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Abstract: The advent of the Internet of Things (IoT) has sparked the creation of numerous improved
and new applications across numerous industries. Data collection from remote locations and remote
object control are made possible by Internet of Things technology. The IoT has numerous applications
in fields such as education, healthcare, agriculture, smart cities, and smart homes. Numerous
studies have recently employed IoT technology to automate livestock farm operations. We looked
at IoT-based livestock farm management systems in this study. To select the publications for this
investigation, we conducted a systematic literature review (SLR) that complied with the Preferred
Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) criteria. The selected articles
were divided into different categories according to their applications. Sensors, actuators, the main
controller (gateway), communication protocols, storage, energy consumption, the use of renewable
energy sources, scalability, security, and prediction techniques applied to the data collected for future
prediction were all examined in this study as IoT technologies used to monitor animals. In this study,
we found that only 22% of the articles addressed security concerns, 24% discussed scalability, 16%
discussed renewable energy, 18% attempted energy consumption, and 33% employed prediction
techniques based on the collected data. The challenges and future directions of intelligent livestock
farming are emphasized.

Keywords: animal monitoring; Internet of Things; cattle monitoring; smart livestock management

1. Introduction

The world’s population is increasing day by day, and it is predicted to exceed 9 billion
in the next 30 years. The majority of this growth is predicted to occur in developing
countries, and as the population expands, so will the demand for animal products [1].
Advances in livestock farming technology known as “Precision Livestock Farming” or
“Smart Livestock Farming” are being developed to meet the demand for animal products.
The term “Precision Livestock Farming” (PLF) was coined at the beginning of the twenty-
first century [2]. PLF is the use of technology in everyday life to autonomously assess
livestock, livestock behavior, livestock yields, and agricultural ecology in order to help
farm activities. This could be accomplished by activating automatic control systems or
providing farmers with the necessary information to make management decisions [3]. In
livestock farming, research is carried out utilizing various technologies such as sensor
technologies [4,5], image processing [6,7], video processing [8,9], audio processing [10],
signal processing [11], and behavior analysis [12] All of these techniques, however, have
disadvantages such as high costs, difficulties retrieving and storing data, the absence of a
graphical user interface (GUI), and scalability [13].
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In recent years, the Internet of Things (IoT) has been used in a variety of fields,
including smart homes [14], industries [15], agriculture [16], healthcare [17], traffic manage-
ment [18], manufacturing [19], energy management [20] and transport [21]. Researchers
have also begun to apply IoT to livestock farming [22,23]. IoT technologies enable farmers
to access farm information from remote locations, and IoT systems automate certain farm
devices, which greatly benefits farmers [24]. The data obtained from IoT devices play a
vital role in the world of predictive analysis in artificial intelligence [25]. These data are
helpful in understanding the behavior of humans, animals, climates, and so on [26]. Many
studies have employed IoT approaches in livestock farming and animal monitoring due to
their compatibility, low cost, easy data storage and access, and easy accessibility.

In this research, we reviewed the usage of IoT technology in livestock monitoring.
Before beginning the review, we read prior review papers; we compare the features of
previous work in Table 1.

Table 1. Comparison of prior research studies.

Authors Year Animals Animal Details
Analyzed

Systematic
Literature Review

(SLR) Applied

Technical
Details Studied

Critical
Parameters
Analyzed

Akhigbe et al. [23] 2021 Cow, Pig, Goat, Bee No Yes Yes Yes
El Moutaouakil et al. [27] 2023 Cow, Beef No No No No

Vigneswari et al. [28] 2021 Cow No Yes Yes No
Nigade et al. [29] 2023 Cow No No Yes Yes
Singh et al. [30] 2020 Hen No No No No
Goyal et al. [31] 2024 Hen No Yes Yes No

Ojo et al. [32] 2022 Hen Yes Yes Yes Yes
Collins et al. [1] 2022 Pig No No Yes No
Zhang et al. [33] 2022 Pig Yes No Yes Yes
Hadjur et al. [34] 2022 Bee No No Yes No

Rastegari et al. [35] 2023 Fish No No Yes Yes
Petkovski et al. [36] 20221 Fish No Yes Yes No

A brief summary of Table 1 is given as follows:

• Most of the existing works concentrated only on one animal type.
• A few previous works did not analyze animal details such as the number of animals

involved, the position of the smart belt tag, etc.
• Most existing work does not use systematic literature review (SLR) for paper selection.
• There is a lack of work in specifying technical details such as sensor and controller details.
• Most of the research work has not studied energy consumption, utilization of renew-

able energy, stability, etc.

In order to overcome the above-mentioned shortcomings, we used the SLR method
to choose papers. Also, we classified IoT-based livestock monitoring systems. We studied
the technical details of the experiment, location details, and other important details. The
summary of our work contribution is given as follows:

• Current works concentrating on the application of the IoT for different animals and
IoT applications are classified in livestock monitoring as IoT-based cattle monitoring
systems, IoT-based bee farm monitoring systems, IoT-based poultry farm monitoring
systems, and IoT-based fish farm monitoring systems.

• Animal details such as number of animals monitored, how animals are monitored,
and the location of research were studied.

• The SLR method was used to choose relevant papers. With the help of the SLR method,
we identified 70 research papers for review.

• Experiments’ technical specifications and location details were examined.
• Critical parameters such as energy consumption, renewable energy utilization, scala-

bility, security, cost, and data analytics were examined.

The rest of the study is organized as follows: Section 2 discusses the review se-
lection method, Section 3 discusses IoT-based smart livestock farming, Section 4 dis-
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cusses IoT-based cattle monitoring systems, IoT-based bee farm monitoring systems
are given in Section 5, IoT-based poultry monitoring systems are described in Section 6,
Section 7 describes IoT-based fish monitoring systems, challenges and future directions are
given in Section 8, and Section 9 comprises the conclusions.

2. Review Selection Method

We selected manuscripts for this evaluation using the SLR approach [37], which com-
piled with the PRISMA criteria [38]. The PRISMA Checklist has been listed as
Supplementary Materials. Manuscripts were chosen using the following keywords:

• (Smart Livestock Farming OR Smart Cattle Monitoring OR Smart Animal Farming OR
Cattle Monitoring OR Animal Farming OR Livestock Farming OR Animal Monitoring
OR Smart Animal Monitoring OR Animal Care) AND (Internet of Things OR IoT).

The following scientific databases were used to find research documents: Scopus, Web
of Science, and Google Scholar.

Regarding the objective of the research, the following scientific queries were taken
into consideration:

Query 1: Are IoT techniques used to automate the livestock farming process?
Query 2: Are IoT techniques implemented in real time?
Query 3: How effectively are IoT components utilized in the livestock farming process?
Query 4: Are animal details obtained from remote places using IoT techniques?
We applied the following criteria to filter the articles:

• Articles utilizing IoT technologies in real time to solve problems regarding animals;
• Articles published between 2015 and 2022;
• Articles published in English.

The PRISMA flow diagram is shown in Figure 1. Initially, we identified 1378 (n = 1378)
papers. After removing duplicates (n = 517), articles in a language other than English
(n = 6), records marked as ineligible by automation tools (n = 0), and records removed
for other reasons (n = 0), 855 records were considered for screening (n = 855). It was
found that 338 articles were review articles (n = 338); after removing those review articles,
517 articles were retrieved. It was found that 218 articles (n = 218) contained insufficient
details, 134 articles (n = 134) were not in the scope of this view, and 95 articles (n = 95)
did not contain implementation details. After removing those articles, 70 papers were
identified for review. The year-wise paper selection for this review is shown in Figure 2. It
clearly shows that attention towards applying IoT technologies to livestock farm activities
increased in 2019.
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Figure 1. Review selection method.

Figure 2. Year-wise paper selection.
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3. IoT-Based Smart Livestock Farming

Livestock farming plays a vital role in feeding human society. It also assists farmers
in increasing their financial wealth. The productivity of livestock farms is determined by
the health of the animals. The health of the animals is affected by a variety of factors such
as climate, food, water, and farm cleanliness [39]. Workforce, food, water, and electricity
are the most expensive aspects of farming [40]. The primary role of IoT technologies in
livestock is to reduce labor, monitor farm animals from remote locations, and provide a
safe environment for farm animals [41]. Initially, various technologies such as Bluetooth
and sensor networks were used to automate livestock farm work. The main disadvantages
of these technologies are their high cost, data access and storage, and lack of a GUI [42].

To solve the aforementioned limitations, researchers have recently deployed low-cost
sensors to observe farm settings and biosensors to track changes in farm animals. The
data from the observed surroundings and animals are sent to controller devices. These
controller devices are smart devices that can store data (on a memory card), process data,
and communicate data to a server or cloud storage unit. The data can be accessed by
users via online applications or mobile applications. Another significant benefit is that
these IoT data are utilized to train AI and ML prediction models [43]. These model results
assist farmers and end users in forecasting animal behavior, production rates, and so on.
Another significant advantage is that the controller device may automate the functions of
devices such as on/off motors depending on sensor data [44]. Farmers can also control
these devices from afar, reducing labor requirements, travel costs, and so on. These are
the primary reasons that IoT technologies are being used in cattle farm management. The
intellectual view of the IoT in livestock farming is shown in Figure 3. The IoT technologies
are mainly used for the following reasons in livestock farms.

