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Abstract: Life quality in urban contexts is related to several interconnected factors. Lots of innovative
technologies allow for the gathering of real-time information, which is helpful for analysing and
interpreting significant urban dynamics and citizens’ behaviours. The presence of people in outdoor
environments, particularly for social and recreational purposes, can be considered as a qualitative
indicator, giving evidence of a living environment. The relationship between urban areas and the
climate context has been addressed in recent years by the scientific literature. However, these studies
did not report the direct correlation between people’s presence and outdoor thermal comfort in
outdoor spaces. The aim of this paper is to assess whether the presence of people in outdoor public
spaces, detected through human presence sensors, can be associated with outdoor microclimatic
conditions (both with on-site measurement and software simulation) and outdoor thermal comfort
indicators (as physiological equivalent temperature). The question is whether there exists a direct
correlation between outdoor microclimate in public spaces and people’s presence, and if a public
event plays a role in changing it. The research compares on-site measurements of physics variables
(e.g., air temperature) and people’s presence with outdoor microclimate maps by Envi-met. The case
study, carried out in the framework of the H2020 project ROCK—Regeneration and Optimization
of Cultural Heritage in Creative and Knowledge cities, focuses on two squares located in Bologna’s
historic city center. The conclusions show that public events are the main deciding factor influencing
square crowding; nevertheless, the study reveals a relationship between thermal comfort and the
number of people.

Keywords: outdoor microclimate; pedestrian comfort; people flow; Envi-met modeling; microclimate
validation; people presence; outdoor microclimate map

1. Introduction

Cities and the built environment are the contexts in which most human activities take
place, both inside and outside buildings. In particular, the use of outdoor space depends
on multiple factors, e.g., environmental (climate and seasons), architectural (open space
configuration such as squares, parks, roads, etc.), urban features and management (urban
context, rural, historic center, etc.), economic factors (presence of activities, people flow)
and social factors (public events, attractive places, etc.).

The quality of life in urban environments [1] is closely related to the above-mentioned
elements and their possible combinations. Among them, some are directly measurable, such
as climate and the physical and dimensional characteristics of architectural settlements;
others are indirectly measurable, such as crowding, traffic and pollution and, finally,
others cannot be measured, i.e., people’s affection and care for certain city areas. Such
affection is, in most cases, related to cultural, symbolic and identity values (as for historical
centers) and is linked to local traditions. In other terms, the presence of people in outdoor
environments, particularly for social and recreational purposes, represents a qualitative
indicator, providing evidence of a living space.

Sustainability 2023, 15, 7527. https://doi.org/10.3390/su15097527 https://www.mdpi.com/journal/sustainability

https://doi.org/10.3390/su15097527
https://doi.org/10.3390/su15097527
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com
https://orcid.org/0000-0002-7516-7556
https://orcid.org/0000-0003-0919-7455
https://orcid.org/0000-0002-6192-3437
https://orcid.org/0000-0003-2147-3192
https://doi.org/10.3390/su15097527
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com/article/10.3390/su15097527?type=check_update&version=1


Sustainability 2023, 15, 7527 2 of 27

1.1. Outdoor Microclimate Simulation with Envi-Met Software

In recent decades, the temperature increase due to climate change has been perceived
with particular intensity in urban areas, where compact building configurations and the low
presence of vegetation have exacerbated the urban heat island (UHI) phenomenon [2]. In
the Mediterranean context, in particular, the adoption of solutions that allow for improving
outdoor thermal comfort conditions in the summer period is needed so that the temperature
increase does not compromise the livability of outdoor spaces and the health conditions of
the most vulnerable population groups.

The relationship between urban areas and climate has been addressed in recent years
by the scientific literature, passing from the territorial and climatic level to the one address-
ing the city and the urban microclimate [3–7]. The research takes advantage of method-
ologies and tools that make outdoor microclimate simulations possible, allowing for the
investigation of different mitigation approaches to the urban heat island phenomenon and
the study of the geometric configuration of urban spaces in relation to the presence of
vegetation and the characteristics of materials.

