed that the mixture PDF is
similar to the Lognormal at the lower tail and similar to the Weibull PDF at the upper tail. It
must be noticed that the mixture CDF does not have parameters of its own (its parameters
are in fact the parameters of the marginal PDFs).

Table 1. Summary of the PDFs considered in this study.

Name PDF 1st Parameter 2nd Parameter Equation

Lognormal ✓ P(DS ≥ ds i|Sa(T1) = x) = Φ
(

ln(x/θi)
βi

)
θi = median βi = logarithmic

standard deviation (1)

Weibull ✓ P(DS ≥ ds i|Sa(T1) = x) = 1 − e−(x/bi)
ai ai = shape bi = scale (2)

Gumbel ✓
P(DS ≥ ds i|Sa(T1) = x) =

exp
(
−e−(x−µi)

/bi
) µi = location bi = scale (3)

Gamma ✓ P(DS ≥ ds i|Sa(T1) = x) = γ(ai ,bix)
Γ(ai)

ai = shape bi = rate (4)

Cauchy ✓✓
P(DS ≥ ds i|Sa(T1) = x) =

1
2 + 1

πarctan
(

x−µi
bi

) µi = location bi = scale (5)

Inverse Weibull ✓✓ P(DS ≥ ds i|Sa(T1) = x) = e−(xbi)
−ai ai = shape bi = scale (6)

Inverse Gamma ✓✓ P(DS ≥ ds i|Sa(T1) = x) = Γ(ai ,1/bix)
Γ(ai)

ai = shape bi = scale (7)

✓the performance-based literature. ✓✓the probability theory literature.
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Figure 2 shows the collapse fragility functions of the eight archetypes. It is notable that,
at small values of Sa(T1), the lower tails of some PDFs (mostly the Weibull and Cauchy) are
well above the data, whereas at large values of Sa(T1) the upper tails of other PDFs (mostly
the Inverse Weibull and Inverse Gamma) are well below the data.

Figure 3 shows the SL fragility functions. Notably, the abovementioned observations
on the collapse fragility functions also apply in this case.
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3.2. Assessment of the Quality of the Fragility Functions

The procedure is briefly described in FEMA P-58. The objective is to assign a quality
level to a fragility function according to the criteria of Table H-5 of FEMA P-58 [4]. In
order to obtain high-quality fragility functions, the data must satisfy all the requirements
summarized in Table 2.
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(g) B163B, (h) B163D. The simulated data presented in each figure (black crosses) were obtained
from [33,34].

Table 2 shows that the data used in this study do comply with the requirements
of FEMA P-58. In other words, the data are adequate to obtain high-quality fragility
functions. Table 2 also shows that, as explained in the next subsections, alternative and
more conservative goodness-of-fit tests were also considered in this study, as well as an
alternative criterion to identify outliers.

3.2.1. Goodness-of-Fit Tests

The FEMA P-58 methodology suggests that fragility functions should pass a Lilliefors
test at a 5% significance level. However, FEMA P-58 also indicates that higher (15%) or
lower (2.5%) significance levels are also possible. This study’s most conservative testing
criterion (2.5% significance level) was also considered to reduce the probability of a “false
negative”. More negligible significance levels minimize the likelihood of rejecting the null
hypothesis when true.

Although FEMA P-58 requires the Lilliefors (Lill) test only, alternative methods such
as the Kolmogorov–Smirnoff (K–S) and the Anderson–Darling (A–D) tests have also
been widely used in PBEE studies. For this reason, both methods are also considered
in this section.
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Figure 4 shows the results of all the goodness-of-fit tests (i.e., the Lill., K–S, and A–D
methods at both 2.5% and 5% significance levels) applied to the collapse fragility data of
archetype B072D. Results for all the other archetypes are qualitatively identical to those
shown in Figure 4 and are not offered for brevity.
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As seen in Figure 4, the most conservative method is the Lilliefors test, and the most
unconservative is the A–D test. It is also observed that all the PDFs pass the goodness-of-fit
tests, even at the more conservative 2.5% significance level. Consequently, the quality of
the fragility functions is not sensitive to the significance level of either the test proposed
by FEMA P-58 (i.e., the Lill) or the other tests considered in this study (i.e., the K–S and
A–D tests). Still, these tests might give different results when applied to low-quality data;
in such a case, the fragility functions might end up being rejected by the Lill test but being
accepted by the A–D test.

3.2.2. Identification of Data Outliers

Data outliers or spurious data may be present when fragility functions are derived
from data affected by experimental or numerical errors, [4] because, in such scenarios, each
observation is altered by random and systematic errors [43]. It is important to remark that
data outliers can significantly impact the value of the estimated parameters of the assumed
PDF [43].

Fragility functions, especially in the case of LS, such as collapse, usually exhibit a
nonlinear trend, and it is not always evident whether suspicious observations exist or not.
Hence, an objective outlier identification criterion is needed to avoid confusion between
discordant random observations and suspicious observations [44]. In this context, this
study adopts Peirce’s criterion suggested by FEMA P-58 [4] and the leverage criterion
proposed in the primary probability literature [44]. Previous studies have suggested both
methods for collapse assessment [7].

The FEMA P-58 methodology adopts Peirce’s criterion to detect data outliers in the
general case where the quantity of suspicious data is unknown [43]. The iterative procedure
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to implement Peirce’s criterion is described in detail in FEMA P-58. Even though FEMA
P-58 indicates that Peirce’s criterion “should be applied”, it is known that other methods
to detect data outliers may or may not give different results. Further, in seismic fragility
analysis, the elimination of data outliers at the Sa(T1) ≤ θi range is more important than
at the Sa(T1) > θi range because IM levels associated with the former are much more
frequent than IM levels related to the latter. Therefore, the influence of data outliers at the
Sa(T1) ≤ θi range on risk metrics is much more important than that of data outliers at the
Sa(T1) > θi range.

On the other hand, the leverage criterion quantifies how far away the value of an
individual observation is from the others [44]. Thus, the leverage statistic value hi is
computed for each ith observation as follows [45]:

hi(xi) =
1
n
+

(xi − x)2

∑n
i′=1(xi′ − x)2 , (9)

where x = ln(Sa(T1)), x is the mean of the independent variable x, and n is the sample size.
A high-leverage observation has an unusual value of xi, which suggests an outlier [8]. The
warning threshold suggested for collapse assessment is 2.5 of the average leverage havg [7].