Figure 3. Intellectual view of IoT in livestock farms.
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Accessing Animal Data: Animal details such as body temperature, pH, heartbeat,
location, animal standing time, lying time, and location are measured with the help of
respective sensors.

Accessing Environment Data: Environment details such as temperature, humidity,
gases (CO2, NH3, H2S, etc.), and light intensity are measured with the help of sensor
devices. Sensors sense these data and send them to a controller. Generally, controllers
are smart devices that act as minicomputers. The controller sends received data to the
internet for cloud storage and data analysis. Users can access farm details and prediction
details on their computers and/or mobile devices. Users can control devices like fans and
lights from remote places with the help of IoT technologies. Dairy farms, poultry farms,
fish farms, bee farms, and so on are the most common types of livestock farms. As shown
in Figure 4, we have categorized IoT smart livestock farming approaches based on farm
type into IoT-based cattle monitoring systems, IoT-based poultry farm monitoring systems,
IoT-based bee farm monitoring systems, and IoT-based fish monitoring systems.

Figure 4. Classification of IoT-based livestock management systems.

4. IoT-Based Cattle Monitoring Systems

In this section, we study different IoT-based cattle monitoring systems. As shown
in Figure 5, we classified IoT-based cattle monitoring systems into IoT-based cow farm
monitoring systems, IoT-based goat farm monitoring systems, and IoT-based pig farm
monitoring systems.

Figure 5. Classification of IoT-based cattle monitoring systems.
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4.1. IoT-Based Cow Monitoring Systems

Many researchers used IoT technologies to identify and monitor cow activities. Also,
IoT technologies helped automate different activities on cow farms. A detailed description
of IoT-based cow farm monitoring systems is given here. Taneja et al. [45] used a long-
range pedometer as a wearable device to analyze cow behaviors such as lying time, step
count, and standing duration in Ireland. The observed data from the cows were sent to a
transceiver through radio signals. The data were transferred to the MQTT fog node using a
wired connection. The collected data were analyzed, and recommendations regarding the
welfare of cows were given to farmers with the help of fog computing. The collected data
were stored in the IBM cloud. The experiment was conducted on 150 cows in Waterford,
Ireland. To reduce cost, radio signals were used instead of Wi-Fi signals, and the system
helped farmers find anomalies among cows. The authors extended the work and detected
lameness sickness 3 days in advance with 87% accuracy by using the K-NN classification
algorithm [46]. Feng et al. [47] used an IoT system to identify the social behavior of cows
in order to prevent mastitis infection. This system aids in the detection of cows that have
had direct contact with mastitis-infected cows. To predict the cow’s social behavior, two
types of GPS devices were used. One GPS device type was installed in a cow shed, while
another was attached to cow collars. A cow social activity graph model was used to identify
cow social behavior. The system also predicted the rate of mastitis spread. The 14-day
experiment was carried out at the University of Tennessee in the United States. The system
aids in the prevention of mastitis among cows. Dineva et al. [48] used Amazon cloud
services to store information about cow behavior such as stress level, growth, reproduction,
and health. IoT sensors were used to collect data such as gyroscope, temperature, noise,
humidity, and location data from cows, and the data were then transferred to a cloud
platform via LoRa or the transmission control protocol (TCP). For video surveillance, a
thermal camera and a video camera were used. Gateway devices (AWS IoT Greengrass)
use Wi-Fi to send data to cloud storage. The observed data were used to train machine
learning models to predict animal behavior. This paper lacks implementation details.
Mirmanov et al. [49] used Internet of Things-based techniques to monitor the weight of
cows on farms. Ultra-high-frequency radio-frequency identification (UHF RFID) tags were
used to identify cows. Strain gauges were used to determine the weight of the cows.
The measured cow weight was transmitted to an Arduino UNO controller and then to
a Raspberry Pi gateway via LoRaWAN and Wi-Fi. A solar panel was used to power the
equipment. The model was put to the test on a cow farm with 86 cows. The data were saved
in JSON format in the REST API. The system’s advantage is its low energy consumption
with renewable energy.

Dutta et al. [50] used a GPS module to measure cow temperature and analyze motion
processing. A temperature thermistor (NTCLE413E2103F102L) and a GPS module were
attached to a cow using a cow collar in this system. The sensor data were routed to an
ATMEL328P microprocessor gateway. The TinyGPS+ library, which is used in microcon-
trollers, is used to measure cow position and walking speed. A GSM or GPRS Quad-Band
TTL UART modem is used to send the collected data to the server. The experiments were
carried out in three locations in India: Mohanpur, Namkhana, and Durgapur. Thirteen cows
were used in the experiment. Temperatures were measured at four different times, yielding
a total of 605 datasets. The data were then classified and analyzed with XGBoost and RF.
The system assists farmers in understanding the cows’ standing and walking behavior.
Arshad et al. [51] created a system for tracking cow temperature, heartbeat, and location.
In this system, a cow wears a collar that contains a body temperature sensor (MLX90614), a
stethoscope (CR-747SS), and a GPS. The temperature, heartbeat, and location of the cow
were transmitted to a Node-MCU ESP8266x’ gateway. Environment temperature, CO2,
and air quality were measured by DHT11 and MQ135. The ultrasonic HC-SR04 sensor
measured the water level in the tank. The PHP language was used to store all of the mea-
sured data on the server in the form of JSON. The system was designed to automatically
activate a fan in a cow’s barn. The system aids in the monitoring of a cow’s health and
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position. Maroto-Molina et al. [52] tracked the location of individual cows using GPS and
Bluetooth tags. Two types of devices were used in this system: cow collars and cow tags.
A GPS module, Bluetooth reader, microcontroller, Sigfox modem, and battery were all
included in the cow collar. The cow tag included a Bluetooth module, a microcontroller,
and a battery. Cows were outfitted with cow tags that sent data to cows wearing cow
collars. Using the MQTT protocol, the cow collar collects data from all cow tags and sends
the current location to the server. Orion Context Broker manages data storage in the cloud.
Farmers can track the location of their cows using mobile apps. The disadvantage of this
method is that the batteries in the cow tag and cow collar frequently need to be replaced.
Lovarelli et al. [53] designed custom devices to identify cow behaviors such as eating, lying,
and chewing. Instead of using commercial sensors, the authors created their own using
the EFR32BG13 Blue Gecko SiP. Sensors and other devices such as antennas, systems-on-
board, and batteries are attached with plastic belts. The experiment was carried out on
32 cows in the Lombardy Region of Italy. Cows were fitted with plastic belts, and raw data
were transmitted via Bluetooth to gateway and mobile applications. Using 4G signals, the
gateway sent data to the cloud server. To identify the cows’ behavior in the server, authors
used decision tree algorithms such as K-nearest neighbors, random forest, and multi-layer
perceptron. The system’s limitation is that if a user is in a remote location, the user cannot
access the cow details because cow details are accessed via Bluetooth technology.

Arcidiacono et al. [54] measured cow details such as temperature, humidity, pressure,
and acceleration using Ruuvitag sensors, an IP video camera, and a Raspberry Pi. The
Ruuvitag sensor was attached to the cow’s leg and sent data to the Raspberry Pi. Data were
saved in JSON format on an SD memory card. Using Raspbian’s crontab, users were able to
schedule, stop, restart, and pause data acquisition. In Italy, five cows were subjected to an
experiment. When it comes to identifying cow behavior, the proposed system outperforms
other designs. The system’s limitation is that data are stored on SD cards rather than in the
cloud, and users have no access to a user interface. Gündüz et al. [55] used IoT techniques
to measure the pH and temperature of cows with rumen acidosis. Rumen-affected cows
suffered from a lack of milk and pregnancy complications. The stomach size of these
suffering cows would change, and their pH level would have a direct impact on their
health. The pH level and temperature of the cow were measured using various sensors
by the authors. A DS18B20 sensor was used to measure pH, and another DS18B20 sensor
was used to measure temperature. As a gateway, a Wemos D1 microcontroller was used.
These devices were cannulated into affected cows, and the sensors transmitted the pH level
and temperature of the cow to the gateway. The gateway used Wi-Fi to send data to the
server, and users (including farmers and veteran doctors) accessed data via the Internet.
To conserve battery power, the system measured data every 15 min. Dineva et al. [56]
defined an IoT architecture for monitoring cows on farms. Sensors in this system measure
temperature, heart rate, and humidity and send the information to the gateway. The
authors designed a custom gateway; it receives sensor details and sends data to the AWS
cloud. The authors used AWS IoT Greengrass in the gateway for syncing and messing
with processes. There are two types of communication protocols, such as LoRaWAN and
Wi-Fi. The same IoT architecture was used by the authors in [57], where cows are tagged
with devices that can measure heat and calving effort. In order to detect cow movement,
cows were tagged with a belt with a motion sensor, which detects cow movement; also,
in order to identify cows, QR tags were fixed in cow ears. The collected data are fed into
Power BI Pro ML, which predicts the quantity of cow milk. The limitation of the system is
its high cost. Hao et al. [58] used RFID signals to identify cows based on their weight in
order to detect breeding. In this system, RFID tags were placed in cow ears. An RFID-based
hand-held device was developed to identify cows, and an RFID reader was installed in a
cow farm to read cow details, including weight. It was connected to the system using a
wired network. The system also has a dashboard, which helps users check cow details. The
system was deployed in Lincang, China. The system’s limitation was that a computer was
used as a gateway rather than a microcontroller such as a Raspberry Pi or a NodeMCU.
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Righi et al. [59] combined IoT techniques and prediction models to predict milk production
at a cow farm. In this system, milk production sensors measured milk quantity, and feed
actuators controlled the amount of food given to the cow. These details were sent to the
microcontroller, which acted as a gateway. Cows were identified by RFID tags and receivers.
The gateway used the Internet to send data to the server. These data were analyzed and
predicted using ARIMA, ANN, and RF models. The results showed that the ARIMA model
provided better results than other algorithms. The limitation of the system was that it did
not provide a GUI or a wired connection used to connect the gateway and server.

