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Abstract: There are thousands or even tens of thousands of satellites in Low Earth Orbit (LEO). How
to ensure the economic sustainability of LEO satellite constellation construction is an important issue
currently. In this article, we envision integrating the popular and promising Internet of Things (IoT)
technology with LEO satellite constellations to indirectly provide economic support for LEO satellite
construction through paid IoT services. Of course, this can also bring benefits to the development of
IoT. LEO Satellites can provide networks for IoT products in areas with difficult conditions, such as
deserts, oceans, etc., and Satellite Edge Computing (SEC) can help to reduce the service latency of
IoT. Many IoT products rely on Convolutional Neural Networks (CNNs) to provide services, and
it is difficult to perform CNN inference on an edge server solely. Therefore, in this article, we use
edge-distributed inference to enable the IoT services in the SEC scenario. How to perform edge-
distributed inference to shorten inference time is a challenge. To shorten the inference latency of CNN,
we propose a framework based on a joint partition, named EDIJP. We use a joint partition method
combining data partition and model partition for distributed partition. We model the data partition as
a Linear Programming (LP) problem. To address the challenge of trading off computation latency and
communication latency, we designed an iterative algorithm to obtain the final partitioning result. By
maintaining the original structure and parameters, our framework ensures that the inference accuracy
will not be affected. We simulated the SEC environment, based on two popular CNN models, VGG16
and AlexNet, the performance of our method is varified. Compared with local inference, EdgeFlow,
and CoEdge, the inference latency by using EDIJP is shorter.

Keywords: sustainability; Low Earth Orbit satellite; edge-distributed inference; Internet of Things;
joint partition; linear programming

1. Introduction

Nowadays, there are thousands or even tens of thousands of satellites in Low Earth
Orbit (LEO) [1,2]. LEO satellites operate at altitudes of 160 to 2000 km [3], and a large
number of LEO satellites can form a constellation of an LEO satellite network, providing
global coverage services for terrestrial users [4,5]. Some people suggest using it as a
key infrastructure for the upcoming 6G network and beyond [6–9]. However, the cost
of constructing an LEO satellite constellation is enormous. The cost of an LEO satellite
is approximately USD 65,000; although it is nearly 10,000 times lower than the cost of
a costly “exquisite” satellite (e.g., $650,000,000) [10], LEO satellite constellations based
on a large number of LEO satellites still face huge economic costs. For example, one of
the state-of-the-art LEO satellite networks, SpaceX’s Starlink, has over 2000 satellites in
different LEO groups currently. Furthermore, the Federal Communications Commission
(FCC) has approved Starlink to bring that number up to 12,000 [4]. Moreover, there are
many competitors in the industry for LEO satellite constellation construction; OneWeb
and O3b are another two leading enterprises in this industry [11,12]. Intense competition
drives companies to create better satellite products, which will inevitably exacerbate the
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already significant economic pressure.To ensure the economic sustainability of LEO satellite
constellation construction, people must find an effective solution to balance the revenue
and expenditure of the satellite industry.

In today’s era, the Internet of Things (IoT) technology [13] has experienced rapid
development and popularization with broad market prospects. By 2025, the number of
connected IoT terminal equipment is expected to reach 27 billion [14]. As a promising
emerging technology, IoT has been widely applied in many scenarios, such as healthcare,
transportation, smart cities, smart homes, etc., and it has achieved excellent application
performance [15–18]. While people enjoy the convenient services of IoT, they are also
paying for IoT products. IoT offers a wide range of products, covers a wide range of fields,
has a large user base, and can provide paid services. Therefore, integrating LEO satellites
with IoT services can provide economic support for LEO satellite construction and achieve
the economic sustainability of LEO satellite constellations.

Not only will the addition of the IoT technology provide economic support for LEO
satellite construction, but the global coverage of LEO satellite constellations also contributes
to the popularization of IoT technology and products. LEO satellite networks can cover
areas with difficult conditions, such as deserts, oceans, etc., which traditional terrestrial
networks cannot achieve [19,20]. IoT terminals in many industries such as transportation
(maritime, highway, railway, aviation), maritime monitoring, and farming are located in
remote areas without cellular connections [21]; the assistance of LEO satellites can help
them solve communication problems. In addition, the infrastructure of terrestrial networks
is susceptible to natural disasters such as earthquakes and hurricanes, which can cause
communication interruptions in severe cases [11]. Therefore, LEO satellite networks help
to eliminate regional restrictions on the use of IoT technology and mitigate the impact of
natural disasters on communication.

IoT products can provide economic support for LEO satellite construction, and LEO
satellite networks can expand the coverage of IoT products. In addition to the complemen-
tary relationship between the IoT and LEO satellite constructions mentioned above, the
integration of IoT and LEO satellite constellations is also a trend. In traditional ways, due
to the powerful computing and storage capabilities, cloud servers are people’s preferred
choice for providing IoT services. To complete IoT services, cloud servers must receive
raw data from terminal devices and then return services. However, the distance between
cloud servers and terminal IoT equipment is relatively long and inevitably brings high
latency, which may be unbearable for some latency-sensitive IoT applications. In addition,
the growth in data volume brought about by the development of the Internet has also
posed new challenges to the capabilities of the communication network, which has brought
more significant pressure to the cloud server form [22,23]. Recently, edge computing has
provided a solution to the above dilemma. Edge computing migrates services from remote
cloud to network edge closer to users. Therefore, applying the edge-computing paradigm
to IoT can achieve shorter communication distances and faster services [24–26]. Edge
servers are closer to users than cloud servers, so edge computing is expected to solve the
high-latency challenge brought by cloud-based service provision [27,28].