Figure 5 shows the collapse fragility data of those cases (i.e., archetypes) in which data
outliers identified by both methods are most significant. Notably, the leverage criterion
tends to be more sensitive to suspicious values at the Sa(T1) ≤ θi range (i.e., at the lower tail
of the fragility functions), whereas Peirce’s criterion tends to be more sensitive to suspicious
values at the Sa(T1) > θi range (i.e., at the upper tail of the fragility function). Removing
data outliers at the lower tail of the fragility functions usually has a more significant impact
on the value of re-estimated parameters and, as already discussed, on risk metrics such as
the mean annual frequency of collapse.
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Figure 6 shows the SL fragility data of three high-rise archetypes and one mid-rise
archetype, together with the data outliers identified by both methods. In general, few data
outliers are identified in the SL fragility data of the mid-rise archetypes. More data outliers
are identified in the SL fragility data of the high-rise archetypes, but still not as many as in
the collapse fragility data. Again, it can be seen that, when applied to the same data set,
the two technically valid outlier detection methods (i.e., Peirce’s criterion and the leverage
criterion) generally give different results and tend to identify outliers at other parts of the
fragility functions (i.e., Peirce’s criterion tends to recognize more outliers at the upper tail
of the fragility curve, whereas the leverage criterion tends to identify more outliers at the
lower part of the fragility curve).
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3.2.3. Comparison of Estimated Parameters

As mentioned before, once the outliers have been removed, it is necessary to re-
estimate the parameters of the fragility PDF considering the new data set (i.e., the data
that remain after removing the outliers). If any of the revised parameters differ from the
original ones by more than 20%, the fragility functions should be modified considering the
reviewed parameters. It is worth mentioning, however, that in many PBEE studies, data
outliers are not identified and, consequently, not removed (this issue is not even mentioned
in such studies).

Table 3 summarizes the differences between the original and reviewed parameters
calculated considering the collapse fragility data of the four mid-rise archetypes for which
such differences are found most significant. Differences equal to or larger than 20% are
marked in red. It can be observed that, in some cases, the difference is substantial (up to
67%). Also, it is interesting to note that, in the case of the Lognormal PDF, the difference is
never greater than 20% (regardless of the outlier detection method). However, in just one
case (archetype B072B, leverage criterion), the difference between the original and reviewed
values of the second parameter is 19.21% (i.e., slightly less than the 20% limit). On the
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other hand, differences more significant than 20% are more common when the Gamma
PDF is adopted.

Table 3. Difference between original and revised parameters. Collapse fragility of mid-rise archetypes
(1st P—1st parameter; 2nd P—2nd parameter, as indicated in Table 1).

Outliers
Criteria PDF

B072B B072D B073B B073D
1st P 2nd P 1st P 2nd P 1st P 2nd P 1st P 2nd P

Peirce

Lognormal −4.51% −13.01% 0.00% 0.00% −4.03% −9.48% −1.58% −2.94%
Weibull 26.23% −7.01% 0.00% 0.00% 23.36% −6.42% 6.02% −2.22%

Mixt (LN + Wbl) −4.51% −13.01% 0.00% 0.00% −4.03% −9.48% −1.58% −2.94%
Gumbel −12.08% −3.64% 0.00% 0.00% −10.74% −3.50% −3.77% −1.40%
Gamma 37.02% 45.44% 0.00% 0.00% 26.40% 34.00% 6.80% 8.97%
Cauchy −1.58% −10.24% 0.00% 0.00% −0.91% −6.40% −0.97% −3.70%

Inverse Weibull 5.90% −3.05% 0.00% 0.00% 5.39% −2.63% 1.89% −1.13%
Inverse Gamma 26.43% 22.03% 0.00% 0.00% 17.45% 14.13% 5.30% 4.02%

Leverage

Lognormal 1.99% −19.21% 0.00% 0.00% −2.17% −13.73% 5.94% −15.46%
Weibull 16.38% −0.54% 0.00% 0.00% 27.64% −5.30% 11.12% 3.57%

Mixt (LN + Wbl) 1.99% −19.21% 0.00% 0.00% −2.17% −13.73% 5.94% −15.46%
Gumbel −21.74% 3.29% 0.00% 0.00% −13.25% −1.39% −11.76% 6.81%
Gamma 46.35% 45.77% 0.00% 0.00% 37.79% 44.07% 33.56% 28.18%
Cauchy 0.83% −8.25% 0.00% 0.00% 0.21% −9.10% 3.20% −5.17%

Inverse Weibull 52.59% 5.90% 0.00% 0.00% 11.24% 0.22% 30.42% 9.66%
Inverse Gamma 60.66% 67.05% 0.00% 0.00% 29.85% 29.51% 44.94% 57.04%

Table 4 summarizes the differences between the original and reviewed parameters
calculated considering the collapse fragility data of the four high-rise archetypes for which
such differences are found most significant. The number of cases in which differences are
equal to or larger than 20% is less than that in Table 3, and all such cases occur exclusively
when the Weibull, Gamma, and Inverse Gamma PDFs are adopted.

Table 4. Difference between original and revised parameters. Collapse fragility of high-rise archetypes
(1st P—1st parameter; 2nd P—2nd parameter, as indicated in Table 1).