Zhang et al. [60] developed cattle monitoring systems that make use of a variety
of sensors and control devices. Sensors such as temperature, gas (ammonia and carbon
dioxide), humidity, and light intensity were used to monitor the various environmental
parameters in cattle. For data communication, an RS-485 communication module was
used. The main controller for data access and transmission was STC12LE5A60S2. In China,
the system was tested on 11 cattle farms. The system’s disadvantage is that the authors
designed their own circuit using PCB rather than using a standard available gateway.
Datta et al. [61] developed a communication channel model for cannula purposes. The
authors experimented with the developed channel in a cannulated cow. An RF Explorer
Signal Generator-based transmitter, an ANT700 antenna, and a power amplifier were used
for this experiment. The authors inserted a transmitter into the cow’s stomach and tested
the received signals in an antenna that can be inserted into the cow’s neck. Also, a Realsense
D435i camera was used to record cow pictures and videos. The results showed that the
system was able to reduce the communication loss in data transmission. Chung et al. [62]
injected sensors into cows in order to measure the subcutaneous temperature. An RFID
LifeChip Microchip was implanted near the left ear of cows to analyze the heat stress of
the maximum milk-providing cow and the minimum milk-yielding cow. Data from the
biosensor were read using an RFID scanner and sent to a LoRa hub. The temperature of
the cow was then transmitted via Wi-Fi to a ThingSpeak cloud server. Long short-term
memory (LSTM) was used to analyze the collected data. The experiment was carried out
on three cows, two of which were high milk producers and one of which was a normal
milk producer. These three cows were also monitored by a GoPro HERO6 Black video
camera. The result showed that high-yielding cows’ subcutaneous temperature is high
compared with that of a normal-yielding cow. Popa et al. [63] used various sensors to
monitor air pollutants in livestock farming. The primary goal of this work was to examine
the air pollution emitted by cattle. CO, NH3, PM (PM2.5, PM1, PM10), relative humidity,
and temperature were measured from the environment using various sensors. Dragino
DLOS8 was used as a gateway. The system was used on a cow farm in Teleorman County,
where two hundred cows were maintained for dairy purposes. The collected data were
stored in a cloud platform. The advantage of the system is that cattle-related air pollution
can be observed with the help of the system. The disadvantage of the system is that it
would be used in an open environment. Saravanan et al. [64] applied IoT technologies
to watch the health status of cows. The authors used sensors like LM35, MLX90614, a
thermometer, and a three-axis accelerometer to measure cow body temperature, gesture
recognition, rumination, and pulse. The sensors measure these details and send them to
an ATmega 328 microcontroller, which acts as a gateway. The system can send data to
smartphones using Bluetooth and Wi-Fi communication. The system stores collected data
in the ThinkSpeak cloud platform. Each cow is identified by an RFID card. The system
was implemented in Tirunelveli District, India. The users can access cow status data on a
smartphone in remote places. Park et al. [65] used a GPS module to find the locations of
grazing cows. The authors used GPS-enabled cow collars to identify the location of cows.
Cows were divided into groups, and the cow leader was identified from the group. Users
were able to determine cow locations with the help of the system. The MSP430F2274 MCU
was used as a gateway, and 3G/4G GSM was used for data communication. Data were
stored in the AWS cloud, and users could access the data through a web interface.
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From this study, it is clear that most IoT-based cow monitoring systems are used to
monitor cow behaviors, such as standing time, walking time, and eating behavior; cow
temperature; and so on. IoT technologies are used to identify cows. This helps farmers ana-
lyze their health status. We have found that 62% of systems used different methodologies
to identify cows, and 30% of systems used behavior analysis. There are a few systems that
involve growth analysis, disease identification, and monitoring pollution caused by cattle.
None of the systems involved cattle automation systems. This reveals that researchers
need to contribute more to cow cattle automation and pollution monitoring using IoT tech-
nologies. In the next section, details about IoT-based sheep and goat monitoring systems
are given.

4.2. IoT-Based Sheep and Goat Monitoring Systems

IoT-based sheep and goat monitoring systems are discussed in this section. Ojo et al. [66]
proposed a smart collar for recording sheep locations. GPS and sensors were built into the
smart collar. The sheep location was transmitted to the LoRaWAN gateway via the LoRa
protocol. The data were saved in the Amazon AWS cloud. Grafana was used to display
the data. The system was tested in Italy and helped track sheep movement between cattle
land and farmland. Rao et al. [67] used a video camera and various sensors, including
temperature, humidity, CO2, NH3, and H2S sensors, to track the growth of goats. The data
from these sensors were accessed by an RS485 hub. A Raspberry Pi was used as a gateway,
and environmental variables were used to control devices such as fans and solenoids. The
HTTP protocol was used to access all sensor and goat information, which was then stored
in the MongoDB database. Users can view goat and environmental information via the web
and mobile interfaces. For anomaly detection, the ML algorithms SVR and KNN are used.
Jumi et al. [68] used a video camera and temperature sensor to monitor goats. In this system,
a pan–tilt–zoom camera and MLX90614 temperature sensors are connected to a NodeMCU
gateway. A temperature sensor is tagged on a goat’s neck in order to measure the goat’s body
temperature. An experiment was performed with four goats. Users monitor goats’ videos
and view goats’ temperatures in mobile and web applications. It would be good if the system
provided an automatic warning message when a goat’s body temperature exceeds the normal
body temperature. Cui et al. [69] monitored the heart rate of sheep during transportation.
In this system, the sheep pulse rate is measured using an APDS-9008 sensor, an MLX90615
infrared thermometer is used to measure sheep body temperature, and a DHT20 sensor is
used to measure environment temperature and humidity. An ATmega328 microcontroller is
used as a gateway. Bluetooth technology is used for wireless communications. The system
is split into master and slave mode, in order to save energy consumption. Sheep are tagged
with two types of bands. One band, on the neck, has a sheep body temperature sensor and
pulse rate detection sensor; the other band, tagged on the body, has GPS, an environment
temperature measurement sensor, and a gateway. The system was able to measure the heart
rate of sheep during transportation.

Researchers applied IoT technologies to monitor goat weight and goat count and
perform identification using video analysis, goat heart rate analysis, etc. Researchers may
concentrate on automating goat farm activities using IoT technologies to help farmers
reduce workforce costs. IoT-based pig monitoring systems are discussed in the next section.

4.3. IoT-Based Pig Monitoring Systems

The details of IoT-based pig farm monitoring systems are discussed in this section.
Lee et al. [70] used Internet of Things (IoT) devices to monitor and count pigs in a pigsty.
The pigs’ ears were fitted with Bluetooth low-energy tags. Wireless broadband leaky coaxial
cable antennas picked up the BLE tag signals and forwarded them to the main controller.
The primary controller sent data to the server. An experiment was carried out with pigs
from Seven Foods Co., Ltd., Kumamoto Prefecture, Japan, to analyze the system process,
and 60 pigs were monitored. The system assisted in pig identification and also tracked pig
movement. The system’s limitation is that the user cannot access pig details via a mobile or
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web interface. In order to avoid piglet death due to pig crushing, Chen et al. [71] developed
an IoT-based piglet screaming detection technique. Farrowing houses in this system are
outfitted with a microphone, an IP camera, a temperature sensor, a floor vibration sensor,
and a water drop. Using an Ethernet cable, the IP camera records video and sends it to
the server. Before sending data to the server, the sensors collect and send environmental
data, such as floor vibration. An Nvidia GeForce RTX system was used to implement AI
algorithms for identifying piglet sounds caused by piglet crushing. If it was discovered
that pig screaming was caused by pig crushing, floor vibration would be activated. A CNN
model was used by the authors to classify the piglet sounds. The system was tested in
Yi-Lan, Taiwan, and the results show that it detects piglet crushing early on and activates
actuators. Lee et al. [72] identified undergrown pigs using image processing and deep
learning methods. In this system, a video camera was installed in a pig house’s ceiling. The
camera data were sent to an embedded device (a multi-core CPU), which acted as a gateway.
It processed data using image processing and deep learning techniques (TinyYOLO3) to
identify pigs. The system successfully identified undergrown moving pigs. But it did not
detect well-grown pigs. The advantage of this system was that it enabled real-time data
processing and pig identification.