Satellite Edge Computing (SEC) is proposed as a new promising computing platform.
It uses LEO satellites as edge servers, and it has a lot of technical and theoretical support for
its feasibility [5,10,29,30]. For example, in [19], the author proposes a multi-purpose satellite,
iSat, that demonstrates the feasibility of configuring computing and storage resources on
the LEO satellite. Moreover, the latency from terrestrial stations to visible LEO satellites
can be reduced to 1–4 ms [30], which is quite friendly for latency-sensitive IoT applications.

Based on the above discussion, we imagine a way for the IoT to help the economic
sustainability of LEO satellite constellations: that is, IoT products rely on LEO satellites to
provide services. In this mode, users pay for IoT services, and IoT product providers pay
for LEO satellite service providers; the economic sustainability of LEO satellite constellation
construction will be guaranteed. However, there is a problem that must be considered,
which is that both edge servers on the terrestrial and satellites serving as edge servers
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are resource-limited, with limited computing capabilities, making it difficult to handle
complex tasks. Many IoT applications use Deep Neural Networks (DNNs), especially
Convolutional Neural Networks (CNNs) to provide Artificial Intelligence (AI) services,
such as image classification, object detection, text processing, etc. [31–33]. Complex CNN
faces significant demands for computing resources, and it generally cannot be executed by
an edge server independently. Addressing the challenges, edge-distributed inference is a
popular solution, and how to implement distributed inference in the edge environment to
shorten the inference latency is a research hotspot.

As far as we know, this article is the first work to use edge-distributed computing in the
SEC scenario. However, in the traditional edge computing scenario, there are many research
studies on distributed inference, which can provide reference for our research [34–44]. To
shorten the inference latency, a lot of schemes of edge-distributed inference have been
proposed in recent years. In these works, using model compression techniques, such as
model pruning, to achieve distributed inference disrupts the structure of the original model
and can have unpredictable impacts on the accuracy of model inference [34–36]. Building a
new deep model suitable for distributed inference requires retraining the model, increasing
resource and time costs [44]. In contrast, the method of directly performing distributed
partitioning and redeployment on the original model has been widely welcomed, as it
does not change the parameters and structure of the original model nor does it require
retraining [37–43].

Motivation. We have noticed that most existing works on distributed partitioning
CNN models have not considered how to trade off communication latency and computing
latency, but it is important to shorten the inference latency, and how to make the trade-off
is tricky. In Section 2.3, we will give a more detailed introduction to the trade-off.

Contributions. To shorten the latency of edge-distributed inference, in this article,
we propose EDIJP, which is an edge-distributed inference framework based on joint parti-
tioning. Regarding our framework, joint partitioning integrates model partitioning and
data partitioning. We used an iterative algorithm to trade off communication latency and
computing latency. The main contributions of this article are summarized as follows:

• We propose a joint partitioning scheme that effectively reduces the latency of edge inference.
• We shorten the inference latency depending on the trade-off between communication

and computing in an edge-distributed inference scene.
• To trade off the communication latency and the computing latency, we design an itera-

tive algorithm to gradually obtain distributed partitioning and deployment results.
• We validated the method’s effectiveness using the most general CNN models, VGG16 [45]

and Alexnet [46], and the CloudSim [47] simulation platform.

2. Background and Motivation

In this section, we introduce two classic distributed partitioning methods for CNNs,
model partitioning and data partitioning. In addition, we have explained the motivation of
our idea, which is to trade off the computation latency and communication latency.

2.1. Model Partitition

A DNN model consists of many network layers. After implementing model parti-
tioning on the original DNN, the original model can be split into multiple sub-models,
representing different parts of the original model and maintaining the original weight
information. As shown in Figure 1, we give a DNN sample that consists of five network
layers, and the two red dashed lines have split it into three new sub-models: we named
the three new sub-models sm1, sm2, and sm3. The sm1 sub-model is near the input end,
and sm3 is near the output end. We give the same input data to the original model and
sm1. For the original model, it would generate an output directly. For sm1, it would give
the output feature to sm2 as input data. Next, the output of sm2 will also be used by sm3
as input data. Since the new sub-models still maintain the same weight as the original
model, the output result of sm3 will be no different from the output of the original model.
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So, the model partition would not change the inference result if we retained the correct
data transmission flow.

Figure 1. Model partition.