Outliers
Criteria

PDF
B162B B162D B163B B163D

1st P 2nd P 1st P 2nd P 1st P 2nd P 1st P 2nd P

Peirce

Lognormal 0.00% 0.00% −4.79% −11.78% −1.17% −5.00% −1.80% −6.50%
Weibull 0.00% 0.00% 20.29% −7.00% 8.56% −1.84% 13.25% −3.01%

Mixt (LN + Wbl) 0.00% 0.00% −4.79% −11.78% −1.17% −5.00% −1.80% −6.50%
Gumbel 0.00% 0.00% −14.12% −4.01% −4.54% −0.87% −6.78% −1.38%
Gamma 0.00% 0.00% 30.65% 39.21% 11.64% 13.27% 16.31% 19.29%
Cauchy 0.00% 0.00% −2.25% −11.15% −0.62% −4.01% −0.46% −4.68%

Inverse Weibull 0.00% 0.00% 8.85% −3.13% 2.94% −0.73% 4.00% −1.04%
Inverse Gamma 0.00% 0.00% 25.15% 20.59% 9.84% 8.79% 12.32% 10.87%

Leverage

Lognormal 1.35% −4.97% 0.03% −7.91% −0.01% −10.15% −1.80% −6.50%
Weibull 3.10% 0.85% 7.67% −1.27% 11.81% −1.11% 13.25% −3.01%

Mixt (LN + Wbl) 1.35% −4.97% 0.03% −7.91% −0.01% −10.15% −1.80% −6.50%
Gumbel −4.92% 1.69% −8.45% 0.53% −11.96% 0.67% −6.78% −1.38%
Gamma 9.54% 8.39% 16.90% 17.90% 23.25% 23.86% 16.31% 19.29%
Cauchy 0.61% −2.66% 0.20% −5.52% −0.04% −5.64% −0.46% −4.68%

Inverse Weibull 9.12% 2.16% 13.25% 1.50% 18.48% 1.22% 4.00% −1.04%
Inverse Gamma 11.79% 13.70% 18.31% 19.44% 24.30% 24.91% 12.32% 10.87%

Table 5 summarizes the differences between the original and reviewed parameters
calculated considering the SL fragility data of the four mid-rise archetypes for which such
differences are found most significant. Cases where differences are equal to or larger than
20% are observed only in the fragility of archetype B073D and only when the leverage
criterion is applied. It must be noticed that archetype B073D is the one for which the
collapse Sa(T1) values are the largest and have a significant degree of dispersion. Further,
as shown in Figure 6, the leverage criterion only identified outliers at the lower tail.
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Table 5. Difference between original and revised parameters. SL fragility of mid-rise archetypes (1st
P—1st parameter; 2nd P—2nd parameter, as indicated in Table 1).

Outliers
Criteria PDF B072B B072D B073B B073D

1st P 2nd P 1st P 2nd P 1st P 2nd P 1st P 2nd P

Peirce

Lognormal 0.00% 0.00% −1.24% −4.44% 0.00% 0.00% 0.00% 0.00%
Weibull 0.00% 0.00% 6.85% −1.88% 0.00% 0.00% 0.00% 0.00%

Mixt (LN + Wbl) 0.00% 0.00% −1.24% −4.44% 0.00% 0.00% 0.00% 0.00%
Gumbel 0.00% 0.00% −4.45% −0.95% 0.00% 0.00% 0.00% 0.00%
Gamma 0.00% 0.00% 10.14% 11.86% 0.00% 0.00% 0.00% 0.00%
Cauchy 0.00% 0.00% −0.37% −3.52% 0.00% 0.00% 0.00% 0.00%

Inverse Weibull 0.00% 0.00% 2.90% −0.79% 0.00% 0.00% 0.00% 0.00%
Inverse Gamma 0.00% 0.00% 8.65% 7.56% 0.00% 0.00% 0.00% 0.00%

Leverage

Lognormal 0.00% 0.00% −1.24% −4.44% 0.00% 0.00% 6.21% −30.94%
Weibull 0.00% 0.00% 6.85% −1.88% 0.00% 0.00% 17.60% 3.08%

Mixt (LN + Wbl) 0.00% 0.00% −1.24% −4.44% 0.00% 0.00% 6.21% −30.94%
Gumbel 0.00% 0.00% −4.45% −0.95% 0.00% 0.00% −31.74% 8.30%
Gamma 0.00% 0.00% 10.14% 11.86% 0.00% 0.00% 86.63% 79.06%
Cauchy 0.00% 0.00% −0.37% −3.52% 0.00% 0.00% 1.13% −7.92%

Inverse Weibull 0.00% 0.00% 2.90% −0.79% 0.00% 0.00% 89.46% 13.04%
Inverse Gamma 0.00% 0.00% 8.65% 7.56% 0.00% 0.00% 135.59% 157.71%

Finally, Table 6 summarizes the differences between the original and reviewed param-
eters calculated considering the SL fragility data of the four high-rise archetypes for which
such differences are found most significant. A comparison between Tables 5 and 6 (i.e.,
SL fragility) shows that, unlike what is observed in collapse fragility (Tables 3 and 4), the
number of cases in which differences are equal to or larger than 20% is more significant
in high-rise buildings than in mid-rise buildings, particularly when the leverage criterion
is applied.

Table 6. Difference between original and revised parameters. SL fragility of high-rise archetypes (1st
P—1st parameter; 2nd P—2nd parameter, as indicated in Table 1).

Outliers
Criteria PDF

B162B B162D B163B B163D
1st P 2nd P 1st P 2nd P 1st P 2nd P 1st P 2nd P

Peirce

Lognormal −0.93% −4.04% −1.79% −11.37% 0.00% 0.00% −0.99% −6.99%
Weibull 10.54% −1.46% 27.82% −2.98% 0.00% 0.00% 22.27% −1.82%

Mixt (LN + Wbl) −0.93% −4.04% −1.79% −11.37% 0.00% 0.00% −0.99% −6.99%
Gumbel −3.00% −0.72% −8.69% −1.26% 0.00% 0.00% −4.07% −0.68%
Gamma 9.52% 10.73% 29.67% 32.45% 0.00% 0.00% 17.64% 19.07%
Cauchy −0.38% −2.80% −0.71% −6.64% 0.00% 0.00% −0.27% −2.82%

Inverse Weibull 1.92% −0.64% 6.95% −1.09% 0.00% 0.00% 2.66% −0.60%
Inverse Gamma 7.65% 6.80% 24.93% 23.03% 0.00% 0.00% 13.73% 12.79%

Leverage

Lognormal 2.29% −23.09% −1.79% −11.37% 1.19% −16.08% 0.04% −15.28%
Weibull 24.52% 0.34% 27.82% −2.98% 23.59% −0.23% 27.67% −1.26%

Mixt (LN + Wbl) 2.29% −23.09% −1.79% −11.37% 1.19% −16.08% 0.04% −15.28%
Gumbel −24.20% 3.83% −8.69% −1.26% −15.07% 2.16% −16.57% 0.87%
Gamma 64.95% 62.41% 29.67% 32.45% 40.80% 39.84% 39.33% 39.83%
Cauchy 1.16% −11.44% −0.71% −6.64% 0.42% −8.81% 0.18% −5.78%

Inverse Weibull 44.26% 4.93% 6.95% −1.09% 22.72% 2.82% 26.26% 1.36%
Inverse Gamma 72.77% 78.17% 24.93% 23.03% 42.80% 45.26% 39.42% 40.04%

In all cases, the value of the estimated logarithmic standard deviation β of the Lognor-
mal PDF is found to comply with the 0.2 ≤ β ≤ 0.6 limits.