Bonde et al. [73] used geophone sensors to monitor pigs and analyze piglet growth.
This sensor was able to detect pig position and movement changes. A video camera was
also used with this sensor to monitor pig and piglet nursing behavior. The experiment was
conducted at Betagro Farm in Lopburi, Thailand, from April to June 2019. The authors
made use of SM-24 geophones, LTC6910 amplifiers, and a NodeMCU gateway. These
devices were connected through Wi-Fi using the MQTT message model. The authors
tested their pig growth analysis approach against the SVM model. The result showed
that the proposed method’s performance was better than the SVM model’s performance.
Chen et al. [74] used sensors and a camera to track the growth of pigs in Taiwan. The
authors recorded pig behavior using a camera and utilized the Mask RCNN model to
identify pig behavior. The algorithm was able to recognize a pig’s head, body, tail, and
behaviors such as feeding, drinking, and sleeping. The model was able to detect the
level of pig growth. Sena et al. [75] used IoT technologies to automate pig farm activities.
The authors employed a DHT11 temperature and humidity sensor, and they used an
HC-SR04 ultrasonic sensor to detect the amount of food remaining in the food hopper.
These sensors were linked to an ESP8266 microcontroller, which served as a gateway. The
gateway was linked to a fan, a light, and a food hopper. These actuators were actuated
based on measured values under particular parameters. The system was used in Thailand’s
Nakhon Si Thammarat province. The system’s weakness was that, while it controlled the
gadgets in the pig farm, it did not measure pig activity. Vaughan et al. [76] employed IoT
technologies to measure pig weight and analyze pig motion on a pig farm. A plastic optical
fiber (POF) sensor (PGR-FB1000 step-index POF), an ADC, and an ATM2560 Arduino
Mega board comprised the system (gateway). The authors combined 22 POF sensors and
created a mat for weighing pigs. The pig’s weight was shown on an LCD screen, and the
results revealed that the mat was more accurate than the present pig weight measurement
system. Lee et al. [77] used RFID tags (IC tags) with antennas at Seven Foods Co. Ltd.,
Kikuchi City, Japan. In this system, IC tags were fixed to the ears of 40 pigs. IC tag details
were recorded by four RFID antennas. Six hours per day, the activities of each pig were
recorded. The limitation of the system was that the authors did not use pig information
for any further analysis. Popa et al. [78] monitored the air pollution of cattle in Romania
using IoT technologies. Temperature sensors, pressure sensors, humidity sensors, and
air sensors were used to measure environment temperature, humidity, PM1, PM2.5, PM10,
CO2, NO2, and O2. Measured values were sent to a gateway using LoRa. Sensor data
were forwarded to the cloud using the MQTT protocol. The system was implemented in a
cow farm that had 200 cows. The system finds a relationship between air pollution and
climate parameters.



Sustainability 2024, 16, 4073 12 of 37

IoT-based cattle monitoring systems are classified based on activity, and details are
given in Table 2. According to Table 2, the majority of cattle monitoring systems involve
animal identification and behavior analysis. A significant number of applications also
involve animal temperature monitoring. Few studies attempted to analyze growth and
detect disease. There have been very few studies that include pollution monitoring and
farm automation. Various aspects of cattle monitoring systems are listed in Table 3. Most of
the IoT-based cattle monitoring systems involved animal identification, animal temperature
surveillance, behavior analysis, and disease identification. From this analysis, it is clear
that only a few systems automate cattle operations. From these studies, it is clear that most
IoT-based cattle monitoring systems involve animal identification, behavior analysis, and
temperature detection. It has also been found that researchers designed smart belts with
different sensors for animals. These smart belts were tagged on animal necks or cow legs.
These belts were used to identify animal location, body temperature, etc. Few studies have
measured the pollution caused by cattle. This provides a new direction for researchers
to find solutions for pollution caused by cattle. The applications of IoT-based bee farm
monitoring systems are given in the next section.

Table 2. Classification of IoT-based cattle monitoring systems.

Application Reference

Animal Identification [47–52,56–59,62,64,65,70,70,77]

Behavior Analysis [45,46,50,53,64,67,70–74,76]

Animal Temperature Surveillance [50,51,54,56,57,62,64,67–69]

Growth/Weight Analysis [49,58,67,74,76]

Disease Detection and Analysis [47,48,57,61,64]

Pollution Monitoring [63,67]

Farm Automation [75]
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Table 3. Various aspects of cattle monitoring systems.

Ref. No. Year and Country Animal
Monitoring

Sensor
Position

Environment
Monitoring

Automation
of Devices

Energy
Consumption

Usage of
Renewable

Energy
Scalability Security Cloud

Storage

Data
Analysis

and Prediction

Web or
Mobile
Access

[45,46] 2019, Ireland ✓ Leg ✗ ✗ ✗ ✓ ✗ ✗ ✓ ✓ ✓

[47] 2022, USA ✓ Neck ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✗

[48] 2021, Bulgaria ✓ Neck ✓ ✗ ✗ ✗ ✓ ✓ ✓ ✓ ✓

[49] 2021, Kazakhstan ✓ Ear ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✗

[50] 2021, India ✓ Neck ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✓

[51] 2022, Pakistan ✓ Neck and body ✓ ✓ ✗ ✗ ✗ ✗ ✓ ✗ ✓

[52] 2019, Spain ✓ Neck and ear ✗ ✗ ✓ ✗ ✗ ✗ ✓ ✗ ✓

[53] 2022, Italy ✓ Neck ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✓

[54] 2021, Italy ✓ Leg ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✗

[55] 2022, Turkey ✓ Body ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✓

[57] 2021, Bulgaria ✓ Neck and ear ✓ ✗ ✗ ✗ ✓ ✓ ✓ ✓ ✓

[58] 2017, China ✓ - ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓

[59] 2020, Brazil ✗ - ✓ ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✗

[60] 2016, China ✗ - ✓ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗

[61] 2022, US ✓ Stomach ✓ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✗

[62] 2020, US ✓ Ears ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✗

[63] 2021, Romania ✗ - ✓ ✗ ✓ ✗ ✗ ✗ ✓ ✓ ✓

[64] 2017, India ✓
Ears, leg, nose,

tail ✗ ✗ ✗ ✗ ✓ ✗ ✓ ✓ ✓

[65] 2021, Korea ✗ - ✓ ✗ ✓ ✗ ✓ ✗ ✓ ✗ ✓

[66] 2021, Italy ✓ Neck ✗ ✗ ✓ ✗ ✗ ✓ ✓ ✗ ✓

[67] 2020, China ✗ - ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✓

[68] 2022, Indonesia ✓ Neck ✓ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✓

[69] 2019, China ✓ Neck, body ✓ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗

[70] 2022, Japan ✓ Ear ✓ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✓

[71] 2021, Taiwan ✗ - ✓ ✓ ✗ ✗ ✗ ✓ ✓ ✓ ✓

[72] 2019, South Korea ✗ - ✓ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗
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Table 3. Cont.

Ref. No. Year and Country Animal
Monitoring

Sensor
Position

Environment
Monitoring

Automation
of Devices

Energy
Consumption

Usage of
Renewable

Energy
Scalability Security Cloud

Storage

Data
Analysis

and Prediction

Web or
Mobile
Access

[73] 2021, USA ✓ Leg ✓ ✗ ✗ ✗ ✓ ✗ ✗ ✓ ✗

[74] 2020, Taiwan ✗ - ✓ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗

[75] 2022, Thailand ✗ - ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✓

[76] 2017, UK ✗ - ✓ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗

[77] 2019, Japan ✓ Ears ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗
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5. IoT-Based Bee Farm Monitoring Systems

Research has been carried out to monitor bee activities with the help of IoT technology.
Most of these systems are used to monitor beehive weight, the relationship between
temperature and bee activities, etc. The details of IoT-based bee farm monitoring systems
are given below.

