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Abstract: The meticulous monitoring and diagnosis of faults in photovoltaic (PV) systems enhances
their reliability and facilitates a smooth transition to sustainable energy. This paper introduces a novel
application of deep learning for fault detection and diagnosis in PV systems, employing a three-step
approach. Firstly, a robust PV model is developed and fine-tuned using a heuristic optimization
approach. Secondly, a comprehensive database is constructed, incorporating PV model data alongside
monitored module temperature and solar irradiance for both healthy and faulty operation conditions.
Lastly, fault classification utilizes features extracted from a combination consisting of a Convolutional
Neural Network (CNN) and Bidirectional Gated Recurrent Unit (Bi-GRU). The amalgamation of
parallel and sequential processing enables the neural network to leverage the strengths of both
convolutional and recurrent layers concurrently, facilitating effective fault detection and diagnosis.
The results affirm the proposed technique’s efficacy in detecting and classifying various PV fault
types, such as open circuits, short circuits, and partial shading. Furthermore, this work underscores
the significance of dividing fault detection and diagnosis into two distinct steps rather than employing
deep learning neural networks to determine fault types directly.

Keywords: photovoltaic (PV) system; fault detection; fault classification; deep learning; Convolutional
Neural Network (CNN); Bidirectional Gated Recurrent Unit (Bi-GRU); PV modeling

1. Introduction
1.1. Motivation

The global energy landscape is undergoing a significant transformation, placing a
growing emphasis on renewable energy sources (RESs) to mitigate carbon emissions and
address climate change. The World Energy Transitions Outlook 2023 by IRENA underscores
the pressing need for bold, transformative measures to expedite the global energy transition.
By 2030, the installed capacity of renewable power must expand nearly fourfold to propel
the world toward this transition [1]. Within the field of RESs, solar photovoltaic (PV)
energy plays a pivotal role in shaping a more sustainable future. As of early 2022, the
global installed PV capacity surpassed the Terawatts threshold, constituting two thirds
of the projected increase in global renewable capacity for 2023 [2]. Moreover, PV remains
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the most cost-effective option for new electricity generation in numerous countries, with
anticipated reductions in generation costs by 2024 [3].

PV systems are susceptible to various types of faults, from temporary to permanent
failures, and these faults can potentially have significant impacts on system performance
and safety. Thus, the early detection of defects and their diagnoses are crucial for ensuring
the long-term reliability and sustainable operation of the entire PV system. In the literature,
diverse fault detection and diagnosis methods have been proposed, each varying in speed,
complexity, sensor requirements, and the ability to identify types of faults.

1.2. Literature Review

In recent years, in contrast to standard model-based fault detection procedures [4–6],
which involve simulating the PV installation’s performance and comparing the simulated
output power with the monitored one, machine learning (ML) and deep learning (DL) tech-
niques have gained popularity and are considered promising solutions for fault detection
and diagnosis in PV systems. Numerous studies have evaluated the effectiveness of ML and
DL approaches in fault detection and diagnosis in PV systems. For instance, Belaout et al.
developed a multiclass adaptive Neurofuzzy technique for fault detection and diagnosis in
PV systems [7]. This algorithm can detect partial shading conditions, increased series resis-
tance, faulty bypass diodes, and PV module short circuit faults. However, this technique
cannot detect short circuits or defective strings under varying weather conditions. Madeti
and Singh introduced an algorithm based on k-nearest neighbors (KNN) for real-time fault
detection in PV systems, demonstrating its capability to detect and classify open-circuit
faults, line-to-line faults, and partial shading faults [8]. However, it is worth noting that the
method, while computationally efficient, is not flawless in terms of accuracy. Chen et al.
proposed an intelligent fault detection approach based on I-V characteristics, utilizing an
emerging kernel-based extreme learning machine. This method exhibits high accuracy in
detecting and classifying faults in PV arrays [9]. Bendary et al. proposed two adaptive
neuro-fuzzy inference system (ANFIS)-based controllers to address cleaning, tracking, and
faulty issues in PV systems [10]. This method relies on associating actual measured values
of current and voltage with trained historical values for these parameters, accounting
for ambient changes in conditions, including irradiation and temperature. Syafaruddin
et al. suggested a simple and fast method based on several artificial neural networks
(ANNs) capable of independently identifying the short-circuit location of PV modules in
one string [11]. Garoudja et al. introduced a fault detection and diagnosis approach based
on a Probabilistic Neural Network (PNN), which was tested using noisy and noiseless
data [12]. Similarly, Vieira et al. proposed a fault detection method combining PNN with
a Multilayer Perceptron algorithm. The process does not necessitate extensive datasets
from pre-existing systems and primarily focuses on detecting short-circuited modules
and disconnected strings [13]. While the results derived from the use of these machine
learning approaches are promising, they also exhibit drawbacks, particularly with respect
to extensive databases leading to overfitting. Furthermore, machine learning methods
present limitations in representing features of complex high-dimensional data [14].