According to the FEMA P-58 procedure, fragility functions that exhibit differences
equal to or more significant than 20% between original and reviewed parameters do not
qualify as high-quality fragility functions. Still, the FEMA P-58 procedure does not explicitly
reject such fragility functions (in fact, it does not indicate how to proceed in such a scenario).

It is worth noting that results in Tables 3–6 do not exhibit a clear correlation between
PDFs and the differences between original and reviewed parameters or between PDFs and
data outlier detections (regardless of the detection method).
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3.2.4. Comparison of Alternative PDFs

In the context of selecting the most adequate statistical model to represent a set
of observations (data), information criteria are mathematical tools that provide a value
indicating the adequacy of a given model. If different models are considered, an information
criterion gives a value for each model [22]. Such values can then be compared, and
the model that gives the smallest value is deemed the most suitable [22]. The Akaike
Information Criterion (AIC) and the Bayesian Information Criterion (BIC) are commonly
used for model selection [46]. The AIC value for a given model “M” with parameter θM
depends on the likelihood LM and the number of the model parameters np:

AIC = −2 ln LM(θM)+2np (10)

A modification of the AIC equation gives the BIC value to avoid possible over-
fitting [47]:

BIC = −2 ln LM(θM)+ ln(Ns )np (11)

where Ns is the sample size.
In this study, these multi-comparative analysis tools are considered to evaluate the

fragility functions before and after removing data outliers with both Peirce’s and the
leverage criterion.

Table 7 summarizes the results of the multi-comparative analysis of the collapse
fragility of the mid-rise archetypes. The PDFs are presented in ascending order from the
best (in green) to the worst (in red). In all cases, the Lognormal PDF is highlighted. It is
worth noting that the Lognormal PDF is never the worst-rated, but only twice is the best-
placed. However, the Gamma PDF is often the best-rated for these archetypes, regardless
of whether data outliers have been eliminated or not.

Table 7. Multi-comparative selection model for collapse fragility functions (mid-rise archetypes).

Case
Total Data Prc-C. Outl. Lev-C. Outl.

PDF AIC BIC PDF AIC BIC PDF AIC BIC

B072B

Gumbel 95.67 99.23 Gamma 72.93 76.36 Gumbel 72.38 75.81
Lognormal 95.85 99.42 Lognormal 74.38 77.81 Inverse Gamma 72.54 75.96

Gamma 96.28 99.85 Mixt (LN + Wbl) 74.64 78.07 Inverse Weibull 72.60 76.02
Inverse Gamma 97.23 100.80 Weibull 74.78 78.20 Lognormal 73.72 77.15
Mixt (LN + Wbl) 99.95 103.52 Gumbel 75.54 78.97 Gamma 75.57 79.00

Weibull 102.29 105.86 Inverse Gamma 77.18 80.61 Mixt (LN + Wbl) 80.10 83.53
Inverse Weibull 106.07 109.63 Cauchy 87.46 90.89 Weibull 83.85 87.28

Cauchy 108.74 112.31 Inverse Weibull 88.97 92.40 Cauchy 91.33 94.76

B072D

Gamma 153.02 156.59 Gamma 153.02 156.59 Gamma 153.02 156.59
Lognormal 153.27 156.84 Lognormal 153.27 156.84 Lognormal 153.27 156.84

Gumbel 153.78 157.35 Gumbel 153.78 157.35 Gumbel 153.78 157.35
Mixt (LN + Wbl) 154.37 157.94 Mixt (LN + Wbl) 154.37 157.94 Mixt (LN + Wbl) 154.37 157.94
Inverse Gamma 154.59 158.16 Inverse Gamma 154.59 158.16 Inverse Gamma 154.59 158.16

Weibull 154.96 158.53 Weibull 154.96 158.53 Weibull 154.96 158.53
Inverse Weibull 158.87 162.43 Inverse Weibull 158.87 162.43 Inverse Weibull 158.87 162.43

Cauchy 176.94 180.51 Cauchy 176.94 180.51 Cauchy 176.94 180.51

B073B

Lognormal 117.74 121.30 Gamma 99.43 102.91 Gamma 95.07 98.49
Gumbel 118.06 121.63 Weibull 100.01 103.49 Lognormal 96.07 99.50
Gamma 118.39 121.96 Mixt (LN + Wbl) 100.27 103.74 Mixt (LN + Wbl) 96.10 99.53

Inverse Gamma 119.06 122.63 Lognormal 100.74 104.22 Weibull 96.12 99.55
Mixt (LN + Wbl) 121.14 124.71 Gumbel 100.86 104.33 Gumbel 96.35 99.77

Weibull 123.09 126.66 Inverse Gamma 103.29 106.76 Inverse Gamma 98.21 101.63
Inverse Weibull 124.09 127.66 Inverse Weibull 109.85 113.33 Inverse Weibull 104.55 107.98

Cauchy 134.85 138.42 Cauchy 118.81 122.29 Cauchy 113.88 117.31

B073D

Gamma 191.70 195.27 Weibull 182.70 186.22 Lognormal 171.10 174.52
Weibull 192.37 195.94 Gamma 183.13 186.65 Gamma 171.31 174.74

Mixt (LN + Wbl) 192.61 196.18 Mixt (LN + Wbl) 183.47 186.99 Gumbel 171.48 174.91
Lognormal 193.02 196.59 Lognormal 184.79 188.31 Inverse Gamma 171.59 175.02

Gumbel 193.04 196.61 Gumbel 184.88 188.40 Mixt (LN + Wbl) 172.99 176.42
Inverse Gamma 195.74 199.31 Inverse Gamma 187.70 191.22 Weibull 174.23 177.65
Inverse Weibull 202.91 206.48 Inverse Weibull 195.19 198.71 Inverse Weibull 175.10 178.52

Cauchy 213.66 217.23 Cauchy 205.01 208.53 Cauchy 193.84 197.26
The PDFs are presented in ascending order from the best (in green) to the worst (in red).
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Table 8 summarizes the results of the multi-comparative analysis of the collapse
fragility of the high-rise archetypes. Again, the Lognormal PDF is never the worst-rated,
but only twice is the best-placed. However, the Inverse Gamma PDF is often the best-rated
for these archetypes, regardless of whether data outliers have been eliminated or not.