Cejrowski et al. [79] used IoT technologies to record bee sounds in a bee colony in
order to determine the relationship between bee sounds and temperature. Bee sounds were
recorded using a digital microphone with a sampling frequency of 44,100 Hz. The system
consists of an analog-to-digital converter (ADS1115), resistors, a MOSFET-N transistor, and
a Raspberry Pi serving as a gateway. A bee sound lasting two seconds was recorded. The
temperature was compared to the audio signals collected. For five months, the experiment
was carried out. Three times per hour, the audio signals were recorded. In total, 35,830 bee
audio signals were recorded and analyzed alongside temperature. The system’s advantage
is that it can be expanded with additional sensor devices. Gil-Lebrero et al. [80] used
various sensors and a weighing machine to monitor beehives. A weighing machine and
SHT15 humidity sensors were used to measure real-time beehive weight, and an MCP9700A
temperature sensor was used in various locations throughout the hive. The measured
values were sent to the server by a Waspmote module, which was based on an ATmega
1281 microcontroller. The Waspmote IDE and C programming libraries were used to access
data. Wireless nodes were in sleep mode during data acquisition to save power. The
study was carried out on 20 beehives in Spain. The system enabled beekeepers to remotely
monitor beehives; it would be preferable if the system used renewable energy instead of
battery power. To monitor bee colonies, Hong et al. [81] used a temperature and humidity
sensor (DTH12), an acoustic sensor, an entrance sensor, and a weight sensor. Sensor
readings were sent to an STM32 microprocessor. The information gathered was uploaded
to a cloud server. SMS (short message service) was used to detect abnormal behavior
in bee colonies. The experiment lasted 120 days in E110.81N24.85. The system aids in
the analysis of the relationship between climate, bee entrance counts, and colony weight.
Mrozek et al. [82] used IoT and ML techniques to analyze real-time videos of bees. The
system’s goal was to use a convolutional neural network (CNN) model to identify bees and
the Varroa destructor insect in beehives. The Varroa destructor insect causes varroosis, a bee
disease. The authors used a 5-megapixel camera to record bee videos in order to identify
the varroosis bee disease among bees. Videos were captured and sent to a Raspberry Pi
(gateway). The data were transferred to the AWS cloud by the gateway. Google Coral was
linked to the Raspberry Pi, which served as an edge device, via USB. It used the CNN
model to analyze the video recording and identified the varroosis bee disease. The details
of the infected bee were communicated to users via the MQTT protocol.

Tashakkori et al. [83] monitored beehives with a humidity and temperature sensor, a
microphone, and a Raspberry Pi camera. Data collected from beehives were sent to the
Raspberry Pi. The Raspberry Pi sent data to a ThingSpeak server so that users could access
them. The system could detect bees in beehives, and it counted bees using video processing.
The main limitation of the system was that the collected data were not analyzed or used
in any other way. Gabitov et al. [84] studied the relationship between outer and inner
temperature in wild bee colonies using temperature and humidity sensors. To receive
and transfer the data, two types of gateways (RAK7204 monoblock devices) were used.
For data transmission, LoRaWAN technology was used. Grafana’s cloud platform stored
information. The system ran on batteries and was recharged by a photovoltaic panel.
According to the findings, bees’ behavior changes to match the external climate of the bee
colony. Andrijević et al. [85] used a variety of sensors to track bee activity in beehives. This
system counts bees and records beehive temperature, humidity, air quality, and outside air
pressure, as well as humidity, temperature, UV index, UV IR light, light intensity, and so
on. The main purpose of this system was to study bee activity in relation to environmental
changes. Data were collected and saved in the cloud, while mathematical and recurrent
neural network models such as ARIMA, LSTM, GRU, and RNN models were utilized to
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forecast bee behavior. A web interface allowed users to access data. The experiment was
conducted for 15 days in October 2021, with 5 min intervals. For additional investigation,
the authors could have used weight sensors, carbon dioxide sensors, and oxygen sensors.
The temperature, humidity, and weight of beehives were measured by Zabasta et al. [86,87],
and bee behavior was observed using an IP camera. Temperature, humidity, and weight
sensors sent data to Node-RED, which acted as a gateway server via an MQTT broker. GSM
was employed for communication between sensors and MQTT gateways in the system.
The experiment was carried out at the Riga Botanic Garden in Latvia. The system’s main
disadvantage is that it lacks coordinator nodes (gateways), making it difficult to manage
sensors and devices. Zgank et al. [88] monitored bee activities based on bee sounds. To
analyze bee activity, bee sounds were recorded and transferred to a server using the GSM
network. Then, reordered sounds were classified using mel-frequency cepstral coefficients
(MFCCs), and then data were classified using hidden Markov models (HMMs) and deep
neural network (DNN) models. The result showed that a DNN model yields higher
accuracy than HMM. Table 4 shows that the majority of IoT-based bee farm monitoring
systems are engaged in beehive weight and temperature surveillance activities. Table 5
includes a list of several features of bee farm monitoring systems.

Table 4. Classification of IoT-based bee farm monitoring systems.

Application Reference

Bee Count [85]
Behavior Analysis [82,83]
Animal Temperature Surveillance [80,81,83–87]
Growth/Weight Analysis [80,81,86,87]

From this study, it is clear that researchers used IoT technologies to monitor the
humidity and temperature of bee colonies. Also, different devices were used to measure
beehive weights. Few studies attempted to understand bee behavior. Poultry farm activities
are automated by IoT technologies. We provide details of IoT-based poultry farm activities
in the next section.
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Table 5. Various aspects of IoT-based bee farm monitoring systems.

Ref. No. Year and
Country

Animal
Monitoring

Sensor
Position

Environment
Monitoring

Automation
of Devices

Energy
Consumption

Usage of
Renewable

Energy
Scalability Security Cloud

Storage
Data Analysis
and Prediction

Web or
Mobile
Access

[79] 2021, Poland ✗ - ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗
[80] 2021, Poland ✗ - ✓ ✗ ✓ ✓ ✗ ✓ ✓ ✗ ✗
[81] 2020, China ✗ - ✓ ✗ ✗ ✓ ✗ ✗ ✓ ✗ ✗
[82] 2021, Poland ✗ - ✓ ✗ ✓ ✗ ✗ ✓ ✓ ✓ ✓

[83] 2021, US ✓
Inside

Beehives ✓ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✓

[84] 2022, Russia ✓
Inside

Beehives ✓ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✗

[85] 2022, Serbia ✓
Inside

Beehives ✓ ✗ ✓ ✗ ✗ ✗ ✓ ✓ ✓

[86,87] 2019, Latvia ✓ - ✗ ✗ ✗ ✓ ✗ ✗ ✓ ✗ ✗
[88] 2021, Slovenia ✓ - ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✓
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6. IoT-Based Poultry Monitoring Systems

Temperature, humidity, and light are vital parameters for hen growth and healthy
life. With the help of IoT technologies, researchers applied sensors to measure poultry
environments and automated devices to maintain constant temperature, humidity, and
light in poultry farms. The details regarding IoT-based poultry farms are given below.

Chien et al. [89] designed a smart system to monitor and analyze the egg-laying
behavior of hens. RFID tags were attached to hens’ legs in this system, and an RFID
receiver installed in the hen nest box identified hen movements. In order to identify an
egg, a strain gauge pressure sensor was used. The collected data were sent to an Arduino
board (MEGA-2560), and the data were then sent to cloud storage, an NTP server, and
an SD memory card via a gateway. An experiment was conducted on four hens at the
National Ilan University, Taiwan, for 45 days. Infrared cameras were used to monitor the
hens to verify the RFID signals. The system helped farmers monitor the laying nature of
hens. Gobinath et al. [90] automated poultry farm activities and presented a system that
helps to provide constant temperature and light. In this system, existing poultry farm
activities are replaced with different sensors and different devices. Temperature sensor
details help to automate foggers and water pumps with the help of a relay. An ultrasonic
sensor helps to measure a food tray with the help of a gear motor. To feed hens, hen food is
supplied to hens with the help of a gear motor. The gear motor supplies food to hens and
also moves the food trolley two times per day. An Arduino Uno ATmega328 is used as a
gateway that receives sensor details and automates devices with the help of a relay. The
main drawback of the system is that its data are not stored or processed for future analysis.
Pereira et al. [91] designed a low-cost hen farm monitoring system. In this system, to
measure temperature and humidity, a DHT22 sensor was used, an MQ-137 electrochemical
sensor was used to measure ammonia levels in the air, and a light-dependent resistor sensor
was used to measure luminosity. These devices sent data to the gateway (Wemos Mini
D1), and the gateway sent data to the server using Wi-Fi. Users were able to access farm
details via a mobile application. An experiment was conducted at the Federal Institute
of Education in Brazil for five days. The proposed low-cost system outperformed other
commercially available devices. Niranjan et al. [92] used various sensors to monitor a hen
egg incubator. In this system, two temperature sensors, namely DHT11 and DS18B20, were
used to monitor temperature; a humidity sensor (HSM-20G) was used to read humidity;
a reed switch was used to monitor the tilt of eggs in the incubator; and to monitor the
water level, stainless steel rods were used in the egg incubator. NodeMCU (ESP8266) was
controlled by ESP8266 and PIC16F887 controllers. To control air circulation, DC fans were
used. The result showed that the best temperature for an incubator is 36.5 ◦C to 38 ◦C.
Users were able to monitor environment parameters on their mobile devices using the
Blynk application. The system’s limitation was that data were not stored on a server or in
the cloud.

Zhang et al. [93] used IoT and ML techniques to identify geese breeding eggs indoors.
A cage was designed so that only one goose could enter the nest and lay an egg. Geese
in this system are tagged with RFID tags that are installed in the cage. When geese enter
the nest, their identification details are sent to the gateway (Celeron J1800 CPU, Intel,
Santa Clara, CA, USA), and the gateway then sends the data to a cloud server for storage.
Hikvision DS-IPC-T12H2-I/POE cameras (Hikvision, Hangzhou, China) are used to record
video of the object in order to identify it. The video is split into images, which are then
processed by Pytoch’s deep learning frame using a modified single-shot multi-box detector
(SSD). The object information is printed on the quick response codes of eggs (QR codes).
The experiment was carried out at Yangzhou University in China.