Deep learning (DL) has emerged as the next generation of machine learning, gaining
considerable attention for its prowess in pattern recognition, data mining, and knowledge
discovery. Its notable advantage lies in its capacity to learn high-level abstract features
from substantial datasets, which is particularly beneficial for classification problems [15].
Liu et al. introduced a fault diagnosis method for a PV array utilizing stacked auto-encoder
(SAE) and clustering. This approach mines inherent I-V characteristics, enabling automatic
feature extraction and fault diagnosis [16]. Similarly, based on output I-V characteristic
curves and input ambient condition data, a novel deep residual network (ResNet) based
on an intelligent fault detection and diagnosis approach was proposed by Chen et al. [17].
Gao and Wai presented a fault identification method for PV arrays, employing a model
that combines a Convolutional Neural Network (CNN) and residual gated recurrent unit
(ResGRU) to observe differences in I-V curves under various fault conditions, achieving a
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classification accuracy of 98.61% [18]. Eldeghad et al. proposed a deep learning technique
optimized via a particle swarm optimization (PSO) heuristic combination algorithm for
fault diagnosis in PV systems. This algorithm exhibited good results in fault detection
and is promising for enhancing system efficiency, reliability, and safety [19]. Appiah
et al. leveraged long short-term memory (LSTM) to extract fault features, subsequently
inputting them into the softmax regression classifier for fault detection and diagnosis [20].
Integrating DL with Infrared Thermography (IRT) for fault diagnosis in PV systems is
another alternative, as presented in [21]. This study’s results show that the IRT-DL approach
outperforms other IRT-ML methods in accuracy and classification. However, the utilization
of IRT for fault detection in PV systems is confronted by enduring challenges. These
challenges encompass constraints associated with surface defects, vulnerability to dynamic
system conditions, heightened equipment expenses, and limitations in detecting specific
fault types.

1.3. Contribution

This paper aims to contribute to advancing fault detection and diagnosis methods for
PV systems, focusing on improving reliability, efficiency, and safety. This novel approach
integrates a Convolutional Neural Network (CNN) and Bidirectional Gated Recurrent
Unit (Bi-GRU) within a deep learning framework. This unique combination of parallel
and sequential processing empowers the neural network to harness the strengths of both
convolutional and recurrent layers simultaneously, facilitating effective fault detection and
diagnosis. Unlike previous methods (existing in the literature and described above), which
rely on I-V curves, the proposed approach utilizes dynamic PV system outputs at maximum
power points (MPPs), which are more accessible to obtain for most PV systems, overcoming
the challenges associated with accurate I-V curve measurements. The methodology uses an
accurate PV model to create reliable databases representing PV system operation in healthy
and faulty states. One year of monitored data from an actual PV installation in Czechia
was used to calibrate the Sandia Array Performance Model (SAPM) PV model and validate
the proposed fault detection and diagnosis procedure.

The remainder of this paper is organized as follows: Section 2 describes the chosen case
study and the approach employed for PV modeling, followed by an in-depth explanation
of the proposed fault detection methodology and the metrics utilized for its assessment.
Section 3 presents the results acquired from PV modeling and the evaluation of the sug-
gested fault detection procedure. Section 4 delivers a comparative analysis, contrasting the
proposed method with existing approaches. The conclusions that can be derived from this
work are summarized in Section 5.

2. Materials and Methods
2.1. Experimental Setup

The PV system used in this study comprises frameless Glass–Glass Cadmium Telluride
(CdTe) thin-film PV panels installed on an experimental house in Buštěhrad, Czechia. The
PV panels were seamlessly integrated into the east and west sides of the pitched roof,
replacing the standard tiles (Figure 1). The total size of the PV system is equal to 3.84 kW.
It is connected to four APsystems YC1000-3 three-phase microinverters. Each side of
the roof contains 24 panels connected to two microinverters, and each microinverter has
four channels connecting one string composed of three PV modules. The PV system’s
outputs, namely current (Impp), voltage (Vmpp), and power (Pmpp) at the maximum power
point, have been monitored for every channel in a five-minute timestep since October 2018.
There are two Si-RS485TC-2T-MB irradiance sensors (for both east and west) with external
temperature sensors glued to the back side of PV modules used for monitoring the solar
irradiance (G) and module temperature (Tm) in a one-minute resolution. The proposed
fault detection and diagnosis procedure was validated using one year of measured data
from the east side of the roof. Tables 1 and 2 summarize the characteristics of the selected
PV generator and the PV panel data, respectively.
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Figure 1. PV system used to validate the proposed fault detection procedure.

Table 1. Summary of the characteristics of the selected PV generator.

Main Parameters PV System (East Roof)

PV size 1.92 kW
Inverter nominal power 2 × Microinverter 1 kW

Num. modules per inverter 12
Num. modules in series (Ns) 1
Num. strings in parallel (Np) 3 × 4

Tilt–Azimuth 30◦–9◦ East

Table 2. PV module electrical data.

Parameter Pmp
(W)

Isc
(A)

Voc
(V)

Imp
(A)

Vmp
(V)

βVoc
(%/◦K)

αIsc
(%/◦K)

Value 80 2.38 59.4 2.03 43.2 −0.21 0.03

2.2. PV Modeling and Database Creation

Developing a high-quality database that precisely outlines the operation of a PV
system is essential for effective fault detection and diagnosis. Therefore, it is imperative
to have a dependable simulation model that accurately depicts the system’s behavior in
both standard and faulty conditions. The Sandia Array Performance Model (SAPM), an
empirical model from Sandia National Laboratories [22], was chosen in this work for its
simplicity and reliability in precisely characterizing and simulating PV array performance.
The model demonstrated notable accuracy during extensive validation across modules of
diverse technologies, as emphasized in [23]. Estimations of the PV array outputs—current
(Impp), voltage (Vmpp), and power (Pmpp) at the maximum power point (MPP)—are directly
facilitated through the following equations:

Impp = Np

[
Imp(C0Ee + C1Ee2)

(
1 + αImp(Tm − T∗

m)
)]

(1)