2.2. Data Partition

Based on the dependency relationship between the output features and input features
of a network layer, we can divide the CNN network layers into two categories: partial
dependency layers and full dependency layers. The convolution layers and pooling layers
belong to partial dependency layers. We use convolution layers as an example to illustrate
the partial dependency. As shown in Figure 2a, we demonstrated the dependency per-
formance of the convolution layer. We pay attention to the blue area, input features and
convolution kernels perform convolution operations to obtain output features, so the rela-
tionship between the input feature map and the output feature map is partially dependent.
As shown in Figure 2b, we described the dependency behavior of full connection layers.
The full connection layer in Figure 2b has parameters containing three sets of vectors, each
containing ten elements. Taking a vector containing ten elements as the input, the full
connection layer will dot product each set of vector parameters with the input to obtain a
three-dimensional vector.

(a) convolution layer (b) full connection layer

Figure 2. Convolution layer and full connection layer.

The data partitioning of a network layer involves dividing its original input into
several sub-inputs. These sub-inputs are arranged to be calculated on different devices to
obtain outputs, and all outputs belonging to these devices can be seamlessly concatenated
into the original output without redundancy. Each network layer has three dimensions
for input or output: height (H), width (W), and number of channels (C). In this article,
we divide data into network layers along the height dimension. As shown in Figure 3,
we give a convolution layer data partition sample, and the number of input and output
channels is simplified to 1. Without data partitioning, the operation of this convolution
layer is shown in Figure 2a, which executes in a single device. In Figure 3, the convolution
kernel is deployed on two devices: the original input is divided into two parts, which are
used as inputs for two devices to obtain the convolution result. We record the two output
results as output1 and output2, respectively. Additionally, we record the original output
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result as output0. So, the relationship between the original output and the output after data
partitioning can be expressed as follows.

output1 ∩ output2 = ∅ (1)

output1 ∪ output2 = output0 (2)

Of course, partitioning the input data can also be transformed into partitioning the
output data, as there is a correspondence between them. Taking convolution operation as
an example, the kernel size, padding, and stride of convolution operation are denoted as k,
p, and s, respectively. If we record the input height range as [1, H1] and the output height
range as [1, H2], then the input [ins, ine] and output [outs, oute] of convolution operation in
a device satisfy the following relationships.

1 ≤ ins ≤ ine ≤ H1 (3)

1 ≤ outs ≤ oute ≤ H2 (4)

ins = (outs − 1) ∗ s − p + 1 (5)

ine = (oute − 1) ∗ s + k − p (6)

In this article, our data partitioning acts on the output data, which can better ensure
the relationships explained in Formulas (1) and (2) and avoid unnecessary duplicate
calculations, saving computing resources.

Figure 3. Data partition.

Data partitioning in partial dependency layers can achieve parallel execution, ef-
fectively reducing the execution time. However, if data partitioning is used in the full
dependency layer, similar parallel computing effects cannot be achieved because even if
partial output is obtained, the full dependency layer must use the complete original input.
The volume range of the full dependency layer depends on the parameter volume and is
independent of the input volume.

2.3. Trade-Off between Computation Latency and Communication Latency

As a type of DNN, CNN consists of many interconnection network layers. As shown
in Figure 4, we give a CNN sample that includes two convolution layers, a pooling layer,
and two full connection layers. From the perspective of the role played by the combination
of network layers in the model, we believe that CNN consists of two parts: the feature
extraction part and the classification part. The feature extraction part is responsible for
extracting the main features of the input data, while the classification part generates the
final inference result based on the extracted features. Generally, the feature extraction part
contains convolution layers and pooling layers, while the classification part contains full
connection layers. The activation layer is generally located after the three kinds of layers
and is responsible for adjusting the value scale of the intermediate data using an activation
function. In the description of this article, we classify the activation layer as the network
layer it serves rather than treating it as a separate layer. Since the activation function acts
on a single value, it does not have an impact on the structure and computation.
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Figure 4. A CNN sample consists of two convolution layers, a pooling layer, and two full
connection layers.

Using the model partition between the feature extraction part and the classification
part, the original CNN model can be divided into a feature extraction sub-model and a
classification sub-model. The convolution layer and pooling layer are both partial depen-
dency layers; the feature extraction can thus use data partition further. Moreover, there
is also a significant difference in the computing workload between the two sub-models:
the feature extraction sub-network and the classification sub-network. We measured the
computational load distribution of two classical CNNs, VGG16 and AlexNet, as shown
in Table 1. The data in Table 1 show that the computing workload of CNN is mainly
distributed in the feature extraction sub-network. So, the feature extraction sub-model
requires parallel computing to alleviate the computing pressure of a single device.

Table 1. Computing workload comparison.

Models CL a of FE b (MACs) CL of CF c (MACs)

VGG16 15.38 G 123.65 M
AlexNet 656.91 M 58.64 M

a Computing Workload; b Feature Extraction Part; c Classification Part.

Only using data partition, there are two ways to partition the feature extraction sub-
model: one is to partition the entire sub-model output, and the other is to partition each
network layer output separately. Suppose model partitioning is added to describe the
above two schemes. In that case, it can be seen as two extreme cases: performing model
partitioning at the last layer of the feature extraction sub-model and after each layer of the
feature extraction sub-model. The total inference latency contains computing latency and
communication latency. In the first case, there will be a significant amount of computational
redundancy, as obtaining the required input from the partitioned output goes through
multiple network layers. In Figure 3, we can see that there are two overlapping lines in the
input; if another layer is calculated upwards, the overlapping input of these two lines will
become overlapping output, which means the intermediate output will no longer follow
the rules of Formulas (1) and (2). The deeper the CNN, the greater the computational
redundancy. In the second case, frequent data transmission may occur between devices, as
this approach does not consider the mutual influence of states after layer partitioning.