Peprah et al. [94] created a solar-powered smart egg incubator to address Africa’s
power shortage. The authors used Arduino as a gateway in this system. In the incubator,
temperature and humidity were measured using temperature and humidity sensors. The
sensed values were sent to the gateway; if the incubator temperature fell below 37.5 degrees
Celsius, the gateway sent an SMS message to the user and the heater. Similarly, if the
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humidity value was less than the threshold value, the heater was turned on. Based on the
threshold value, the gateway turned the heater and motor on and off. It aided in avoiding
unnecessary power consumption in the incubator. Furthermore, because the solar incubator
was powered by solar energy, the power issue was avoided. Feiyang et al. [95] used RFID
tags to track hens in poultry farms. In this system, hens were fitted with RFID tags, and
RFID receivers were installed on various posts throughout hen farms. This system was able
to identify hens and their movement, resting time, and ability to find (snatch) food, and a
weighing device was used to measure the hens’ weight. The k-means clustering algorithm
was used to analyze these details, and the hens were classified as normal, active, or sick. An
experiment on 24 hens was carried out in Jianggao, China. It would have been preferable
if the system had used more sensors to improve classification accuracy. Furthermore, no
gateway or graphical user interface (GUI) was used by the system. Various IoT components
used in poultry monitoring systems are shown in Table 6, and various aspects of poultry
monitoring systems are displayed in Table 7. Mitkari et al. [96] developed an automated
food supply and temperature control system for a poultry farm. This system has a moving
food-providing system. Using Bluetooth signals, users can turn on and off the food valve
of the food container. A DHT22 sensor is used to measure the temperature of the chicken
farm and to activate the sprinkler via a relay. An Arduino ATMEGA328P gateway is used
to control the devices. The system does not keep details about poultry farms for later
examination. Few researchers applied IoT technologies to monitor fish and automate fish
farm activities. These IoT-based fish farm monitoring systems are discussed in the next
section.

Table 6. Classification of IoT-based poultry monitoring systems.

Application Reference

Animal Identification [95]
Behavior Analysis [89,95]
Animal Temperature Monitoring -
Growth/Weight Analysis [95]
Disease Detection and Analysis -
Pollution Monitoring [91,97–99]
Farm Automation [90,92–94,96,100–102]
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Table 7. Various aspects of IoT-based poultry farm monitoring systems.

Ref. No. Year and
Country

Animal
Monitoring

Sensor
Position

Environment
Monitoring

Automation
of Devices

Energy
Consumption

Usage of
Renewable

Energy
Scalability Security Cloud

Storage
Data Analysis
and Prediction

Web or
Mobile
Access

[89] 2018, Taiwan ✓ Legs ✓ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✗
[91] 2020, Brazil ✗ - ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓
[92] 2021, India ✗ - ✓ ✗ ✗ ✓ ✓ ✗ ✗ ✗ ✓
[93] 2022, China ✗ - ✓ ✓ ✗ ✗ ✗ ✓ ✗ ✗ ✗
[94] 2022, Ghana ✗ - ✓ ✓ ✗ ✓ ✗ ✗ ✗ ✗ ✗
[95] 2016, China ✓ Legs ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✗
[90] 2021, India ✗ - ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗
[96] 2019, India ✗ - ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗
[100] 2019, China ✗ - ✓ ✓ ✗ ✓ ✓ ✗ ✗ ✗ ✗
[97] 2018, Pakistan ✗ - ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗
[98] 2015, China ✗ - ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗
[101] 2020, Viet Nam ✗ - ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✓
[99] 2022, Latvia ✗ - ✓ ✓ ✗ ✗ ✗ ✗ ✓ ✗ ✓
[102] 2022, Zimbabwe ✗ - ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗
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7. IoT-Based Fish Farm Monitoring Systems

Water quality is an important parameter for fish growth [103]. Underwater sensors
are used to measure water quality [104]. Researchers measure the turbidity level, oxygen
content, pH, turbidity level, and temperature in water with the help of sensors, and these
data help to understand water quality and fish behavior with respect to water quality.
IoT-based fish farm monitoring systems are given below.

Yang et al. [2] proposed an acoustic telemetry system for detecting changes in the
environment and studying fish characteristics. Microcontrollers, Arduino boards, Wi-Fi
modems, wind speed sensors, weather stations, satellite modems, acoustic telemetry
modems, Ethernet modems, and other devices were used in the systems. On 26 August 2020
and 23 September 2022, the system was tested near Ice Harbor Dam in the United States.
The system was capable of detecting fish migration, water flow patterns, and aquatic
environmental changes. The system has the advantage of being able to monitor changes
in the relationship between offshore and onshore measurements. Putra et al. [105] created
a portable IoT-based water quality measurement device to monitor water quality in fish
farms. In this system, a turbidity sensor was used to measure the turbidity level in water,
and an RGB sensor, along with a potentiometer, was used to ensure that the intensity of the
water was uniform. These sensors sent environment details to NodeMCU (the gateway),
and a GPS device was used to determine the location. The hardware device transmitted
data to the mobile device via Bluetooth. These files were saved in the cloud. The system was
set up in Bedadung River, Indonesia. A commercial turbidity meter was used to validate
the system’s output. The results demonstrated that the system could detect turbidity levels
ranging from 0 to 500 NTU with an RMSE of 20 to 30. The system’s advantage was its low
cost in comparison to commercial products, but it suffers from its high RMSE.

Chiu et al. [106] used multiple sensors to collect data from a fishpond and control
different actions based on the measured values. The authors used a dissolved oxygen
sensor, a pH sensor, a turbidity sensor, and a temperature sensor in this system to measure
oxygen content, pH, turbidity level, and temperature in water. Wi-Fi was used to send the
collected data to a gateway (Arduino Mega2560). Based on the received values, the gateway
controlled the actions of devices such as a water pump, heater, agitator, smart feeding
device, and limit switch. In addition, gateways sent data to cloud storage. Further data
were analyzed using deep learning models, which predicted fish growth. Users could also
use IPCAM to monitor fish. Similarly, users could view fish and environmental variables
and control the devices via a mobile application. The authors evaluated the designed
system in the monitoring of the growth of California bass fish. The system’s limitation was
that, while it was ideal for small fishponds, it was difficult to scale up to larger aquaculture
operations due to the high cost. Tamim et al. [107] collected aquatic environmental data
using various sensors. In this system, the authors measured water temperature, ammonia
level, oxygen level, and pH level using a temperature sensor, an ammonia kit, an oxygen
kit, and a pH sensor. NodeMCU received the measured values. Using the Massachusetts
Institute of Technology application, users were able to obtain information in a mobile app.
Data in Google Firebase were stored in JSON format. The authors used a small lab setup
to test the system. The system’s limitation is its lack of compatibility. Dupont et al. [108]
measured water temperature, water pH, and water dissolved oxygen levels using different
sensors. The authors used an Arduino Pro Mini as a gateway. Data were stored in a
MongoDB database, and users could access the data using a smartphone with the help of
Kibana. The model was deployed in Kumah Farms, Ghana, in January 2017, and it weighed
over 18 pounds. The limitations of the system are that it does not monitor fish and that the
battery should be replaced at regular intervals. Reduan et al. [109] used DFRobot Turbidity,
DS18B2, and DFRobot PH meters to measure the dissolved oxygen, temperature, and pH
levels of water. All these devices were connected to an Arduino board. With the use of a
GSM module, data were sent to an LCD screen for display in SMS format. Then, the data
were stored in Excel format for future access. The experiment was conducted in June 2021.
The limitation of the system was that it did not utilize energy optimization and had no



Sustainability 2024, 16, 4073 22 of 37

GUI or remote access. Rashid et al. [110] applied IoT technologies to automate a biofloc
pond in Bangladesh. The authors used temperature sensors, total dissolved solid sensors,
and pH sensors with an Arduino UNO. The system helped workers at the biofloc pond
measure water properties without any manual work. The collected data were applied to
a machine learning algorithm for prediction purposes, and the result showed it obtained
77% accuracy. Susanti et al. [111] used total dissolved solid (TDS) sensors, temperature
sensors, and pH sensors to measure the water quality of aquaculture systems. Sensors such
as DS18B20, SEN0161, and SEN0244 were connected with a NodeMCU ESP8266 gateway.
The system has an LCD screen that displays the sensor values. The users can access the
sensor data using an Android mobile application. The advantage of the system is its low
cost. Gao et al. [112] used IoT techniques to trace the quality of the water in a freshwater
fish tank. Fish were tagged with QR codes so that each individual fish could be traced, and
each fish’s behavior and growth details were stored in a database. Based on the measured
values, water filtration actuators could be controlled. The main benefit of the system was
the web interface, which allowed customers to log in and track the water quality and fish
growth details before purchasing fish. Hassan et al. [113] used a LoRA module to monitor
fish and water properties in marine farms. To collect data underwater, acoustic test tags
(Thelma Biotel AS) and TBR-700-RT acoustic receivers were used. These data were then
transferred to the surface and accessed by a LoRa Add-on Module before being forwarded
to a MultiConnect Conduit (MTCDT-H5-210L) that served as a gateway. Using the MQTT
protocol, the gateway sent data to the Internet. An experiment was carried out in Norway
to investigate real-time data access from a marine farm. The system’s advantage was its
ability to transfer marine farm information over up to 450 m underwater using the LoRa
technique. The system’s limitation was that it did not monitor fish details such as location
and behavior. Table 8 indicates that the majority of IoT-based fish monitoring systems
monitor water quality parameters such as temperature, oxygen level, and pH level. Table 9
presents a list of fish monitoring systems features.