The Envi-met simulation software (www.envi-met.com, accessed 2 May 2023) is one
of the most widely used tools for these purposes. It is a three-dimensional nonhydrostatic
microclimate model that uses the fundamental laws of fluid dynamics and thermodynamics
to calculate and simulate the climate in urban areas. The typical grid resolution of 0.5–10 m
in space with a time step of 1–5 s allows for analysing interactions between buildings, soil
vegetation and the atmosphere at different scales [8]. The Envi-met software proved to
be a valid tool for supporting the design of interventions that involve an improvement
in outdoor space comfort conditions [4]. Moreover, thanks to the use of outdoor microcli-
mate maps (OMMs), the results of the simulations can be translated in a clear and easily
understandable way, even for nonexpert users, in order to support comfort zones and
microclimatic variations at specific sites [9].

The adoption of microclimatic simulations as a tool for decision-making processes
can be used in different areas of investigation and intervention: archaeological sites [10],
historic centres with tourist interest [11], newly built districts [12] and redevelopment of
existing neighbourhoods [13]. Some authors adopt a regression model of neutral adaptive
thermal comfort [14,15].

Some studies, carried out with Envi-met, highlight the close correlation between the
architectural and geometric configuration of the built environment and urban microclimate
conditions [16]. The urban form, intended for buildings’ sizes and their in-between spaces,
has a strong impact on the average radiant temperature and on the surface shading pattern.
At the same time, it influences wind speed, favouring or sometimes blocking the flow
of air [17–19]. Mahgoub et al. underlined the need to develop an open platform for
suitable urban space in specific climatic conditions, able to promote an improvement
in perceived comfort conditions [20]. Other studies analysed recurrent urban forms in
order to identify the spatial characteristics that best respond to comfort-condition needs.
Urban canyons [21,22] and courtyard blocks [23–25] are investigated in relation to the
height/width ratio (H/W), to the sky view factor (SVF) and to their orientation. Martinelli
and Matzarakis, for example, studied the H/W ratio at different latitudes in relation to the
microclimatic comfort of court spaces located in Italy. As a result, an H/W ratio of 4:5 or
5:5 is considered more suitable for warmer climates, while an H/W ratio of 3:5 or 4:5 can
be effective in more temperate climates [26].

Other research supports the study of building shapes and the relationship between
full and empty spaces in the implementation of mitigation measures in urban contexts,
for example, the use of urban greening as a strategy for the reduction of the heat island
phenomenon. As suggested in [27–29], the selection and positioning of trees, green surfaces
and infrastructures, thanks to the evapotranspiration effect and the low vegetation capacity
to absorb and retain heat, can lead to temperature reductions (cooling effects), with positive
effects on the urban microclimate. These effects, however, must be related to airflow impact
on vegetation. The increase in trees, if not carefully studied, can lead to a decrease in airflow,
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bringing an increase in the concentration of pollutants at the local scale [30]. Among the
greening solutions, Berardi investigates the dual benefit deriving from the use of green
roofs in building renovations [31] thanks to the combined use of microclimatic simulations
(performed with Envi-met) and building energy simulations (performed with Energy-Plus).

The above-mentioned mitigation techniques, when used individually or jointly, lead to
a variation in the outdoor microclimate and, consequently, to an improvement in outdoor
thermal comfort perception and a reduction in people’s health risks [32–34]. As shown in
the literature review, the use of microclimatic indicators (air temperature, relative humidity and
wind speed) combined with thermal comfort indicators—predicted mean vote (PMV), physio-
logical equivalent temperature (PET) and universal thermal climate index (UTCI)—represents
an important resource for public space designs [35–38]. In order to allow thermal comfort
investigations in outdoor spaces, Envi-met software is a valid resource. In particular, the
combination of the Envi-met model with LadyBug allows for viewing the spatial distri-
bution of the predicted mean vote (PMV) index [39] and, similarly, the combination of
Envi-met and HURES [40] or Rayman [41] allows for mapping the universal thermal climate
index (UTCI), a useful index for the analysis of urban and landscape planning and design
on human thermal comfort. In order to verify Envi-met accuracy and reliability, some
studies carried out the model validation through on-site measurement of microclimatic
conditions (air temperature, relative humidity and air speed) [16,25,42]. Other research
used alternative methodologies: Fabbri and Costanzo calibrated the model through surface
temperature measurement with infrared images taken by a drone [43], while Pirini et al.
used the combination of Envi-met and TRNSYS software to improve model accuracy when
measuring outdoor comfort during the night [44,45].