Vmpp = Ns

[
Vmp + C2Nscδ(Tm)ln(Ee) + C3Nsc(δ(Tm)ln(Ee))2

+βVmpEe(Tm − T∗
m)

] (2)

δ(Tm) = nk(Tm + 273.15)/q (3)

Ee =
G
G∗ (4)

Pmpp = Impp × Vmpp (5)
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where Imp (A) and Vmp (V) represent the PV module current and voltage under Standard
Test Conditions (STCs). The coefficients C0 and C1, dimensionless and empirically deter-
mined, relate Imp to the effective irradiance. The normalized temperature coefficient for Imp
is denoted as αImp (◦C−1), while C2 (dimensionless) and C3 (V−1) are empirical coefficients
linking Vmp to the effective irradiance (Ee). Additionally, Nsc is the number of cells in a
PV module, δ(Tm) represents the thermal voltage per cell at temperature Tm, q denotes the
elementary charge (1.60218 × 10−19 coulomb), n is the ideality factor, k is the Boltzmann’s
constant (1.38066 × 10−23 J/K), and βVmp (V/◦C) stands for the temperature coefficient for
module Vmp at STC.

The SAPM encompasses various coefficients and parameters (C0, C1, C2, C3, n, αImp,
and βVmp) that are unknown, as the PV module’s manufacturer does not typically provide
them. These parameters are commonly derived through testing and actual measurements
of PV modules/arrays under static and dynamic conditions. The parameter extraction
technique employed in this work aligns with the approach detailed in [23], as it involves
using the artificial bee colony (ABC) optimization algorithm. This algorithm assesses the
model parameters for PV arrays operating in real-world conditions, utilizing daily profiles
of solar irradiance and module temperature and monitored DC output current and voltage
profiles. The optimization process aims to minimize the objective function, defined as the
root mean square error (RMSE) in Equation (6), where θ = f (C0, C1, C2, C3, n, αImp, and
βVmp), N denotes the length of measured data, and Vi and Ii represent the measured voltage
and current at data point i, respectively.

S(θ) =

√√√√ 1
N

N

∑
i=1

[Ii − I(Vi, θ)]2 (6)

The finalized PV system model forms the foundation for constructing databases that
comprehensively capture the system’s performance under outdoor conditions. This model
is instrumental in generating datasets encompassing optimal operation and intentionally
simulated defects, utilizing yearly solar irradiance and module temperature profiles. The
simulated scenarios, reflecting common issues in grid-connected PV systems, are outlined
below and depicted in Figure 2:

• Healthy system: This scenario represents the normal operation of the PV system
without any anomalies.

• Three short-circuited modules: This case involves disconnecting one channel of the
microinverter.

• Six short-circuited modules: In this situation, two channels from one microinverter are
disconnected.

• Nine short-circuited modules: This scenario entails having three channels of one
microinverter disconnected.

• Open-circuit faults: A situation where one microinverter of the PV system becomes
non-functional.

• Shading faults: This scenario replicates the effects of partial shading experienced
by PV systems due to factors such as cloud movement or the presence of nearby
objects during specific times. It includes different shading on various days and hours
throughout the year.

The resulting databases encapsulate three crucial attributes—irradiance, temperature,
and the output power at the maximum power point (MPP)—extracted from each simulated
operational scenario.
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Figure 2. A simple representation of the layout of the PV system, along with the faults considered in
this study.

2.3. Fault Detection and Diagnosis Procedure

The primary objective of this study was to establish a robust and reliable fault detection
and diagnosis procedure for PV systems through combining Convolutional Neural Network
(CNN) and Bidirectional Gated Recurrent Unit (Bi-GRU) deep learning techniques. This
subsection starts with a general description of CNNs and Bi-GRUs. Then, the proposed
hybrid model-based fault detection is detailed. Finally, it provides the evaluation metrics
used to assess the performance of the proposed technique.

2.3.1. Convolutional Neural Network (CNN)

CNNs are a supervised and specific class of deep learning (DL) algorithms [24]. They
differ from classical neural networks by using convolution in layers instead of matrix
multiplication. A CNN is composed of two parts: the feature extractor part and the
classifier part. The first part contains input layers, convolutional layers (CLs), and pooling
layers (PLs), stacked layer by layer in the network as feature extractors. The input data
matrix is passed through a progression of filters, creating new features called feature maps.
Then, the convolution maps are flattened and concatenated into a CNN code feature vector.
This CNN code at the output of the convolutional part is then associated with the input of
a second part made of fully connected layers (multilayer perceptron). The classifier part is
dedicated to classification and comprises fully connected (FC) layers and an output layer.
The FC layers receive the features obtained by the last pooling layer as the input. The
output is the last layer with one neuron per category [25]. The utilization of Conv1D layers
in our model reflects the leveraging of CNNs for feature extraction, tailored explicitly to
datasets showcasing spatial structures. CNNs excel in unraveling spatial relationships and
subtle networks inherent in data, as mirrored by the Conv1D layers in our model. This
capability is pivotal in comprehensively understanding fault evolution and manifestation
within the PV system, aligning seamlessly with the model’s architectural implementation.
The general architecture of a CNN is depicted in Figure 3.
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2.3.2. Gated Recurrent Unit (GRU)

The GRU stands out as a special Recurrent Neural Network (RNN) variant originally
proposed by Cho et al. [26]. Tackling the issue of gradient vanishing inherent in traditional
RNNs, GRU combines the memory function of long short-term memory (LSTM) while
exhibiting faster execution due to a reduced parameter count in the training process [27].
The GRU unit incorporates two gates—the reset gate and the update gate (as illustrated in
Figure 4)—to regulate information transmission.
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The update gate determines how much the prior hidden layer state (ht − 1) is preserved
in the current hidden layer state (ht). It processes information from ht − 1 and the input
of the present moment (xt) using an activation function, with a smaller activation result
indicating greater information retention. The expression for the update gate is given as:

zt = σ(Wzxxt + Wzhht − 1 + bz) (7)