A large amount of computational redundancy increases computation latency, while
frequent data transmission increases communication latency. To minimize the total infer-
ence latency, it is necessary to find a trade-off between the two cases—that is, to find a
trade-off between communication latency and computation latency. Overall, to distribute
the execution of CNN in an SEC environment, we used a joint partitioning scheme that
integrates model partitioning and data partitioning. Moreover, we designed an iterative
algorithm to progressively obtain joint partitioning results.
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2.4. Category

Table 2 illustrates the comparison between EDIJP and two other state-of-the-art edge-
distributed inference frameworks. CoEdge [37] achieves parallel computing by partitioning
data for each network layer. After the execution of each network layer, a synchronization
wait is performed, and then each device transmits padding data to one adjacent device to
ensure the correctness of the computation. EdgeFlow [48] also performs data partitioning
on each network layer to achieve parallel computing. Intending to shorten inference latency,
it determines the data partitioning scheme layer by layer based on the partitioning results
of the previous network layer. Both of these frameworks do not use model partitioning,
and after each network layer; there is data interaction between devices. Additionally,
CoEdge also performs synchronous waiting. Although our solution has a small amount of
overlapping computing, it greatly avoids frequent data transmission.

Table 2. Comparision of different frameworks.

EDIJP CoEdge EdgeFlow

Data partition ! ! a !
Model partition ! # b #
Synchronous waiting # ! #
Frequent communication # ! !
Overlapping computing ! # #

a involved; b not involved.

3. EDIJP Framework

In this section, we introduce the overview of the EDIJP framework and the data
transmission rule that is used with our framework.

3.1. EDIJP Overview

We divide the LEO satellites involved in distributed inference into two categories:
requester and workers. The requester is the satellite that generates the inference request, it
will give the input data, and the final inference result will also be returned to it. Workers
are all the edge satellites that are considered for distributed inference; these are responsible
for completing the tasks the requester assigns, including executing inference and data
transmission. It is worth noting that an edge satellite can be both a requester and a worker.
In once-distributed inference, there is only one requester, but there can be more than
one worker.

Distributed task partitioning and deployment algorithms should be written into the
resources of each satellite and integrated into a Joint Partition Module (JPM). We will
provide detailed explanations of the JPM module in Section 4. As shown in Figure 5, we
describe the EDIJP framework as the preparation phase and the execution phase. The
partitioning and deployment decisions will be formulated in the preparation phase through
the JPM. The JPM is integrated into every worker, and the worker who generates inference
requests is also called a requester, which will generate deployment decisions using JPM
based on the situations of computing resources and bandwidth resources. In the preparation
phase, model partitioning acts on the original model, generating several sub-models that
are executed sequentially. Data partitioning acts on the output data of each sub-model,
allowing the inference task of the sub-models to be completed in parallel by multiple
edge satellites.
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Figure 5. The EDIJP overview.

As shown in Figure 5, there are three workers in the system, names w1, w2, and
w3. The CNN model contains five network layers, which are two convolution layers
(CLs), one pooling layer (PL), and two fully connection layers (FCLs). After the model
partition, the original model is divided into three sub-models. The sub-model sm3 that
contains the two FCLs is the classification part in the original model, which will be directly
deployed to a worker without any other partition operation. The other two sub-models
are further processed by data partition, arranging the inference task to multiple workers.
After the preparation phase, the JMP generates data transmission, execution, and sub-
model information, which helps to arrange tasks for all the workers. For the convenience
of description, we have separately described the results of model partitioning and data
partitioning, but this does not mean that there is a clear order between model partitioning
and data partitioning during JPM execution.

After the requester generates a partitioning and deployment plan, the inference tasks
are distributed to the workers. At this point, the preparation phase ends and the execution
phase begins. Each worker receives and executes the assigned task, and one worker may be
assigned multiple tasks. After receiving all the required input data, the worker performs
sub-model inference and then transmits the generated intermediate data to the output
destination workers; we will describe the data transmission rule in Section 3.2.

3.2. Data Transmission between Workers

There are two workers wi and wj. In the original model, the execution of the sub-
model in wi requires the output of the sub-model in wj as input. Six situations show the
relationships between the input and output ranges of the two sub-models on two workers,
which are contained in Figure 6. We assume that the output feature range of worker wj is
[outs, oute, the input feature range of worker wi is [ins, ine], and wj needs to transmit data
to wi. In Figure 6, the two dashed lines represent the range of input data that wi wishes to
obtain. If the range indicated by the dashed lines exceeds the output range of wj, such as
Figure 6e,f, it indicates that wj does not need to transmit data to wi. The data range sent
from wj to wi follows the following equations.

transs = max{outs, ins}, (7)

transe = max{oute, ine}, (8)

[transs, transe] is the data transmission scale from wj output to wi. If transe < transs, there
is no data transmission between the two workers.
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(a) (b) (c)

(d) (e) (f)

Figure 6. Data transmission situations. The sub-figures correspond to six relationships between
the wj output range and wi input range. In sub-figures (a–d), wj needs to transmit the output data
between two dashed lines to wi; in sub-figures (e,f), wj need not to transmit output data to wi.