1.2. Measurement of People Flow in Open Space

The increasing use of innovative technologies in urban contexts allows for the col-
lection of a large amount of data and information in real-time that, if properly processed,
can be useful in the analysis and understanding of some particularly complex urban
dynamics [46–48]. In fact, these data reflect the behaviours and habits of citizens and can
be exploited by policymakers, administrations, planners and service designers to redesign
public spaces, services and infrastructures using logic that puts at the centre the needs of
communities that habitually benefit from them [48,49].

The possibility of evaluating the impact and validity of the interventions and strategies
implemented through the use of instruments for measuring people’s presence in public
spaces was central to the H2020 project ROCK—Regeneration and Optimization of Cultural
Heritage in Creative and Knowledge cities (GA No. 730280) [50]. The project, which lasted
four years and ended in December 2020, aimed to enhance the regenerative capacity of
cultural heritage (CH) in the urban context. ROCK has supported the transformation of
some areas located in central positions towards smart, sustainable and resilient districts.
Through the adoption of tools and technologies to support the assessment of actions and
policies undertaken by local governments, the project incentivized public space usability
and cultural heritage accessibility from a citizen-centred perspective. The deployment of
tools and technologies followed the process of research-action-research [51], in which pilot
interventions were codesigned with communities, implemented as pilot activities and then
continuously monitored with the aim of understanding the impacts and effects.

In the dynamic and changing context of contemporary cities, people’s flow is a signifi-
cant indicator of attractive, accessible and healthy urban spaces [52]. In the city of Bologna,
within the framework of the ROCK project, a crowd monitoring system was installed to
monitor people flow in some historic central areas in the presence of temporary transfor-
mations of public spaces, codesigned and cocreated with citizens and other stakeholders
involved in the project.

The aim of this experiment was to use sensor data to assess how the climate and
microclimate of urban spaces, such as squares, have influenced people’s presence in the
area, with and without public events.
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Crowd monitoring instrumentation developed by DFRC (Data Fusion Research Cen-
tre), a company world leader in Wi-Fi analytics and a partner of the project, has been
installed on the Bologna University campus, along Zamboni Street. This LBASense tech-
nology, thanks to a network of distributed sensors that count the Wi-Fi or GPS signals
generated by smartphones within a radius of 50 m from the sensor, allows for estimating
in real-time and in aggregate mode (so as to prevent the identification of passersby) the
number of people present in an area, the duration of their stay and their origin country [53].

The collected data are openly accessible and downloadable through the ROCK plat-
form (https://www.rockproject.eu/ accessed 2 May 2023). In the dashboard section of the
platform, different query tools allow for dynamically visualising data through different
types of charts and diagrams and it is possible to download data in CSV format in relation
to the location of sensors, the time of interest, the temperatures recorded, the nationality of
visitors and the movements of passengers between different points of interest in the city.

The experiments carried out by the ROCK project allow for validating the importance
of providing urban planners and policymakers with tools dedicated to measuring the
impact of implemented actions [54], demonstrating how innovative solutions that improve
livability, accessibility and resilience in CH contexts can result from an appropriate use of
big datasets, now available to an increasing extent.

The scientific literature does not report studies or research that directly correlates the
presence of people in outdoor spaces with thermal comfort and outdoor microclimate simula-
tion, specifically using Envi-met software. In fact, from an explorative search carried out in
the Scopus database with the keywords “people flow” or “people presence” and “Envi-met”,
only the following articles were found [35,55]. The search with the keywords “pedestrian
comfort” and “Envi-met” reports less than a hundred publications such as [27,56–58], and,
similarly, the keywords “people flow” or “people presence” and “outdoor thermal comfort”
show the following articles, which are more focused on individual subjects than on people
flows [59–61].