The reset gate decides how much information from the earlier moment is written into
the candidate’s memory state (
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t). Similar to the update gate, the reset gate processes ht − 1
and xt using an activation function, where a more significant activation result implies more
information is written to

Sustainability 2024, 16, x FOR PEER REVIEW 8 of 22 
 

 

ȟ𝑡 =  tanh[𝑊ȟ𝑥𝑥𝑡 + 𝑊ȟȟ (𝑟𝑡 × ℎ𝑡 − 1) +  𝑏ȟ (9) 

The current hidden layer state (ht) is then obtained by combining the prior hidden 

layer state (ht - 1) with the candidate memory state (ȟ t) using the following expression: 

ℎ𝑡 = (1 − 𝑧𝑡) × ℎ𝑡 − 1 +  𝑧𝑡 ×  ȟ𝑡      (10) 

In the provided equations, xt represents the input of the current moment; ht - 1 and 

ht represent the hidden layer state of the prior and present moment, respectively; ȟ t rep-

resents the candidate memory state; rt and zt represent the reset and update gate, respec-

tively; Wzx, Wrx, and Wȟ x pertain to the weight matrix concerning xt for the update gate, 

the reset gate, and the candidate memory state, respectively; Wzh, Wrh, and Wȟ ȟ  pertain 

to the weight matrix concerning ht - 1 for the update gate, the reset gate, and the candidate 

memory state, respectively; and bz, br, and bȟ  denote the corresponding biases. 

2.3.3. Bidirectional Gated Recurrent Unit (Bi-GRU) 

The Bi-GRU unit, derived from a bidirectional RNN [28], comprises two layers of 

GRUs with distinct information transmission directions, as illustrated in Figure 5. In the 

Bi-GRU configuration, a reverse layer is incorporated into the single-layer GRU network 

to optimally leverage input information. This architecture employs two hidden layers to 

capture both past and future information. The current state is influenced not only by his-

torical data but also by future information, acknowledging that neglecting one-way com-

munication may impact the prediction performance of the GRU model. Both hidden layers 

are connected to the same output layer, and the output of the current state (𝑦𝑡) is expressed 

as follows: 

𝑦𝑡 =  [ℎ» ,  ℎ«] (11) 

where ℎ» and  ℎ« denote the output of the forward GRU layer and the backward GRU 

layer, respectively. 

In fault detection within PV systems, identifying issues such as open circuits, short 

circuits, and shading faults is crucial for ensuring system reliability. While traditional uni-

directional cyclic neural networks focus solely on past-to-future dependencies, bidirec-

tional GRU (Bi-GRU) networks excel in capturing bidirectional dependencies by pro-

cessing information from both historical and anticipated future conditions. By orchestrat-

ing two GRU networks moving in opposite directions—decoding past to present and fu-

ture to present—Bi-GRUs provide a comprehensive understanding of a system’s temporal 

dynamics, significantly enhancing fault detection capabilities. This approach goes beyond 

mere historical data by incorporating insights into potential future conditions, which is 

especially useful in scenarios like anticipating shading faults. The ability of Bi-GRUs to 

comprehend evolving patterns and dependencies aids in discerning subtle fault patterns 

influenced by future conditions that might otherwise go undetected. 

 

Figure 5. Structure of a Bi-GRU. 

t. The reset gate is defined as:

rt = σ(Wrxxt + Wrhht − 1 + br) (8)

GRU combines the reset gate (rt) with ht − 1 and xt to form a candidate memory state
(
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The current hidden layer state (ht) is then obtained by combining the prior hidden
layer state (ht − 1) with the candidate memory state (
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2.3.3. Bidirectional Gated Recurrent Unit (Bi-GRU)

The Bi-GRU unit, derived from a bidirectional RNN [28], comprises two layers of
GRUs with distinct information transmission directions, as illustrated in Figure 5. In the
Bi-GRU configuration, a reverse layer is incorporated into the single-layer GRU network
to optimally leverage input information. This architecture employs two hidden layers
to capture both past and future information. The current state is influenced not only by
historical data but also by future information, acknowledging that neglecting one-way
communication may impact the prediction performance of the GRU model. Both hidden
layers are connected to the same output layer, and the output of the current state (yt) is
expressed as follows:

yt = [h
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In fault detection within PV systems, identifying issues such as open circuits, short
circuits, and shading faults is crucial for ensuring system reliability. While traditional
unidirectional cyclic neural networks focus solely on past-to-future dependencies, bidirec-
tional GRU (Bi-GRU) networks excel in capturing bidirectional dependencies by processing
information from both historical and anticipated future conditions. By orchestrating two
GRU networks moving in opposite directions—decoding past to present and future to
present—Bi-GRUs provide a comprehensive understanding of a system’s temporal dy-
namics, significantly enhancing fault detection capabilities. This approach goes beyond
mere historical data by incorporating insights into potential future conditions, which is
especially useful in scenarios like anticipating shading faults. The ability of Bi-GRUs to
comprehend evolving patterns and dependencies aids in discerning subtle fault patterns
influenced by future conditions that might otherwise go undetected.
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2.3.4. Proposed Hybrid CNN-Bi-GRU Architecture