4. Joint Workload Partition Moudle

In this section, we introduced the inherent logic of JPM completing distributed par-
titioning and deployment, including linear programming modeling for data partitioning
problems, the initialization algorithm, and the iterative partition algorithm.

4.1. Problem Formulation

Under the paradigm of SEC, we assume that the distributed environment consists of M
workers, which can be represented as W = {w1, w2, . . ., wM}. We use P = {p1, p2, . . ., pM}
to record the computing power of all workers, where the computing power of worker wi is
numerically represented as pi, i ∈ [1, M]. The out-bandwidth of workers is represented by
a set B = {b1, b2, . . ., bM}, where bi represents the out-bandwidth of worker wi, i ∈ [1, M].

We focus on a single sub-model that consists of N partial dependency layers, such as
convolution layers and pooling layers. The network layers in the sub-model can be rep-
resented as L = {l1, l2, . . ., lN}. The set WL = {wl1, wl2, . . ., wlN} contains the computing
workload of all the network layers, where wln represents the computing workload of the
layer ln. We obtain the WL using the ptflops tool. As stipulated in Section 3.2, we use H to
represent the original input feature height of each network layer, and [transs, transe] can
describe the data transmission situation from wj to wi.

We use a data partition to split the output data of this sub-model. The data partitioning
is represented by X = {x1, x2, . . ., xM}; xm is the proportion of the output data of worker
wm to the original output data of the sub-model. To ensure that X is an effective data
partition, X must comply with the following constraints, Formulas (9) and (10), ensuring
that the sub-model output can be concatenated into the original output by all workers.

0 ≤ xi ≤ 1, i = 1, 2, . . ., M (9)

M

∑
i=1

xi = 1, i = 1, 2, . . ., M (10)
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We note that the inference completion time for this sub-model on the worker wi is Ti,
and Ti can be calculated using the following Equation (11).

Ti = Ttrans(j,i) + Ti
comp, (11)

where Ttrans(j,i) represents the transmission time of input data from the requester wj to
worker wi, and Ti

comp represents the execution time at worker wi. The inference completion
time of the sub-model on the worker is equal to the time it takes for the worker to obtain
the required input data plus the worker’s execution time.

The transmission time from device j to device i can be computed as (12), where Dj,i
is the volume of data transmitted from wj to wi. In a 64-bit system, a float32 number
occupies 4 Bytes. Assuming the input feature’s width and number of channels are α and µ,
respectively, the calculation of Dj,i is shown in Equation (13).

ttrans(j,i) =
Dj,i

Bj,i
, (12)

Dj,i = (transe − transs) ∗ α ∗ µ ∗ 4, (13)

The computation time of worker wi for the sub-model is denoted by ti
comp; we obtain

it using (14).

ti
comp =

xi × ∑N
j=1 wlj

pi
(14)

Our goal is to minimize the sub-model’s inference latency, which is equal to the latest
time for all workers to complete the sub-model. Therefore, we build an optimization
objective as (15).

min
x

λ

s.t. Ti ≤ λ, i = 1, 2, . . ., M;

Constraints (9) and (10).

(15)

The optimization problem (15) is a Linear Programming (LP) problem, and it is an
NP-complete problem [49]. In this article, we use the Mosek tool to solve the linear
programming problem in the Python environment.

4.2. Algorithm Design

To obtain a distributed partitioning and deployment solution, we adopted the initial-
ization algorithm and the iterative partition algorithm. Using the initialization algorithm,
we obtain the original partition for the feature extraction part and the execution worker for
the classification part. Using the iterative partition algorithm, we further implement the
joint partition strategy on the feature extraction part, striving for a shorter inference latency.

4.2.1. Initialization

When the original CNN is divided into multiple sub-models by the model, each
sub-model is parallelly executed on multiple workers due to data partitioning. The in-
ference completion time of a sub-model on any one worker wi is calculated as shown in
Formula (16),

Ti =
M

max
j=1

{Tj + Ttrans(j,i)}+ Ti
comp, (16)

where Ttrans(j,i) represents the transmission time of input data from worker wj to worker wi,
and Ti

comp represents the execution time at worker wi. Because all workers may transmit
data to wi as input data for the sub-model in wi, we take the final time when all workers
transmit data to wi in this round as the starting time for wi to perform sub-model inference.
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As the CNN model can be divided into the feature extraction part and classification
part, we consider the feature extraction sub-model, denoted by EM, as the initial model
that needs to be further partitioned, and the classification sub-model, denoted by CM,
needs a worker wk to execute it. As shown in Algorithm 1, we first solve the optimization
objective (15) for EM and obtain the data partition for the output feature of EM. Then, we
use a traversal method to obtain k, which is the deploy worker number for the classification
sub-model.