In spite of that, some research share some aspects with the present one. A study
about thermal comfort in urban space carried out with interviews about people’s thermal
comfort described by Nikiolopoulou et al. [62], where the authors compare 1431 interviews
with on-site measured data with a minimet station and globothermometer; a study by
Nikiolopoulou and Lyjoudis [63], who have carried out 1503 interviews correlating them
with meteorological parameters and use of space; and other research in the Nordic climate
contexts, by Eliasson et al. [64], or in Japan, by Thorsson et al. [65] in urban public places.
All these studies adopt interviews to define people’s thermal comfort and microclimate data
measurement on site. Within this framework, when analysing the relationship between
microclimate and people’s behaviour, a different approach was adopted. In the case of the
present research, people’s thermal comfort perception depends on the crowd’s behaviour
in space, and microclimate data are not directly measured but simulated with Envi-met;
this simulation was later validated by in situ climate data monitoring. A similar approach
was adopted in the article by Chokhachian, Santucci and Auer [52] in Boston, where the
UTCI index was used instead of PET, the GPS-tracked pedestrian activity used in Bologna
to measure people’s presence. In Boston, the authors did not take into account any specific
public events to define the role of microclimate as a determinant for staying in an urban
space. This study, therefore, represents an innovative contribution in a little-explored
research area in which there are still limited and partial experiences.

The question is whether a direct correlation exists between outdoor microclimate in
public space and people’s presence, and if a public event plays a role in altering it. This
appears quite evident. If open space is too hot, people prefer to stay at home, except in the
case of a public event, such as a concert or a show.

Within the research field of urban and comfort studies, the authors propose a method-
ology to evaluate whether the above observation is true in every case in order to identify
health risks during mass gathering events [52–67] and the role of public space in prevent-
ing or triggering these health risks. The present research did not propose a survey or

https://www.rockproject.eu/
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questionnaire to people in order to discover their thermal sensations; instead, a different
methodology was adopted, inferring that if people stayed in the space, they showed that
they deemed the thermal condition acceptable or comfortable. The main novelty of the
study concerns the interrelationship between these three items: thermal comfort in outdoor
space, the architecture of public space and social events in the city centre. In our case,
as the results show, both public open space and public events have no negative effect on
people’s presence.

2. Goals

The goal of this research is to investigate the relationship between outdoor thermal
comfort and people’s presence in public open areas.

The outdoor microclimate simulation in urban spaces, with Envi-met software, allows
for verifying the relationship between the built environment and natural scenario charac-
teristics, such as urban fabric conformation, building architectural features, materials and
vegetation effects and local physical variables (air temperature, relative humidity, surface
temperature, wind speed). The characteristics of the modelled scenario and the physical
variables can be then related to users’ comfort perception expressed through biometeoro-
logical models, such as physiological equivalent temperature (PET) or universal thermal
climate index (UTCI), which allow for describing the overall thermal sensation of a person
standing in the virtual environment of the analysed scenario.

The results of the simulations carried out on the virtual model show all the above-
mentioned characteristics for outdoor thermal comfort determination and allow for the
description of the environment’s physical variables. These results can be compared with
the measured in situ real data so as to validate and verify the correspondence between
model and reality.

PET evaluation allows us to connect the comfort perceived by people in the built
environment with the people flow detected through City People Flow tools (DFRC) and,
then, identify the relationships between microclimatic context and people’s presence. This
reflection will necessarily have to consider that the urban microclimate is the sum of
independent meteorological factors that merge and coalesce at the human body as an
individual sensation of the local climate conditions and that those conditions depend on
urban and architectural characteristics, but also on the choice of materials and vegetation
that contribute to urban space definition.