The proposed hybrid model, integrating two potent neural networks—CNN and
Bi-GRU architectures—aims to enhance fault detection accuracy. CNNs excel in feature ex-
traction with a layered approach but face challenges like overfitting with high-dimensional
data. On the other hand, Bi-GRU networks effectively handle high-dimensional data and
time series due to their unique structure, although they may sometimes overlook explicit
data features. In our model, Conv1D layers represent the CNNs feature extraction, and
the Bidirectional GRU (Bi-GRU) layers handle high-dimensional data effectively. The inno-
vative hybrid model’s structure (depicted in Figure 6) seamlessly integrates two Bi-GRU
layers within the CNN framework. Placing these Bi-GRU layers before the fully connected
layers offers advantages such as effective training on high-dimensional features extracted
by the CNN without encountering overfitting. Moreover, this integration facilitates the
convergence of spatial features captured by CNNs and temporal intricacies handled by
Bi-GRUs in subsequent layers. Through fully connected layers and skip connections, this
combination constructs a comprehensive data representation enriched with fault-specific
features. Notably, the adaptability of both CNNs and Bi-GRUs empowers the model to
dynamically adjust its feature extraction strategy, aligning effectively with the unique
characteristics of the training data. This adaptability ensures that the model can capture
and learn from the data’s varied and intricate fault patterns, enhancing its overall fault
detection capabilities.
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The concluding stage of the proposed fault detection strategy involves implementing
two deep learning models. The first model identifies anomalies within the PV system,
while the second model diagnoses the detected faults. Both deep learning models were
developed using Python with Tensorflow-Keras and scikit-learn libraries [29–32]. The
architecture encompasses the following layers:

• Input Layer: A 3D input layer with a shape of (num_time_steps, Variables) was
defined.

• Convolutional Layers: Conv1D layers were utilized for feature extraction, with pool-
ing and dropout being applied subsequently.

• Bidirectional GRU Layers: Two sets of Bi-GRU layers process the features extracted
from Conv1D. The first set returns sequences, and the second set returns only the final
output of each sequence. Layer normalization and dropout were applied to both GRU
layers for regularization.

• Fully Connected Layers: Dense layers with dropout, kernel_regularizer_l2, kernel_
regularizer_l1, and skip connections were implemented.

• Output Layer: A dense output layer with softmax activation for binary classification
in the detection model and multiclass type in the diagnosis model.
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A detailed representation of the architectures of the models developed for fault detec-
tion and diagnosis is given in Figure 7.
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2.4. Fault Detection and Diagnosis Procedure

To assess the performance of the proposed hybrid model, various metrics were em-
ployed, including Categorical Accuracy, Precision, Pecall, and F1-Score, as outlined in
Equations (12)–(15). These metrics involve True Positives (TPs), True Negatives (TNs), False
Positives (FPs), and False Negatives (FNs) [33]. Categorical Accuracy represents the ratio
of correct predictions to the total number of predictions, calculated as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
(12)

Precision signifies the ratio of correctly classified positive samples to the total number
of classified positive samples, denoted as:

Precision =
TP

TP + FP
(13)

Recall reflects the ratio of positive samples correctly classified as positive to the total
number of positive samples, expressed as:

Recall =
TP

TP + FN
(14)

Recall is more critical than Precision in threat detection, as false negatives can lead to
severe consequences. However, there is an increasing desire to improve the efficiency of
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detector systems by reducing the rate of false positives. The F1-score is used when Precision
and Recall are equally important and is defined as the harmonic mean of Precision and
Recall:

F1-score = 2 × Precision × Recall
Precision + Recall

(15)

For enhanced interpretability in multiclass classification, we incorporated averaging
methods. Both macro and weighted averages for Precision, Recall, and F1-score were
computed. Macro-average (Macro avg) involves an unweighted mean, potentially penal-
izing the model for poor performance in minority classes. In contrast, weighted average
(weighted avg) accounts for the number of true instances in each class, addressing class
imbalance and favoring the majority class.

Ultimately, the model was compiled using the Adam optimizer and categorical cross-
entropy loss as defined by Equation (16). During the training process, strategies such as
early stopping, model checkpointing, and learning rate reduction callbacks were employed
to optimize model performance. Following training, the model underwent evaluation
on the test set, computing its accuracy based on the generated classification report and
confusion matrix.

Loss = −
N

∑
i=1

Yi × logŶi (16)

3. Results

This section presents the results derived from our PV modeling approach and the
prepared databases, illustrating the operation of the PV system under diverse weather
conditions and various fault scenarios. Subsequently, the efficacy of the proposed inno-
vative fault detection and diagnosis procedure, which integrates both CNNs and Bi-GRU
networks, is assessed considering different performance metrics.

3.1. PV Model Validation and Constructed Database

The PV model, relying on the empirical SAPM, was used to emulate the actual behavior
of the PV installation considered in this study. Daily monitored profiles including PV output
power at the MPP (Pmpp), on-plane solar irradiance (G), and module temperature (Tm)
were employed to extract the unknown parameters of the model. The extracted parameters
are given in Table 3, and the model’s validation across multiple days is depicted in Figure 8.
The results indicate a good agreement between the measured and simulated hourly values
of the PV system’s output power. The calculated total Root Mean Square Error (RMSE)
value considering clear sky, semi-cloudy, and overcast days equals 2.69%. These findings
underscore the effectiveness of the parameter identification process and the resilience of
the SAPM.

Table 3. SAPM PV model-extracted unknown parameters.