Algorithm 1: Initialization Algorithm
Input: M: CNN model;
WL: computing workload set;
M: the number of workers. B: out-bandwidth set;
P: worker computing power set P = {p1, p2, . . .pM};
Output: X = {ẋ}: the initial partition set;
k: the number of workers that execute the classification sub-model.

1 Split M into feature extraction sub-model EM and classification sub-model CM;
2 Solve the problem (15) for EM, obtain the data partition result ẋ and the inferred

completion time of EM on each worker;
3 Initial total inference latency of M as T̂ = Infinity;
4 for i in (1,M) do
5 Ti = maxM

j=1{Tj + Ttrans(j,i)}+
wlCM

pi
;

6 if Ti<T̂ then
7 T̂ = Ti;
8 k = i;
9 end

10 end
11 return X, k, T̂.

4.2.2. Iterative Partition

After Algorithm 1, we obtain the initial data partition ẋ of EM. We further implement
joint partitioning on EM based on X to obtain a shorter inference latency. We adopt an
iterative Algorithm 2 to gradually obtain the final partition result.

Based on X generated from Algorithm 1, we can give the EM an initial partition. We
assume that the network layers number of EM is N̆. As shown in Algorithm 2, we traverse
the network layers from layer N̆ to layer l1, treating layer l1 to the current layer, which we
named as lc, as a sub-model for data partitioning, solving the optimization objective (15),
and obtaining a new partition x and a new total inference time T using Equation (16). If the
new inference time T is smaller than T̂, x will be retained, and the layer number lc will also
be recorded. Otherwise, no operation is performed, and we continue to traverse forward.
Perform the above steps until reaching layer l1; then, the iteration is reached, and the final
partition result X is obtained. We can deploy all the sub-models by X, Y, and k.
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Algorithm 2: Iterative Partition Algorithm
Input: M: CNN model;
N̆: the number of EM;
WL: computation workload set;
B: out-bandwidth set;
P: computing power set;
X: the initial partition set from Algorithm 1;
Y={N̆}: the initial layer set used to contain all the end layer numbers of
sub-models;
T̂: current inference latency;
T: record for new inference latency.
Output: X, Y

1 for c in (N̆,1) do
2 Solve problem (15) for sub-model containing layers [l1, lc] to obtain x;
3 consider x, compute new inference latency T using Equation (16);
4 if T<T̂ then
5 T̂ = T
6 x insert to X;
7 c insert to Y;
8 end
9 end

10 return X, k, T̂.

4.2.3. Complexity

The LP problem is an NP-complete problem [49]; there are a lot of algorithms to solve
the LP problem [50]. In the worse case of solving the LP problem, the time complexity
of using Input Sparsity Time algorithms [51] is O(n2.5L), and that value would be O((n +
d)1.5nL) using Vaidya’s 89 algorithm [52], where d is the number of constraints, n is the
number of variables, and L is the number of bits. In the 64-bit operating system, using
the float32 form, the value of L is 32. For our optimization objective (15), the number of
variables is the workers’ number M, and the number of constraints is 2+M. So, we can view
the time complexity of solving the LP problem (15) as O(M2.5) approximately. Generally,
the time complexity of solving the maximum problem is O(logn), where n is the scale of
the problem. The time complexities of the other operations in our algorithms, such as split,
assignment, and insert, are all O(1). Therefore, we can calculate the time complexity of the
two algorithms in this article, the time complexity of Algorithm 1 is O(M2.5 + MlogM),
and the time complexity of Algorithm 2 is O(N̆(logM + M2.5)), where N̆ is the number
of network layers in the feature extraction part, and M is the number of workers. The
time complexity values of Algorithm 1 and Algorithm 2 can be simplified to O(M2.5) and
O(N̆M2.5), respectively. Overall, the time complexity of the method proposed in this article
is O(N̆M2.5).

5. Evaluation

In this section, we explain the experimental setup and the experimental results to
demonstrate the effectiveness of our EDIJP framework.

5.1. Experimental Setup
5.1.1. Prototype

In this experiment, we simulated the SEC environment using CloudSim [47], which is
an open-source simulation platform for the cloud computing environment. We have made
some modifications to CloudSim from the source code to make it suitable for the research
environment of this article.
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We consider an SEC network with 60 LEO satellites, and it can provide 5 LEO satellites
as workers for edge-distributed inference one time. Given the limited size, each LEO satel-
lite is attached with lightweight accelerators, such as NVIDIA Jeston Orin NX [21,53]. We
obtained the computing power of an NVIDIA Jeston Orin NX using the method mentioned
in [37]. Considering the inconsistent computing power of edge servers, we use one-fifth of
the obtained value as the computing power of a CPU core in edge servers and control the
CPU core number of each worker to an integer between 2 and 10 randomly. We control
the out-bandwidth for each worker between 1000 and 2000 MB/S [54]. We selected five
out-bandwidth values, 1000 MB/S, 1250 MB/S, 1500 MB/S, 1750 MB/S, and 2000 MB/S,
and randomly assigned them to the five workers. Therefore, by fixing a worker as the
requester, it can avoid randomness and make the environment configuration more realistic.
Table 3 shows the parameters of our simulation environment.