Table 8. Multi-comparative selection model for collapse fragility functions (high-rise archetypes).

Case
Total Data Prc-C. Outl. Lev-C. Outl.

PDF AIC BIC PDF AIC BIC PDF AIC BIC

B162B

Gamma −0.93 2.64 Gamma −0.93 2.64 Lognormal −3.98 −0.45
Lognormal −0.86 2.71 Lognormal −0.86 2.71 Inverse Gamma −3.74 −0.22

Inverse Gamma −0.10 3.47 Inverse Gamma −0.10 3.47 Gamma −3.66 −0.14
Gumbel −0.09 3.47 Gumbel −0.09 3.47 Gumbel −3.60 −0.08

Mixt (LN + Wbl) 1.38 4.95 Mixt (LN + Wbl) 1.38 4.95 Mixt (LN + Wbl) −0.88 2.64
Weibull 2.33 5.90 Weibull 2.33 5.90 Weibull 0.45 3.98

Inverse Weibull 5.81 9.37 Inverse Weibull 5.81 9.37 Inverse Weibull 0.50 4.02
Cauchy 18.78 22.34 Cauchy 18.78 22.34 Cauchy 16.16 19.68

B162D

Inverse Gamma 17.52 21.09 Lognormal 2.60 6.03 Inverse Gamma 9.63 13.10
Lognormal 17.85 21.42 Gamma 2.83 6.25 Inverse Weibull 10.30 13.77

Gumbel 18.13 21.70 Gumbel 2.94 6.37 Gumbel 10.32 13.79
Gamma 19.23 22.80 Inverse Gamma 3.07 6.49 Lognormal 10.33 13.80

Inverse Weibull 19.83 23.40 Mixt (LN + Wbl) 4.84 8.26 Gamma 11.77 15.24
Mixt (LN + Wbl) 22.62 26.19 Weibull 5.62 9.05 Mixt (LN + Wbl) 15.29 18.76

Weibull 24.41 27.98 Inverse Weibull 6.78 10.21 Weibull 17.15 20.62
Cauchy 40.35 43.92 Cauchy 24.84 28.26 Cauchy 32.81 36.29

B163B

Gumbel −3.38 0.19 Inverse Gamma −8.26 −4.74 Gumbel −12.76 −9.28
Inverse Gamma −3.32 0.25 Lognormal −8.19 −4.67 Inverse Gamma −12.26 −8.79

Lognormal −2.92 0.65 Gumbel −8.06 −4.54 Inverse Weibull −11.88 −8.40
Gamma −1.97 1.59 Gamma −7.66 −4.14 Lognormal −11.60 −8.13

Inverse Weibull −0.19 3.38 Mixt (LN + Wbl) −4.27 −0.75 Gamma −10.63 −7.15
Mixt (LN + Wbl) 2.23 5.80 Inverse Weibull −4.18 −0.65 Mixt (LN + Wbl) −6.65 −3.18

Weibull 4.78 8.34 Weibull −2.36 1.16 Weibull −4.20 −0.73
Cauchy 16.99 20.56 Cauchy 12.07 15.59 Cauchy 9.74 13.22

B163D

Inverse Gamma 65.28 68.85 Inverse Gamma 57.20 60.72 Inverse Gamma 57.20 60.72
Inverse Weibull 65.40 68.97 Gumbel 57.48 61.00 Gumbel 57.48 61.00

Gumbel 66.09 69.65 Lognormal 57.89 61.42 Lognormal 57.89 61.42
Lognormal 66.66 70.22 Inverse Weibull 58.42 61.94 Inverse Weibull 58.42 61.94

Gamma 68.99 72.56 Gamma 59.26 62.78 Gamma 59.26 62.78
Mixt (LN + Wbl) 72.79 76.36 Mixt (LN + Wbl) 62.14 65.66 Mixt (LN + Wbl) 62.14 65.66

Weibull 76.80 80.37 Weibull 64.83 68.35 Weibull 64.83 68.35
Cauchy 85.55 89.11 Cauchy 77.76 81.28 Cauchy 77.76 81.28

The PDFs are presented in ascending order from the best (in green) to the worst (in red).

Similarly, Table 9 indicates the results of the multi-comparative analysis with AIC and
BIC for the SL of mid-rise buildings. It is worth mentioning that in this case (mid-rise build-
ings and SL LS, which is associated with minimal nonlinear behavior and, thus, reduced
variability), only the Lev-C. outlier identification criterion detected data outliers in just
one case (B073D), therefore, only in this case, the AIC and BIC criteria were subsequently
applied to perform a quantitative assessment of how well the alternative PDFs adjust to
the data. For the remaining archetypes, data outliers were not identified, and thus, the
application of the AIC and BIC criteria was the same with and without the application of
the outlier detection methods. In terms of the results, it can be seen that, once more, the
Lognormal PDF is never the best-rated.

Finally, Table 10 summarizes the results of the multi-comparative analysis of the SL
fragility of the high-rise archetypes. As before, the Lognormal PDF is never the worst-rated.
However, the mixture PDF is often the best-placed for these archetypes, regardless of
whether data outliers have been eliminated or not.
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Table 9. Multi-comparative selection model for SL fragility functions (mid-rise archetypes).