Parameter C0 C1 C2 C3 (V−1) n βVmp
(V/◦C) αImp (◦C−1)

Value 0.915 −0.0446 1.88 × 10−16 −7.98 1.31 −0.143 7.14 × 10−4

The PV system model was subsequently utilized to generate databases that compre-
hensively depict the system’s performance under real outdoor conditions. These databases
encompass datasets representing instances of optimal operation and intentionally simu-
lated defects, using yearly monitored solar irradiance (G) and module temperature (Tm)
profiles. A section of the simulated PV output, considering various faults as described
in Section 2.2, is visually presented in Figure 9. Shading faults are randomly generated
throughout the year. Figure 9 illustrates the impact of different faults on the PV output,
emphasizing the consideration of temporary defects associated with shadings.
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3.2. Evaluation of the Proposed Fault Detection Procedure

In the data generation phase, the recorded data undergo systematic annotation with
relevant class labels. Specifically, 52,385 raw data samples were used for detection, while
43,624 were reserved for diagnosis. The initial focus of the preprocessing pipeline was
on data quality and reliability. The removal of rows with missing values was executed to
achieve this, effectively filtering out undesirable data. Following this, identifying duplicate
rows enables the detection and potential elimination of redundant information. To fortify
the dataset’s robustness, our attention was then directed towards handling outliers in nu-
merical columns. The Interquartile Range (IQR) method calculates lower and upper bounds
for each numerical column, and values falling outside these bounds are replaced with the
corresponding boundary values. This contributes to a more accurate representation of the
data distribution and reduces the impact of extreme values on subsequent analyses [34].

Post-preprocessing, 23,774 data samples were assigned for detection, and 19,788 data
samples were allocated for diagnosis. The next steps involved separating the dataset into
features (X) and target labels (y). Features (X) were derived from columns associated
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with solar irradiance (G), module temperature (Tm), and PV array output power (Pmpp),
while labels corresponded to the ‘System_State’ column. Subsequently, the Features set
underwent standardization using the StandardScaler from scikit-learn. This crucial step
fosters convergence and enhances performance in deep learning models by ensuring
consistent feature scaling. The length of sequential data (num_time_steps) and the number
of columns (features) present in the scaled dataset were then defined. This was achieved
through iterations that create sequences and corresponding labels based on the specified
time steps. Sequences were generated by considering a data window with a length of
num_time_steps. The loop appends these sequences and their respective labels to separate
arrays (for the detection dataset, we obtained 23,575 sequences, leaving 19,589 sequences
for the diagnosis dataset). The dataset was split into three sets—training, validation, and
test—using the train_test_split function from scikit-learn. The training set comprised 70%
of the data, while the remaining 30% was evenly divided between the validation (15%) and
test (15%) groups. The specifics of constructing the detection and diagnosis datasets are
outlined in Table 4.

Table 4. The specifics of constructing the detection and diagnosis dataset.

Phase Defined Faults Assigned
Class

Train
Dataset
(70%)

Test Dataset
(15%)

Validation
Dataset
(15%)

Detection Faulty PV system 0 13,836 2966 2986
Healthy PV

system 1 2666 571 550

Diagnosis
Three panels

short circuited
(fault1)

0 2675 564 548

Six panels short
circuited (fault2) 1 2771 580 635

Nine panels
short circuited

(fault3)
2 2783 601 602

One inverter
disconnected

(fault4)
3 2779 610 598

Shading (fault5) 4 2704 584 555

Finally, an input layer was defined for the model and configured to accommodate the
specified number of time steps and columns (features) present in the sequences (Tm, G,
Pmpp, resulting in three features per time step). Additional details include the following:

• num_time_steps: Each sample has a sequence length of num_time_steps, and for the
fault detection and diagnosis model, the sequence length per sample is 200 time steps.

• columns (features): Each time step contains three features (Tm, G, Pmpp).

The fine-tuning of the deep learning model’s parameters was accomplished using the
grid search optimization method [31]. This meticulous tuning process systematically tests
various combinations of internal hyperparameters to identify the optimal configuration
that maximizes performance for our fault detection and diagnosis models. The conclusive
hyperparameters for fault diagnosis and detection models are detailed in Tables 5 and 6.

The findings based on the proposed deep learning (DL) architecture, which integrates
CNN and Bi-GRU layers for the fault detection phase, are presented in Table 7 and vi-
sualized in Figures 10 and 11. The evaluation of the classification report and loss value
underscores the exceptional performance of the binary classification model in effectively
discerning faulty and healthy systems, as detailed in Table 7. For Class 0, representing the
Faulty System, the model showcases outstanding precision, accurately identifying 100%
of instances predicted as faulty and minimizing false positives. The recall value of 1.00
is equally noteworthy, capturing all instances of faulty systems while minimizing false
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negatives. The F1-score, standing at 1.00, signifies a well-balanced and effective perfor-
mance. Turning to Class 1, the healthy system, the model accurately identifies nearly all
instances predicted as healthy (precision value of 0.99) and captures 98% of actual instances
of healthy systems (recall value of 0.98), striking an effective balance. The corresponding
F1-score of 0.99 further reinforces the model’s effectiveness in classification. In the overall
evaluation, the model achieves an impressive accuracy of 99.45%, emphasizing its ability to
make accurate predictions across both classes, as illustrated in Figure 3. The macro-average
and weighted average values of 0.99 further affirm the solid overall performance.

Table 5. Hyperparameter tuning for the fault detection model.