Table 8. Classification of IoT-based fish farm monitoring systems.

Application Reference

Water Flow and Fish Migration Detection [2]

Pollution (Water Characteristics) Monitoring [105–109,111]

Farm Automation [110]
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Table 9. Various aspects of IoT-based fish farm monitoring systems.

Ref. No. Year and Country Animal
Monitoring

Sensor
Position

Environment
Monitoring

Automation
of Devices

Energy
Consumption

Usage of
Renewable

Energy
Scalability Security Cloud

Storage
Data Analysis
and Prediction

Web or
Mobile
Access

[2] 2022, China ✗ - ✓ ✗ ✓ ✗ ✓ ✗ ✓ ✗ ✗
[105] 2022, Indonesia ✗ - ✓ ✗ ✗ ✗ ✗ ✓ ✓ ✓ ✓
[106] 2022 ✗ - ✓ ✓ ✗ ✗ ✗ ✓ ✓ ✓ ✓
[107] 2021, Bangladesh ✗ - ✓ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✗

[108] 2018,
France ✗ - ✓ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✓

[109] 2021, Malaysia ✗ - ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗
[110] 2021, Bangladesh ✗ - ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✗
[111] 2021, Indonesia ✗ - ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓
[112] 2019, China ✓ Fin ✓ ✓ ✗ ✗ ✗ ✗ ✓ ✓ ✓
[113] 2019, Norway ✗ - ✓ ✗ ✓ ✗ ✗ ✗ ✓ ✗ ✗
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8. Discussion and Future Directions

The application of the Internet of Things (IoT) to livestock farming gives a lot of
advantages to farmers, but we have observed a few limitations in existing IoT-based
livestock farming techniques. The following limitations should be overcome in the future
to improve the effectiveness and efficiency of farmers working with their livestock.

Animal and Environment Monitoring:

Animals are vital to livestock management. Animal welfare is critical in livestock
monitoring. As a result, it is critical to monitor livestock animals. According to Figure 6,
65% of cattle monitoring systems can monitor cattle using necessary sensors and video
cameras. This aids in the understanding of animal behavior as well as the prediction of
farm outcomes such as milk yield and animal weight gains and losses. Approximately 15%
of bee farm monitoring systems track bee behavior parameters such as hive weight and
bee sounds. However, only 6% of poultry farm management systems monitor hens. It is
difficult to equip each hen with sensors in a poultry farm because of the abundance of hens.
Video analysis and sound analysis could be used to monitor large number of hens. Figure 7
shows the environment monitoring of different livestock systems.

Figure 6. Animal monitoring in IoT-based livestock farms.

Figure 7. Environment monitoring in IoT-based livestock farms.
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Device Automation:

The Internet of Things enables us to automate devices when certain conditions are met.
It would be extremely beneficial for farmers and livestock workers. However, as shown in
Figure 8, 12%, 20%, and 71% of cattle monitoring systems, poultry monitoring systems, and
fish monitoring systems use IoT technology to automate farm activities. Most IoT-based
poultry monitoring systems measure environmental parameters such as temperature and
humidity and automate devices like sprinklers, fans, lights, and incubators. Very few
devices are automated in cattle farms, fish farms, and bee farms. Since the workforce is one
of the major costs of livestock farming, researchers should design a system to automate
various necessary devices such as water motors, feeding systems, lights, fans, and heaters
in cattle, fish, and bee farms.

Figure 8. Device automation in IoT-based livestock farms.

Energy Consumption:

Since all smart devices require power, a system should be designed to utilize as little
energy as possible. As shown in Figure 9, only 18% of cattle monitoring systems, 30% of
bee monitoring systems, 7% of poultry farm monitoring systems, and 20% of fish farm
monitoring systems used energy consumption reduction concepts such as the sleep/awake
concept. The sleep/awake method involves sensors, actuators, and other devices sleeping
most of the time and only activating when necessary. These devices will only receive power
when devices are active; when devices are sleeping, the power will be turned off. This cuts
down on the use of unnecessary energy. Incorporating awake and sleeping techniques into
smart livestock husbandry techniques would be beneficial for future research [114,115].
Researchers could apply techniques like sensor- and actuator-based energy utilization
methodologies [116,117], cloud-based energy optimization [118,119], and network-level
energy optimization [120–122] for energy consumption.

Usage of Renewable Energy:

Several of the current research investigations in intelligent cattle husbandry employ
batteries. According to Figure 10, just 6% of livestock agricultural monitoring systems for
cattle, 30% of monitoring systems for beehives, and 21% of monitoring systems for poultry
farms use renewable energy. When deployed on a large livestock farm, a system may
necessitate a significant quantity of electric/battery power. Solar energy, thermoelectric
energy, radio frequency energy, and electromagnetic energy should all be investigated
as alternatives to battery or electrical energy. This will help to minimize electricity costs
while also benefiting the environment [123,124]. Also, future IoT-based animal monitoring
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systems could concentrate more on micro-energy harvesting techniques [125], multi-model
energy harvesting schemes [126], and microgrid structures [127] for renewable energy
generation and distribution.

Figure 9. Energy consumption in IoT-based livestock farms.

Figure 10. Usage of renewable energy in IoT-based livestock farms.

Scalability:

Researchers should build smart systems so that farmers can add or remove sensors,
actuators, and gateways as needed. Most existing smart farming techniques utilize IoT
technologies only for certain farm animals rather than all farm animals. A system should
provide an easy mechanism for adding/removing devices, such as a plug-and-play method,
so that farmers may simply add/remove devices in smart livestock farming [128,129].
Nevertheless, as illustrated in Figure 11, just 26% of fish farm monitoring systems, 20%
of bee farm monitoring systems, 21% of poultry farm monitoring systems, and 20% of
cattle farm monitoring systems offered the capability to quickly add and remove devices in
IoT-based animal farming approaches.

Data Security:

Most communication methodologies, such as ZigBee and Wi-Fi, are vulnerable to
numerous security assaults [130]. For example, ZigBee is susceptible to packet decoding,
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data manipulation, and traffic sniffing concerns, while IEEE 802.11 is susceptible to jam-
ming, scrambling, and passive assaults. The necessary critical work should be completed to
safeguard data transmission and trust management strategies in the IoT [131]. Researchers
could use AWS IoT device defender [127], Azure IoT Hubs [132], and AWS IoT [133] ser-
vices for secure data storage and transfer. This will help to prevent different security attacks
and provide secure data transmission, storage, and accessibility. The essential measures
for increasing security in IoT-based animal livestock farming, however, as per Figure 12,
have only been implemented by 18% of cow monitoring systems, 20% of bee monitoring
systems, 7% of poultry monitoring systems, and 30% of fish monitoring systems.

Figure 11. Scalability in IoT-based livestock farms.

Figure 12. Data security in IoT-based livestock farms.

Cloud Storage and Web/Mobile Interface:

Data persistence, availability, and accessibility are critical parameters. Instead of
storing data on SD cards or in local memory, it would good option to store data in the cloud.
Many open-source cloud platforms are available for storing IoT details. Cloud storage
helps to ensure data persistence, availability, and accessibility. But still, many systems are
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using local storage instead of cloud storage. Also, users should have a proper platform
for accessing farm data from anywhere at any time. But many systems use LCD/LED
display devices. Also, many systems do not provide a proper interface for data accessibility.
Instead of using traditional display devices, researchers should use web interfaces and
mobile interfaces for data accessibility. Figures 13 and 14 show cloud storage utilization
and web and mobile interface details for livestock farms.

Figure 13. Cloud storage in IoT-based livestock farms.

Figure 14. Web/mobile interface in IoT-based livestock farms.

Data Analysis and Prediction:

Smart farming systems help to record animal and environmental details using IoT
technology and store them on servers without further processing. Instead of storing idle
data, a suitable ML, AI, and mathematical model should be employed for prediction,
assisting farmers in planning for their future processes [134,135]. From Figure 15, it was
discovered that approximately 40% of cattle, bee farm, and fish monitoring systems used
a machine learning, artificial intelligence, or mathematical prediction model to predict
animal behavior based on farm data. This analysis helps predict animal behavior, disease,
growth, etc.
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Figure 15. Data analysis in IoT-based livestock farms.

In general, animal monitoring and livestock husbandry need a significant amount of
workforce, effort, time, and money. To lessen these, IoT technologies are used in animal
monitoring.

Table 10 shows different IoT technologies, such as devices, controllers, communication
protocols, storage, security, and GUI details, of IoT-based smart livestock farming systems.

Table 10. IoT technologies used in smart livestock farming.