Case Total Data
Case

Total Data
PDF

Lev-C. Outl.
PDF AIC BIC PDF AIC BIC AIC BIC

B072B

Mixt (LN + Wbl) −112.84 −111.06

B073B

Mixt (LN + Wbl) −112.67 −110.88
Lognormal −112.37 −108.81 Lognormal −111.97 −108.40

Gamma −112.07 −108.50 Gamma −111.71 −108.14
Gumbel −112.04 −108.48 Inverse Gamma −111.69 −108.12

Inverse Gamma −112.02 −108.45 Gumbel −111.56 −107.99
Weibull −109.06 −105.49 Weibull −109.16 −105.59

Inverse Weibull −108.53 −104.96 Inverse Weibull −108.99 −105.42
Cauchy −89.23 −85.66 Cauchy −85.35 −81.78

B072D

Inverse Gamma −108.32 −104.75

B073D

Weibull −67.33 −63.76 Mixt (LN + Wbl) −81.93 −80.22
Gumbel −108.30 −104.74 Gamma −62.77 −59.20 Lognormal −79.69 −76.26

Lognormal −108.06 −104.49 Mixt (LN + Wbl) −60.64 −58.86 Inverse Gamma −79.62 −76.19
Mixt (LN + Wbl) −107.82 −106.04 Lognormal −58.55 −54.98 Gamma −79.37 −75.94

Gamma −107.16 −103.59 Gumbel −57.76 −54.19 Gumbel −79.24 −75.81
Inverse Weibull −105.26 −101.69 Cauchy −53.22 −49.65 Inverse Weibull −75.42 −71.99

Weibull −101.12 −97.55 Inverse Gamma −52.49 −48.92 Weibull −74.90 −71.48
Cauchy −89.94 −86.37 Inverse Weibull −37.33 −33.76 Cauchy −59.70 −56.27

The PDFs are presented in ascending order from the best (in green) to the worst (in red).

Table 10. Multi-comparative selection model for SL fragility functions (high-rise archetypes).

Case Total Data Prc-C. Outl. Lev-C. Outl.
PDF AIC BIC PDF AIC BIC PDF AIC BIC

B162B

Mixt (LN + Wbl) −201.74 −199.96 Mixt (LN + Wbl) −203.69 −201.93 Gamma −200.60 −197.22
Gamma −200.83 −197.26 Weibull −202.68 −199.16 Mixt (LN + Wbl) −200.49 −198.80
Weibull −199.75 −196.18 Gamma −200.93 −197.41 Lognormal −200.39 −197.01

Lognormal −199.72 −196.15 Lognormal −199.44 −195.91 Inverse Gamma −199.98 −196.61
Inverse Gamma −198.08 −194.51 Inverse Gamma −197.50 −193.97 Gumbel −197.93 −194.55

Gumbel −195.88 −192.31 Gumbel −194.70 −191.18 Weibull −197.61 −194.23
Inverse Weibull −187.18 −183.61 Inverse Weibull −185.70 −182.18 Inverse Weibull −194.34 −190.96

Cauchy −184.88 −181.31 Cauchy −184.31 −180.79 Cauchy −180.83 −177.45

B162D

Inverse Gamma −225.81 −222.24 Mixt (LN + Wbl) −227.67 −225.93 Mixt (LN + Wbl) −227.67 −225.93
Lognormal −225.50 −221.93 Gamma −226.98 −223.51 Gamma −226.98 −223.51

Gumbel −225.49 −221.92 Lognormal −226.72 −223.25 Lognormal −226.72 −223.25
Gamma −224.87 −221.31 Inverse Gamma −226.30 −222.82 Inverse Gamma −226.30 −222.82

Inverse Weibull −223.24 −219.67 Weibull −225.29 −221.81 Weibull −225.29 −221.81
Mixt (LN + Wbl) −221.35 −219.57 Gumbel −224.32 −220.84 Gumbel −224.32 −220.84

Weibull −217.08 −213.52 Inverse Weibull −221.12 −217.64 Inverse Weibull −221.12 −217.64
Cauchy −206.69 −203.13 Cauchy −205.56 −202.09 Cauchy −205.56 −202.09

B163B

Mixt (LN + Wbl) −208.47 −206.68 Mixt (LN + Wbl) −208.47 −206.68 Mixt (LN + Wbl) −208.37 −206.66
Weibull −206.95 −203.39 Weibull −206.95 −203.39 Weibull −207.20 −203.77
Gamma −206.51 −202.94 Gamma −206.51 −202.94 Gamma −205.36 −201.93

Lognormal −205.34 −201.77 Lognormal −205.34 −201.77 Lognormal −204.48 −201.05
Inverse Gamma −203.77 −200.20 Inverse Gamma −203.77 −200.20 Inverse Gamma −203.40 −199.97

Gumbel −201.31 −197.74 Gumbel −201.31 −197.74 Gumbel −200.29 −196.86
Inverse Weibull −193.68 −190.11 Inverse Weibull −193.68 −190.11 Inverse Weibull −195.03 −191.60

Cauchy −189.40 −185.83 Cauchy −189.40 −185.83 Cauchy −186.18 −182.75

B163D

Gamma −155.15 −151.58 Mixt (LN + Wbl) −160.75 −158.99 Mixt (LN + Wbl) −162.64 −160.91
Lognormal −155.06 −151.50 Gamma −159.42 −155.90 Gamma −161.93 −158.45

Inverse Gamma −154.51 −150.94 Weibull −159.06 −155.54 Lognormal −161.72 −158.25
Mixt (LN + Wbl) −154.44 −152.66 Lognormal −158.54 −155.02 Inverse Gamma −161.34 −157.86

Gumbel −152.19 −148.62 Inverse Gamma −157.34 −153.82 Gumbel −159.09 −155.62
Weibull −148.56 −144.99 Gumbel −153.60 −150.07 Weibull −159.05 −155.57

Inverse Weibull −145.58 −142.01 Inverse Weibull −146.19 −142.66 Inverse Weibull −155.56 −152.08
Cauchy −139.60 −136.04 Cauchy −141.04 −137.52 Cauchy −141.29 −137.81

The PDFs are presented in ascending order from the best (in green) to the worst (in red).