Hyperparameter Range for Search Selected Value

epochs [50–250] 136
filters (Conv1D) [64–256] 128

pool_size (MaxPooling1D) [2–4] 2
dropout (Conv1D) [0.3–0.6] 0.4

GRU units (Bidirectional GRU) [64–256] 128
dropout (Bidirectional GRU) [0.3–0.7] 0.5

return_sequences (Bidirectional GRU) [True, False] True/False
num_time_step [12–250] 200

activation (GRU, Dense) [‘relu’, ‘tanh’, ‘sigmoid’] ‘tanh’
batch_size [16–64] 32

kernel_regularizer_l1 [10−6–10−3] 10−5
kernel_regularizer_l2 [10−5–10−3] 10−4

Table 6. Hyperparameter tuning for the fault diagnosis model.

Hyperparameter Range for Search Selected Value

epochs [50–250] 160
filters (Conv1D) [60–250] 128

pool_size (MaxPooling1D) [2–4] 2
dropout (Conv1D) [0.3–0.7] 0.5

dropout (Bidirectional GRU) [0.3–0.6] 0.3
GRU units (Bidirectional GRU) [64–256] 128

return_sequences (Bidirectional GRU) [True, False] True/False
activation (GRU, Dense) [‘tanh’, ‘relu’, ‘sigmoid’] ‘tanh’

num_time_step [12–250] 200
batch_size [16–64] 32

kernel_regularizer_l1 [10−5–10−3] 10−5
kernel_regularizer_l2 [10−5–10−3] 10−4

Table 7. Generated classification report for the fault detection model.

Precision Recall F1-Score

Class 0 1.00 1.00 1.00
Class 1 0.99 0.98 0.99

macro avg 0.99 0.99 0.99
weighted avg 0.99 0.99 0.99

accuracy 0.99

The results indicate that the model has effectively learned underlying patterns during
training, reflected in its high precision and recall for both faulty and healthy systems. The
low loss value of 0.0080, depicted in Figure 11, underscores the model’s robust capability in
accurate PV system fault classification. The reported recall value of 0.98 for “Class 1”, rep-
resenting the healthy system, signifies the precise identification of 98% of actual instances,
with the remaining 2% being false negatives. In the context of fault detection in PV systems,
misclassifying a small proportion of healthy system instances is considered less critical
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than the opposite scenario. While a few cases of healthy systems may be misclassified, the
overall model performance remains satisfactory for PV system fault detection, mitigating
safety concerns associated with misclassifying faults as healthy instances.
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The outcomes of the proposed hybrid model for the diagnosis phase are presented in
Table 8 and visually represented in Figures 12 and 13. Notably, the classification results
showcase exceptional performance, marked by an impeccable overall accuracy of 100%.
The comprehensive classification report in Table 8 highlights key metrics in the evalua-
tion process. Precision, denoting the ratio of correctly predicted positive observations
to the total predicted positives, maintains a flawless score of 1.00 across all fault classes,
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underscoring the model’s precision in fault-type prediction. Similarly, recall, indicating
the ratio of correctly predicted positive observations to all observations in the actual class,
also achieves a perfect score 1.00 for each fault type, affirming the model’s efficacy in
capturing all instances of each fault type. The F1-score, a weighted average of precision
and recall, uniformly registers a perfect score of 1.00 for all classes, indicating a harmonious
balance between precision and recall. Figure 13 depicts the achieved meager loss value of
0.0001, approaching zero, underscoring the model’s high accuracy in predictions and its
adeptness in learning intricate patterns and features essential for accurate classification.
Consequently, the model showcases exceptional capabilities in fault classification, yielding
perfect precision, recall, and F1-score for each fault type.

Table 8. Generated classification report for the fault diagnosis model.

Precision Recall F1-Score

Class 0 1.00 1.00 1.00
Class 1 1.00 1.00 1.00
Class 2 1.00 1.00 1.00
Class 3 1.00 1.00 1.00
Class 4 1.00 1.00 1.00

macro avg 1.00 1.00 1.00
weighted avg 1.00 1.00 1.00

accuracy 1.00
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4. Discussion

To highlight the effectiveness of our hybrid deep learning model architecture, which
combines a CNN with a Bi-GRU for fault detection and diagnosis, we conducted a com-
parative analysis with various alternative approaches, including CNN, CNN-LSTM, and
CNN-BiLSTM models, all following the same architecture as our models. Additionally, we
followed the same steps as in our study to ensure a fair and comprehensive comparison. We
fine-tuned the internal hyperparameters for each algorithm using the grid search approach.

The obtained results listed in Table 9 reveal that during the detection phase, the CNN-
LSTM achieved a precision score of 98.59%, and CNN-BiLSTM demonstrated the highest
overall accuracy of 98.76%. In comparison, the CNN alone showed the lowest precision
of 96.22%. In contrast, our deployed CNN-Bi-GRU model outperformed all, achieving an
exceptional accuracy of 99.46%. Shifting to the diagnosis phase, CNN displayed notable
progress and achieved an accuracy of 97.40%, while CNN-LSTM and CNN-BiLSTM reached
100% accuracy. The CNN-Bi-GRU model, also achieving 100% accuracy, surpassed the
CNN method, emphasizing the hybrid model’s superior diagnostic capabilities. These
results affirm the strength and effectiveness of the CNN-Bi-GRU hybrid model, showcasing
its superiority in fault detection and diagnosis over individual models.

The proposed model demonstrates superior accuracy, recall, F1-score, and precision,
with lower loss in both the detection and diagnosis phases. This enhanced performance can
be attributed to the integrated feature extraction method, harnessing the strengths of both
CNNs and Bi-GRUs. Furthermore, the efficacy of the softmax function in classification,
similar to artificial neural networks (ANNs), which are recognized for their effectiveness in
fault detection or classification in PV systems, further enhances our model’s remarkable
outcomes.