Table 3. Environment parameters.

Workers Cores Number Out-Bandwidth (MB/S)

worker 1 3 1500
worker 2 9 1750
worker 3 7 1250
worker 4 5 2000
worker 5 7 1000

5.1.2. Methodology

Based on the initialization Algorithm 1 and iteration Algorithm 2, we obtain the
distributed deployment plan using Python 3.6 and then obtain simulation results on
the CloudSim platform. We adopt two pre-trained PyTorch models from the ImageNet
database, VGG16 and Alexnet, as the CNN models of our experiments. The ptflops tool
is used to obtain their MACs, which is not only for the whole model but also for each
network layer. The computation workload distribution is shown in Figure 7. We set
the workload as the image classification task on one ImageNet [55] image. The average
inference latency, computation intensity, and transmission intensity of one hundred runs
are taken as the results.

(a) VGG16 (b) AlexNet

Figure 7. This is the computing workload distribution of VGG16 and AlexNet. We use two colors to
differentiate the network layers that belong to the feature extraction part and the classification part,
blue and yellow. The computing workload of the feature extraction part is significantly higher than
that of the classification part.

5.1.3. Baseline Methods

In the evaluation, we use two typical state-of-the-art frameworks and a local approach
as our baselines. (1) CoEdge [37]. CoEdge achieves parallel computing by partitioning input
data for each network layer. After the execution of each network layer, a synchronization
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wait is performed, and then each device transmits padding data to one adjacent device to
ensure the correctness of the computation. (2) EdgeFlow [48]. EdgeFlow also performs data
partitioning on each network layer to achieve parallel computing. To shorten the inference
latency, it determines the data partitioning scheme layer by layer based on the partitioning
results of the previous network layer. (3) Local. The local approach executes the whole
inference task at the requester.

5.2. Evaluation Result
5.2.1. Inference Latency Comparison

Our research goal is to shorten inference latency using edge-distributed inference, so
inference latency is the most reflective indicator of our method’s performance. Based on
the image classification service, we obtained inference latencies of VGG16 and AlexNet
using our method and three benchmark methods.

As shown in Figure 8, compared to the other three benchmark algorithms, we can
see that our method EDIJP can obtain a shorter inference latency. For the execution of
AlexNet, compared with the local approach, the inference latency of EDIJP has decreased
by 56%, and compared to EdgeFlow [48] and CoEdge [37], the inference latency of EDIJP
has decreased by 33% and 50%, respectively.

(a) VGG16 (b) AlexNet

Figure 8. The comparison result of inference latency.

5.2.2. Workload Deploy and Data Transmission

Due to the heterogeneity of satellite hardware resource allocation, different workers’
computing power and out-bandwidth vary. Generally speaking, workers with stronger
computing power should bear more of a computing workload. In contrast, workers with
higher out-bandwidth should transmit greater data volumes to synchronize inference
processes among workers and minimize the idle time of each worker as much as possible.
To observe and analyze the relationship between computing workload deployment and
workers’ computing powers, as well as the relationship between data transmission volume
and worker out-bandwidth, we separately calculated the computing workload distribution
and data transmission situation for VGG16 and AlexNet using our method, EdgeFlow,
and CoEdge.

When analyzing the relationship between computing workload distribution and
worker computing power, we normalize the environmental configuration; the detailed
calculation process is shown as (18). It is worth noting that when calculating the workload,
we use the input height Hin of the network layer; when calculating the data transmission
volume, we use the output height Hout of the network layer.

ζi =
∑N

j=1
hj

i
Hin

N
, (17)
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ζ̄i =
ζi

∑M
j=1 ζ j

, (18)

In (17), ζi is the average proportion of computing workload allocated to worker wi at
each layer, while hj

i is the input height of wi in layer lj for executing a sub-model. According
to ζi, i = 1, . . ., M, a vector ζ = {ζ1, . . ., ζM} containing the average computing workload
proportion of each worker per layer can be obtained. We use (18) to normalize the vector ζ.
Similarly, we can standardize the computing power of each worker using (19); η̄

p
i is the

standardized worker’s computing power.

η̄
p
i =

pi

∑M
i=1 pi

, (19)

As shown in Figure 9, it is evident that the computation workload distribution obtained
by our method is more in line with the computing power distribution of the worker.

(a) VGG16 (b) AlexNet

Figure 9. The computing workload distribution and workers’ computing power distribution.

Like our logic of analyzing computation workload distribution and worker computing
power, we analyze the relationship between data transmission volume and worker out-
bandwidth. In (20), ξi is the average ratio of the volume of data output from the worker wi

to other workers at each layer to the total output data volume. hj
i is the height at which

the worker outputs to other workers in layer lj, as the data transmission from the worker
to itself does not involve bandwidth and can be ignored. (21) and (22) are standardized
operations, just like standardizing the distribution of computation workload. ξ̄i (21) is the
standardized value of the worker’s output data volume, and ϑ̄b

i in (22) is the standardized
value of the worker’s out-bandwidth.