Author IoT Devices Controller Communication
Protocol Storage Security GUI

Yang et al. [2]

Microcontroller unit,
water leak sensor, acoustic

telemetry modem,
acoustic receiver, cellular

and satellite modem,
weather station

Arduino Zero Ethernet and
Wi-Fi modem - - -

Popa et al. [63]

CH4S sensor, Cox sensor,
Nox sensor, ammonia

sensor, water level sensor,
weight sensor, humidity
and temperature sensor

Dragino DLOS8 LoRa Cloud - Web app

Zhang et al. [60]

Temperature sensor, wind
speed, gas sensor (to read

ammonia and carbon
dioxide), humidity and

light intensity
sensors, RS-485

communication module

Main controller
STC12LE5A60S2 TCP/IP - - -

Taneja et al. [45] Radio-based long-range
pedometer (LRP) Computer

Radio
communication,
MQTT protocol

Cloud - Mobile app

Feng et al. [47] GPS Computer Offline analysis - - -

Dineva et al. [48] IoT sensors, video camera,
thermal camera, GPS

AWS IoT
Greengrass Wi-Fi and MQTT Cloud Inbuilt

security pillar -

Mirmanov et al. [49] UHF RFID tags,
strain gauges Raspberry Pi LoRaWAN

and Wi-Fi -
Cryptography

attack
detection module

-
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Table 10. Cont.

Author IoT Devices Controller Communication
Protocol Storage Security GUI

Dutta et al. [50]
Temperature thermistor
(NTCLE413E2103F102L)

and GPS module

ATMEL328P
microprocessor

GSM/GPRS
Quad Band TTL
UART modem

Cloud - Mobile app

Arshad et al. [51] Body temperature sensor,
stethoscope sensor, GPS Node-MCU Offline data

collection - - -

Maroto-Molina
et al. [52]

GPS module,
Bluetooth module Microcontroller Bluetooth,

MQTT Protocol Cloud - Mobile app

Lovarelli et al. [53] EFR32BG13 Blue
Gecko SiP - 4G GSM Cloud - Mobile app

Datta et al. [61] RF Explorer,
ANT700 antenna - - Cloud

storage - -

Chung et al. [62] RFID LifeChip Microchip - Wi-Fi, LoRa Cloud - -

Righi et al. [59] RFID tags, milk
production sensors

MooField
controller - Cloud - No GUI

Ojo et al. [66]
Inertial sensors, Global

Positioning System
(GPS) receiver

STM32L0 MCU LoRaWAN Cloud AWS lambda Mobile and
Web app

Rao et al. [67]

NH3, CO2, and
temperature and humidity

sensors; H2S sensors;
RS485 HUB; camera

Raspberry Pi - NoSQL DB - Web app

Jumi et al. [68]
Pan–tilt–zoom camera,

MLX90614
temperature sensors

NodeMCU
gateway - - - Web and

Mobile app

Cui et al. [69]

APDS-9008 sensor,
MLX90615 infrared

thermometer,
DHT20 sensor

ATmega328
microcontroller

Bluetooth
technology - - -

Lee et al. [70]
Bluetooth tags, wireless
broadband leaky coaxial

cable antennas
- Bluetooth - - -

Chen et al. [71]

Microphone, IP camera,
temperature sensor, floor

vibration sensor, and
water drop

- Ethernet cable -
Data bank
coupling
with DB

Mobile app

Lee et al. [72] Video camera A multi-core CPU - - - -

Bonde et al. [73] Geophone sensors,
video camera NodeMCU

Wi-Fi using the
MQTT

message model
- - -

Sena et al. [75]
DHT11 temperature and

humidity sensor, HC-SR04
ultrasonic sensor

ESP8266
microcontroller - - - -

Vaughan et al. [76] Plastic optical fiber
(POF) sensor

ATM2560
Arduino

Mega board
- - - LCD Screen

Popa et al. [78]
Temperature sensor,

pressure sensor, humidity
sensors, and air sensors

- MQTT protocol Cloud - -

Cejrowski et al. [79]

Microphone,
analog-to-digital

converter (ADS1115),
resistors, and

MOSFET-N transistor

Raspberry Pi - - - -

Gil-Lebrero
et al. [80]

SHT15 humidity sensors,
MCP9700A

temperature sensor

Waspmote
module - Cloud Extra

Security Layer -
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Table 10. Cont.

Author IoT Devices Controller Communication
Protocol Storage Security GUI

Hong et al. [81]

Temperature and
humidity sensor (DTH12),
acoustics sensor, entrance

sensor, weight sensor

STM32
microprocessor Wi-Fi Cloud - Web app

Mrozek et al. [82] 5-megapixel camera Raspberry Pi MQTT protocol Cloud - -

Tashakkori
et al. [83]

Humidity and
temperature sensor,

microphone, Raspberry
Pi camera

Raspberry Pi MQTT protocol Cloud
storage - ThingsBoard

Gabitov et al. [84] Temperature and
humidity sensors

RAK7204
monoblock

devices
LoRaWAN Cloud

storage - -

Andrijević
et al. [85]

Temperature, humidity,
and air quality sensors Raspberry Pi - - - Web app

Zabasta
et al. [86,87]

IP camera, temperature,
humidity, and
weight sensors

Waspmote
module

GSM and
MQTT gateways - - -

Zgank et al. [88] Voice recorder - GSM Cloud - Mobile app

Cejrowski et al. [79]

Microphone,
analog-to-digital

converter (ADS1115),
resistors, and

MOSFET-N transistor

- - - - -

Chien et al. [89]
RFID tags, RFID receiver,

strain gauge
pressure sensor

Arduino Wi-Fi Cloud
storage - -

Gobinath et al. [90] Temperature sensor,
ultrasonic sensor

Arduino Uno
ATmega328 - - - -

Pereira et al. [91]

Temperature and
humidity sensor (DHT22),

electrochemical sensor
(MQ-137),

light-dependent
resistor sensor

Wemos
Mini D1 Wi-Fi - - -

Niranjan et al. [92]

Temperature sensor
(DHT11 and DS18B20),

humidity sensor
(HSM-20G), Reed switch,

water level sensor

NodeMCU
(ESP8266) - Blynk

application - -

Dineva et al. [56] Custom IoT devices,
QR tag Custom gateway LoRaWAN

and Wi-Fi
Cloud
storage - -

Dineva et al. [57] Custom IoT Devices,
QR tags Custom gateway LoRaWAN

and Wi-Fi
Cloud
storage Azure IoT Hubs Power BI

Putra et al. [105] Turbidity sensor, RGB
sensor, potentiometer NodeMCU Bluetooth Cloud

storage

Third-party
data storage

and processing
system

Mobile app

Chiu et al. [106]
Oxygen sensor, pH sensor,

turbidity sensor,
temperature sensor

Arduino
Mega2560 Wi-Fi

Cloud
storage
and AI

- -

Tamim et al. [107]
Temperature sensor,

ammonia kit, oxygen kit,
pH sensor

NodeMCU Wi-Fi Cloud
storage - -

Gao et al. [112]

Turbidity sensor,
temperature sensor, pH

sensor, dissolved
oxygen sensor

Arduino
Mega2560 Wi-Fi Cloud - Mobile app
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Table 10. Cont.

Author IoT Devices Controller Communication
Protocol Storage Security GUI

Dupont et al. [108] Water temperature, water
pH sensor Arduino Pro Mini - - - -

Reduan et al. [109]
DFRobot Turbidity,

DS18B2, and DFRobot
pH meters

Arduino board GSM module Cloud
storage - No GUI

Rashid et al. [110]
Temperature sensors, total

dissolved solid sensors,
pH sensors

Arduino UNO - - - -

Susanti et al. [111]

Total dissolved solid
(TDS) sensors,

temperature sensors, and
pH sensors

NodeMCU
ESP8266 - - - Mobile app

Hao et al. [58] RFID tag, weight machine - Wired network Database - Web app

Park et al. [65] GPS tag - Bluetooth Database - -

Chen et al. [74] Video camera Computer Wired network - - -

Lee et al. [77] IC tags, antenna Computer Wired network - - -

Zhang et al. [93]

RFID tag, photoelectric
sensor, conveyer belt

drive motor,
stepper motor

Computer - Database - -

Hassan et al. [113]

Acoustic test tags (Thelma
Biotel AS) and

TBR-700-RT
acoustic receivers

MultiConnect
Conduit

(MTCDT-H5-210L)

LoRA module,
MQTT protocol - - -

9. Conclusions

In general, animal monitoring and livestock husbandry need a significant amount of
workforce, effort, time, and money. To lessen these, IoT technologies are used in animal
monitoring and livestock farming. IoT technologies are used to monitor animal behavior
and animal health, automate farm daily activities, improve farm protection, monitor
environmental changes, and anticipate future events based on collected data. According
to the findings of this study, current smart animal monitoring systems should focus more
on energy utilization, scalability, security, and the use of renewable energy. Researchers
should also concentrate on animal disease finding, the isolation of infected animals, water
conservation, farm management, animal growth monitoring, and automatic food feeding
systems. The data collected from IoT devices should be used with the necessary machine
learning and deep learning techniques for animal activity, disease, and growth prediction.
This will help farmers to take the essential steps based on predictions. Future work should
concentrate more on the impact of AI in livestock monitoring and the role of the IoT in
establishing connections between farm owners and customers.
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