In 80 out of 82 cases, the Cauchy PDF is, by far, the worst-ranked PDF. This observation
may be due to the pronounced s-shaped nature of the Cauchy PDF that does not provide the
required positive skewness. However, once the Cauchy PDF is excluded, no PDF appears to
be either the best- or the worst-suited for all mid- and high-rise buildings and both LS. This
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outcome confirms that the analysis presented in this section should be carried out for each
fragility assessment instead of assuming a priori a given PDF. However, differences among
alternative PDFs are non-negligible for the collapse LS, while for the Service Level LS, these
differences are minor. Consequently, given that these types of analyses are computationally
very low-cost intensive when compared with other computational methods used in PBEE
(e.g., finite element models or IDAs), they could be easily implemented on a case-to-case
basis to provide the best fitting to each particular data set and, thus, to obtain more accurate
estimations, especially in the case of collapse LS.

According to FEMA P-58, the eight PDFs considered in this study lead to high-quality
fragility functions (both collapse and SL) for all the archetypes. However, although they
are all equally valid in principle, they might result in significantly different values of risk
metrics. This issue is evaluated in the next section.

4. Impact of Alternative Fragility Functions on Annualized Performance-Based Metrics

Fragility functions are integrated with their corresponding seismic hazard curves
to obtain annualized performance-based metrics, such as the mean annual frequency
of collapse (λLS), as indicated in Figure 7. In particular, Figure 7a,b show examples of
simulated data, fitted fragility functions (using the same colors defined across this study
for each particular PDF), and site hazard curves for collapse LS and SL LS, respectively,
for archetype B162B. Figure 7a, associated to collapse LS, shows more considerable data
variability than Figure 7b, associated to SL LS, which is reasonable since collapse represents
a LS dominated by nonlinear behavior. In contrast, SL LS is usually associated with
linear behavior.
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for the case of (a) collapse LS and (b) SL LS.

Then, the probability for each LS assessment in 50 years is obtained with Equation (12),
where all the parameters have been previously defined:

PLS(50)= 1 − e−λLS.50, (12)

Metrics Variability

Since eight fragility functions (associated with the eight PDFs used in this study) for
each building are developed, and these eight fragility functions are then used (i) without
elimination of data outliers; (ii) with elimination of data outliers using Peirce’s criterion;
and (iii) with elimination of data outliers using the leverage criteria, a total of 24 values of
these metrics are calculated for each LS assessment for each building.

The latter is shown in Figure 8a–h, which depicts the 24 values of the probability of
collapse in 50 years, Pc(50) for each of the eight archetype buildings. This figure shows
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that Pc(50) values are less than 1%, except for the Cauchy PDF, which in all cases is a value
of 100%. It is worth mentioning that a target probability of collapse of 1% in 50 years is
stated by ASCE 7–22 [48], and both simulation and empirical evidence have shown that
code-conforming-designed Chilean buildings, such as the ones used in this study, overall
meet this limit of 1%. Consequently, the range of Figure 8 has been limited to 1%, and since
the calculated Pc(50) values obtained by Cauchy PDF are inconsistent with both simulation
and empirical evidence, this PDF is not considered for further analyses.
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Excluding the Cauchy PDF, Figure 8 presents significant variability in their Pc(50)
values across different buildings (which is expected since these buildings are designed
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following the Chilean seismic design code, which is a prescriptive code not intended to
estimate nor provide a uniform collapse performance). For all buildings, it is evident
that the application of Weibull PDFs to obtain fragility functions leads to the maximum
Pc(50) values and the remaining PDFs tend to calculate close Pc(50) values between them.
Consequently, the difference between the values obtained with the Weibull PDF and other
PDF is significant and should be carefully analyzed. For the extreme case corresponding
to building B073B, note that the value obtained with the Weibull PDF is 2.82 times that
obtained with the Lognormal PDF, considering all data (without eliminating outliers).
Therefore, for the collapse LS, it is suggested to consider alternative PDFs and carry out the
multi-comparative analysis for model-selection assessment. In terms of the impact of the
outlier detection methods, it can be seen that, in general, the application of these methods
tends to reduce the obtained Pc(50) values (there are some exceptions, such as archetype
B162D, where Lognormal, Gumbel, and Inverse Weibull PDFs lead to slightly larger Pc(50)
values when outliers are removed). The latter results can be explained since outliers are
usually located at the upper tail in the case of collapse LS and, thus, elimination of these
extreme values leads to fragility functions shifted to the left and, consequently, smaller
Pc(50) values.

In addition, Figure 9 shows the rates of the Pc(50) obtained with the fragility functions
after the elimination of data outliers detected with Peirce’s and leverage criteria and the
Pc(50) obtained with all the data. As seen in this figure, significant differences can be
obtained in annualized terms, especially for the Weibull PDFs, where usually the Pc(50)
obtained without the elimination of outliers is more significant than the values obtained
once outliers have been removed (since, as mentioned before, usually those outliers are
located at the upper tail of the fragility functions). For instance, in the case of the archetype
B073B and the use of the Weibull PDF, the ratio between Pc(50) values obtained with the
leverage criterion, and the total data are as small as 0.52.
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On the other hand, Figure 10 indicates the probabilities of reaching the SL LS in a
50-year time frame, PSL(50), for mid-rise and high-rise buildings. These results indicate
that, except for the Cauchy PDF, there is negligible variability in the outcomes obtained
with alternative PDFs. This fact is explained because, for SL LS, the structure remains
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essentially elastic or has very few incursions of nonlinearities. It is important to remark
that the Cauchy distribution is the worst-ranked PDF in the previous multi-comparative
analysis, and the value of 100% obtained with this PDF for PSL(50) is not consistent with
both simulated and empirical data. Since the use and evaluation of alternative PDFs have
a significantly lower impact on the SL LS compared with the collapse LS, the step of the
multi-comparative analysis for model-selection assessment could be skipped.
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Moreover, Figure 11 depicts the rates of the PSL(50) obtained with the fragility func-
tions after the elimination of data outliers detected with Peirce’s and leverage criteria and
the PSL(50) obtained with all the data. As expected, since SL is a limit state before collapse
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(presenting significantly less nonlinear behavior and, thus, less variability than collapse),
the differences between fragilities, in annualized terms, before and after outlier removal are
especially more minor, indicating that the PDF selection in this previous LS is significantly
less sensitive than in collapse LS.
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5. Conclusions