ξi =
∑N

j=1
hj

i
Hout

N
, (20)

ξ̄i =
ξi

∑M
j=1 ξ j

, (21)

ϑ̄b
i =

bi

∑M
i=1 bi

, (22)

As shown in Figure 10, we have explained the relationship between the output data
volume of the worker and its out-bandwidth. Based on our method, we can see that the
volume of data output generated by workers is most closely aligned with its out-bandwidth.
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(a) vgg16 (b) alexnet

Figure 10. The data transmission distribution and the workers’ out-bandwidth distribution.

5.2.3. Latency Iteration

We use an iterative algorithm to gradually obtain an effective partitioning and deploy-
ment strategy to shorten a CNN model’s inference latency. To study the decline curve of
inference latency during the iteration process, we record the inference latency values during
one iteration process, as shown in Figure 11. From Figure 11a, it can be seen that for VGG16,
compared to the network layers located at the front, our method believes that the network
layers located near the end are more suitable as cutting points for model partitioning. From
Figure 11b, we can see that our method does not have the same preference for cutting
points for AlexNet as for VGG16.

(a) VGG16 (b) AlexNet

Figure 11. The latency iterations of VGG16 and AlexNet.

6. Related Work

In this section, we conducted a theoretical analysis of the existing research on acceler-
ating the DNN inference of edge-distributed inference. To the best of our knowledge, there
is no research on edge-distributed inference in the SEC, so we analyzed the related works
in terrestrial edge computing.

To accelerate the inference of DNN, there is a work to achieve the distributed DNN
inference using pruning [44]. In [44], the authors use a class-aware pruning scheme [56] to
trim the original DNN so that the new model small DNN (SNN) can only cover a portion
of the original output categories. Using this principle, the author obtains several SNNs
for distinguishing output categories based on the original DNN, which are deployed on
multiple edge servers and collaborate to obtain inference results that can fully cover the
category range of the original output. However, changing the parameters and structure of
the original model can easily have unpredictable impacts on the inference accuracy.
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There is also a method that proposes a loosely coupled CNN structure to fundamen-
tally solve the problem of distributed deployment [42]. In [42], the authors designed a
new loosely coupled structure (LCS) to adapt the distributed CNN inference. However,
this approach faces the need for retraining new models, requiring different parameters for
different purposes and corresponding to different datasets, which is a huge consumption
of computing resources and time.

The method that distributed partition DNNs effectively avoids the challenges brought
by the above two methods. Distributed partitioning and the deployment of DNNs can take
place without changing the structure and parameters of the original model, and it does
not need to retrain the model [38,41,57–59]. In [41], the authors deploy workload in a dis-
tributed manner based on network layer types. They use an input partition for convolution
layers and a weight partition for full connection layers. BiasedOne-Dimensional Partition
(BODP), Modified Spectral Co-Clustering (MSCC), and Modified Spectral Co-Clustering
(MSCC) are proposed as adjuncts. In [38], the authors propose an Fused Tile Partitioning
(FTP) method to parallelize the convolution operation; it can divide the feature maps
of each layer into small tiles in a grid fashion. Both [57,58] rely on Deep Reinforcement
Learning (DRL). In [57], the authors search for an optimal partition location for each layer
volume using the Layer Configuration-based Partition Scheme Search (LC-PSS). For a
layer volume splitter, they model the split process as a Markov Decision Process (MDP)
and use DRL to make optimal split decisions. In [58], the authors use DRL techniques to
assist in task allocation in edge-distributed inference. Modeling the partition process as
MDP, DRL agents use inference latency and layer configuration as the rewards and states,
and then the optimal segmentation decisions for each layer volume are made one by one.
In [59], the authors use a host edge server to configure multiple secondary edge servers,
and the overlapping zone of sub-tasks on the secondary edge servers is executed on the
host edge server.

Considering that these distributed partitioning studies did not consider the trade-
off between communication latency and computation latency, which is important for
shortening inference latency and trick, we propose the EDIJP framework. Our proposed
framework is based on joint partitioning for distributed deployment. We model the data
partition problem as an LP problem and design an iterative algorithm to achieve the trade-
off of communication latency and computation latency so that the inference latency can be
shortened as much as possible.

7. Conclusions

To ensure the economic sustainability of the LEO satellite constellation building, we
propose to integrate the IoT and LEO satellites, using the payment services of IoT to in-
directly provide economic support for the LEO satellite construction building. Many IoT
products require CNN to provide services. To solve the distributed deployment problem of
CNNs in SEC and shorten the inference latency, we propose the EDIJP framework. We pro-
pose a joint partition approach that combines model partition and data partition. We model
the data partition problem as an LP problem and propose an iterative algorithm to trade off
communication latency and computation latency, achieving the goal of shortening inference
latency. To comprehensively analyze and observe the performance of EDIJP, we designed a
series of comparative experiments. However, our method still has limitations that cannot
be extended to all types of DNNs, which is the improvement direction we need to focus on
in the next step. In addition, we should further explore the characteristics of SEC and push
the development of IoT in satellite constellations based on edge-distributed inference.
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