The ROCK project adopted tools and technologies as key elements to deepen the
understanding of historic city centres behaviours, with the aim to sustain data-based
actions of regeneration and transformation in sustainable and more resilient districts,
considering the vulnerabilities and constraints of the specific cultural heritage contexts.
This project implemented multiple sets of integrated pilot actions to trigger the reactivation
of neglected or underused public spaces in the university area in Bologna. The quality
of public spaces is an essential component for the citizen quality of life. Thus, the ROCK
project aimed to test actions, strategies and tools to foster the usability and accessibility
of public spaces to all, fostering cultural heritage enhancement from a user perspective,
integrating physical transformations with new uses, also unconventional, to bring life
and social inclusion possibilities for public spaces. The study of the relation between
the microclimatic conditions in such public spaces and the presence of people was one
of the research inquiries; the use of sensors and assessment tools was at the base of the
methodology. In particular, the present paper aims to evaluate whether the presence of
people in public squares was due only to the organization of events or it was also related to
microclimatic conditions.

In other words, if it is recognised that a public event has a main role in triggering
people’s presence inside a public space, we aim to evaluate if outdoor microclimate also
plays a role, comparing moments with and without public events. In this way, our research
allows us to make an innovative contribution to the research field in outdoor microclimate,
pedestrian comfort, cities and society.
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3. Case Study

The research presented in this paper uses the Envi-met software to simulate outdoor
microclimate and thermal comfort in two central areas of the city of Bologna, located in
the ancient university district. Bologna is located in the north of Italy and has a dense
and significant historical city centre (Figure 1). The climate is warm and temperate and it
shows significant rainfall, even in the driest months. According to Koppen categories, the
climate has been classified as Cfa—humid subtropical climate [68,69]. The average annual
temperature in Bologna is 14.3 ◦C, while 825 mm is the average annual rainfall.
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The activity foresees the integration of different tools and sensors to evaluate the spatial
distribution of the above factors and obtain a combination of data useful to support strategic
actions at the demonstration sites. In fact, the possibility to detect the presence of people
in public spaces allows us to rate event successes, the effects of spatial transformations
and responses to regeneration strategies in order to be able to design urban strategies and
support decision-making addressed to regeneration and re-activation in CH contexts.

In detail, our research reported the correlation between people density (people flow,
count and density) and outdoor thermal comfort for Piazza Verdi and Piazza Scaravilli
(Figure 2), two of the most important squares along via Zamboni. The two areas are densely
built, and the urban fabric is very compact.
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Piazza Verdi’s dimensions are 26 m in width and 72 m in length with an area of
1872 m2; buildings average height around the place is 12 m (approximately four floors),
except along the north side where the Municipality Theatre of Bologna is located, with an
18-m height. The surrounding buildings do not shade the square. The sky view factor is
0.20. The pavement of the square is granite (single stone) with an albedo equal to 0.4.

Piazza Scaravilli is 50 m wide and 56 m long, with an area of 1120 m2, and it is
surrounded by a single 4-m wide and 8-m tall building, with a portico (height 4 m) along
all four sides. The other building around the square is 12 m tall. The sky view factor is 0.45.
All buildings have brick exposed. The pavement is in granite (single stone), the same as
Piazza Verdi, with an albedo equal to 0.4.

Climate data and weather conditions for four days of simulation are reported in Table 1.
In any case, wind speed measured at 10 m height is 2.50 m/s wind direction of 90 deg.

Table 1. Climate data, air temperature and relative humidity for four simulation days from
ARPAER [70].

Day Hour
Air

Temperature
(◦C)

Relative
Humidity (%) Day Hour Air Temp.(◦C) Relative

Humidity (%)

26
Ju

ne
20

19

00 24.3 64

16
A

ug
us

t2
01

9

00 21.3 67
01 23.6 66 01 21.2 60
02 23.4 65 02 19.2 63
03 23.1 65 03 18.8 71
04 22.5 66 04 18.7 77
05 22.7 64 05 18.9 82
06 23.8 60 06 19.8 77
07 26.4 51 07 20.3 74
08 27.9 49 08 21.7 67
09 30.2 42 09 22.6 62
10 31.3 39 10 24.3 52
11 32.2 37 11 25.8 40
12 33.0 36 12 26.5 36
13 33.4 33 13 27.1 35
14 33.8 33 14 27.4 33
15 33.9 32 15 27.7 33
16 33.9 31 16 27.6 32
17 33.8 31 17 27.4 32
18 33.0 33 18 26.7 39
19 32.1 38 19 25.5 44
20 30.5 45 20 24.5 49
21 28.1 55 21 23.7 51
22 27.0 61 22 22.7 55
23 26.3 62 23 21.4 61