This study evaluates the numerical impacts of selecting different probabilistic models
(isolated or in combination) on the estimation of seismic risk metrics via the generation of
fragility functions and also their integration with their respective seismic hazard curves for
a set of eight Reinforced Concrete (RC) dual wall–frame buildings, whose seismic perfor-
mance simulated data have been previously obtained using incremental dynamic analyses.
Specifically, alternative (and technically valid) probabilistic models are implemented and
evaluated for (i) the identification and elimination/replacement of unusual observations
(i.e., outliers) within the simulated data; (ii) the selection and implementation of different
Probability Distribution Functions (PDFs) to estimate fragility functions for different Limit
States (LS); and (iii) the application of goodness-of-fit tests as well as information criteria to
evaluate the agreement between the proposed fragility functions and the simulated data.
Based on the results, the following conclusions can be drawn towards the analyses and
design of more resilient and sustainable built environments:

• Even though the Lognormal PDF is, by far, the most widely used PDF within
Performance-Based Earthquake Engineering (PBEE), there are other PDFs, such as
Weibull or Gamma, that are technically valid (e.g., positive-skewed distribution) to rep-
resent fragility functions, that pass goodness-of-fit tests, but that provide significantly
different adjustments in some part of the fragility functions (e.g., the Lognormal PDF
usually adjusts better to the data in the lower part of the fragility function, whereas the
Weibull PDF often adjusts better to the data in the upper part of the fragility function.
Actually, a Lognormal PDF is not always the best representation of the data).

• Even though the simulated data used in this study passed all alternative goodness-of-
fit tests, the Lilliefors test always resulted in the stricter test for the same confidence
level when compared with the Kolmogorov–Smirnov (K–S) and Anderson–Darling
(A–D) tests. It is worth noting that several studies have addressed PBEE use of the K–S,
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which is a more relaxed test that might lead to fragility functions that the Lilliefors
test could have rejected.

• Nevertheless, the use of outlier detection methods to remove unusual data and the
subsequent estimation of new parameters (when the difference between previous
and posterior parameters differs by more than 20%) is recommended by FEMA P-58;
several studies within PBEE do not even mention the application of this process. In
this study, several PDFs presented differences larger than 20% (never the Lognormal
PDF, but still showed a −19.21% difference in one case), highlighting the need to
implement these outlier detection methods. When comparing past and new estimated
parameters after the elimination of data outliers, there is no correlation between which
PDF is the one that exhibits the lower or higher variability. This variability is also not
explained by a correlation between the leverage or Peirce’s criteria.

• The leverage criterion tends to be more sensitive to the suspicious data of the lower
tails of the fragility functions. In contrast, Peirce’s criterion tends to be more sensitive
to the upper tail of the fragility functions. The latter effects might generate significant
differences, since lower values (located at the lower tail of the fragility functions)
tend to affect more annualized metrics associated with intensity measures that occur
more often. The latter explains why applying the leverage criterion exhibits the most
variability in the assessment measures.

• The use of information criteria allows the quantitative evaluation of alternative PDF
based on their adjustment to data, and there is no correlation between best-ranked
fitted functions for the eight buildings used in this study. In particular, the Cauchy
PDF is always the worst function. At the same time, the Inverse Gamma and Inverse
Weibull usually fit better after eliminating the data outlier for the case of collapse LS.
However, the Mixture PDF proposed in this study (a combination of a Lognormal PDF
and Weibull PDF from 0 to 50% and from 50% to 100%, respectively) tends to fit better
for mid-rise RC buildings for Service-Level LS.

• Finally, it is essential to highlight that even though there have been several efforts
to advance to more accurate experimental and numerical methods within PBEE to
better predict the performance of our built environment (in terms of casualties, envi-
ronmental impacts, economic losses, and downtime) fewer efforts have been placed
on assessing alternative probabilistic methods, whose impacts can be even more sig-
nificant than some differences generated by some, for instance, structural modeling
methods. Consequently, this study recommends the use of multi-comparative analyses
for probabilistic model selection (including the alternative outlier detection methods,
the PDFs, and the information criteria analyses proposed in this study, except the
Cauchy PDF) on a case-to-case basis for extreme LS, such as collapse. These extreme
LSs are characterized by large variability (high nonlinear behavior), and significant
differences are detected when applying alternative probabilistic methods. Thus, the
implementation of these computationally very low-cost intensive probabilistic meth-
ods, when compared with other computational methods used in PBEE (e.g., finite
element models or IDAs), is recommended to provide the best fitting to each particular
building-specific data set to obtain more accurate PBEE estimations. In the case of
the SL LS, since the differences obtained from applying these alternative probabilistic
methods have significantly lower impacts, the step of multi-comparative analysis for
model-selection assessment could be skipped compared with the collapse LS.
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Abbreviations

A–D Anderson–Darling
AIC Akaike Information Criteria
BIC Bayesian Information Criteria
B072B 7-story building located in seismic zone 2 on soil type B
B072D 7-story building located in seismic zone 2 on soil type D
B073B 7-story building located in seismic zone 3 on soil type B
B073D 7-story building located in seismic zone 3 on soil type D
B162B 16-story building located in seismic zone 2 on soil type B
B162D 16-story building located in seismic zone 2 on soil type D
B163B 16-story building located in seismic zone 3 on soil type B
B163D 16-story building located in seismic zone 3 on soil type D
CDF Cumulative Distribution Function
DS Damage State
EDP Engineering Demand Parameter
IDA Incremental Dynamic Analysis
IM Intensity Measure
K–S Kolmogorov–Smirnov goodness-of-fit test
Lev-C. Leverage criterion for data outlier
Lill. Lilliefors goodness-of-fit test
LS Limit State
MLM Maximum Likelihood Method
SL Service Level
PBEE Performance-Based Earthquake Engineering
Prc-C. Peirce’s criterion for data outlier
PDF Probability Distribution Function
PFA Peak Floor Acceleration
PSDR Peak Story Drift Ratio
RC Reinforced Concrete
RDR Roof Drift Ratio
Notation list
Sa(T1) Spectral acceleration ordinate at the fundamental period of the structure
P(LS|Sa(T1) ) Probability of a specific limit state conditioned on the spectral pseudo acceleration
λLS Mean annual frequency of a specific limit state
PLS(50) Probability of exceeding a specific limit state in a time of 50 years
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