To delve deeper into the suboptimal accuracy observed in the single CNN-based
architecture, we identified that the model struggles in detecting temporal faults. The
model encountered difficulties distinguishing between the healthy and the fault states
induced by shading, as illustrated in Figure 14 (left side). Nevertheless, upon excluding
shading faults from the training data and focusing solely on permanent faults, the single
architecture exhibited improved performance, attaining 100% accuracy in the detection
phase, as evident in the normalized confusion matrix depicted in the right part of Figure 14.
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Table 9. Comparative analysis of the proposed technique with various alternative approaches.

Class CNN CNN-Lstm CNN-BiLstm CNN-Bi-GRU

Detection

Precision
0 0.96 0.99 0.99 1.00
1 0.95 0.97 0.97 0.99

Recall
0 0.99 0.99 0.99 1.00
1 0.79 0.94 0.95 0.98

F1-score
0 0.98 0.99 0.99 1.00
1 0.87 0.98 0.96 0.99

Accuracy (%) 96.22 98.59 98.76 99.46
Loss 0.0680 0.0246 0.0143 0.0080

Diagnosis

Precision

0 0.96 1.00 1.00 1.00
1 0.97 1.00 1.00 1.00
2 0.98 1.00 1.00 1.00
3 1.00 1.00 1.00 1.00
4 0.96 1.00 1.00 1.00

Recall

0 0.96 1.00 1.00 1.00
1 0.98 1.00 1.00 1.00
2 0.98 1.00 1.00 1.00
3 0.98 1.00 1.00 1.00
4 0.97 1.00 1.00 1.00

F1-score

0 0.96 1.00 1.00 1.00
1 0.97 1.00 1.00 1.00
2 0.98 1.00 1.00 1.00
3 0.99 1.00 1.00 1.00
4 0.97 1.00 1.00 1.00

Accuracy (%) 97.40 100 100 100
Loss 0.0948 0.0002 0.0001 0.0001
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Finally, the analyses suggest that adopting a two-phase model structure proves more
advantageous when dealing with temporary faults such as shading faults. This differen-
tiation is crucial since discerning between these fault types and the PV system’s healthy
state poses a considerable challenge. The complexities associated with identifying shad-
ing faults or similar issues demand a more nuanced approach, and a two-phase model
enables a more accurate representation of the system’s behavior in such scenarios. In
contrast, a single-phase model might be sufficient for permanent faults like open or short
circuits. These faults are generally easier to distinguish from the healthy state, and a more
straightforward model structure may yield satisfactory performance. Therefore, the model
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structure selection should align with the nature and complexity of the prevalent faults in the
PV system, ensuring an optimal balance between accuracy and computational efficiency.

5. Conclusions

Photovoltaic (PV) systems are prone to various faults, ranging from temporary to
permanent failures, each potentially exerting a substantial impact on performance and
safety. The timely identification of these faults and their diagnosis are imperative for
ensuring the enduring reliability and sustainable operation of the entire PV system. This
study introduces an innovative application of deep learning (DL) techniques tailored
explicitly for fault detection and diagnosis within PV systems.

The proposed DL architecture integrates Convolutional Neural Network (CNN) and
Bidirectional Gated Recurrent Unit (Bi-GRU) layers to enhance fault identification and
diagnosis in PV systems. Incorporating Conv1D layers at the outset facilitates robust
feature extraction, harnessing their capacity to discern intricate patterns within the data.
Subsequently, the Bi-GRU layers operate sequentially, capitalizing on their bidirectional
processing capabilities to comprehend the temporal dependencies and subtleties inherent
in PV system-monitored data.

The combination of parallel CNN and sequential Bi-GRU processing empowers the
neural network model to proficiently detect and classify various fault types, including open
circuits (inverter disconnection), short circuits, and partial shading. This novel approach
optimizes fault identification by exploiting the complementary strengths of convolutional
and recurrent layers, enabling the model to interpret spatial and temporal information
simultaneously, thereby ensuring accurate fault detection and diagnosis.

Two key pillars underpin this combined hybrid model approach. The first pillar
harnesses the precision of a simulation model, specifically the Sandia Array Performance
Model (SAPM), finely tuned through metaheuristic optimization algorithms to replicate
actual PV system behavior. The accuracy of this model was validated against measured
data from a real PV installation, yielding a Root Mean Square Error (RMSE) value lower
than 3%. The second pillar involves the construction of reliable databases that meticulously
represent normal and abnormal PV system operations.

Finally, in a comparative analysis featuring established methods such as CNN, CNN-
LSTM, and CNN-BiLSTM, our hybrid model showcased exceptional accuracy rates exceed-
ing 99% for both the fault detection and diagnosis phases. This performance superiority
underscores the significance of aligning model structure selection with the nature and com-
plexity of prevalent faults in PV systems to ensure an optimal balance between accuracy
and computational efficiency.

In summary, the presented fault detection approach demonstrated promising results
within the context of the studied PV installation. Our future analyses will aim to encompass
PV plants with different specifications, particularly those allowing for the testing and
evaluation of the approach on various faults—including PV module degradation, dust
accumulation, line-to-line faults, etc. Further, our future work will focus on implementing
the proposed approach in autonomous hardware such as Raspberry Pi, with the aim of
assessing its performance in real-time operations. This step is crucial in gaining valu-
able insights into the practical application and efficiency of the developed fault detection
methodology.
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