27
Ju

ne
20

19

00 25.7 62

17
A

ug
us

t2
01

9

00 20.7 63
01 25.4 61 01 19.9 65
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Table 1. Cont.

Day Hour
Air

Temperature
(◦C)

Relative
Humidity (%) Day Hour Air Temp.(◦C) Relative

Humidity (%)

13 36.9 25 13 29.4 29
14 37.3 24 14 30.1 27
15 37.7 20 15 30.2 28
16 37.7 22 16 30.1 28
17 37.8 22 17 29.4 34
18 37.4 25 18 28.2 41
19 35.4 34 19 26.9 46
20 32.1 45 20 25.9 49
21 30.7 52 21 25.2 51
22 30.4 49 22 23.9 56
23 29.9 47 23 23.1 57

4. Methodology

The aim of the research is to evaluate the relationship between: (i) physics and climate
data of an open space (e.g., Piazza Verdi and Piazza Scaravilli in Bologna) and (ii) people
flows (how many people). Human presence and fruition of open space depend on several
factors, which our research aims to integrate. Among them:

1. outdoor microclimate factors, described by physical variables (e.g., air temperature,
relative humidity) and thermal comfort by people (physiological equivalent tempera-
ture, PET);

2. effects of cultural or social events, initiatives, presence of specific cultural and com-
mercial activities that could have an influence on people flows and grouping.

In our specific case, measurements were conducted before and after having imple-
mented ROCK actions (temporary transformations, events and initiatives). Three types of
data were adopted:

(a) Outdoor physics variables combined with real data measured on site;
(b) Outdoor Microclimate Maps (OMM) as defined in Gaspari and Fabbri [4,71] obtained

by virtual simulations by the software Envi-met [8] that allow to measure outdoor
thermal comfort;

(c) Measurement of people flow by hours and other data available from the LBASense system.

The physical parameters detected on site (a), in particular air temperature, are used
for the calibration of simulations with Envi-met (b), as described in Section 5.1.

The research consists of OMMs comparison at different times of the day with related
people crowding on days both with and without events. Figure 3 shows a graphical abstract
of our methodology.

4.1. Outdoor Physics Variables

Outdoor physics variables were detected through the use of sensors deployed by
Acciona, a technological partner of the project (https://www.acciona.com/projects/rock/
?_adin=02021864894, accessed on 2 May 2023). Through ICT sensors and tools, ACCIONA
supported the concrete and on field application of the ROCK project strategy. A mon-
itoring tool was set up from the very beginning and will probably be running for two
additional years after the project’s lifetime. The environmental parameters measured on
site by sensors are: air temperature (◦C), absolute and relative humidity (%), air pressure
(Pa) and PM10 (ppm). The parameters were compared and calibrated with the envi-
ronmental quality office using ARPAER (Agenzia Prevenzione Ambiente Energia Emilia
Romagna, Bologna, Italy) data [70]. Figure 4 shows ACCIONA sensors positions in the two
study areas.

https://www.acciona.com/projects/rock/?_adin=02021864894
https://www.acciona.com/projects/rock/?_adin=02021864894
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Figure 4. Location of ACCIONA outdoor sensors in Via Zamboni—Bologna. Sensors used for
calibration are 1 and 4.
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Sensors are located at nearly 4–5 m; Table 2 reports the main sensor features.

Table 2. Outdoor sensor (data every quarter of an hour).

Description Units Range Assurance Resolution

Ambient temperature ◦C −40◦C to +70◦C ±0.3 ◦C @20 ◦C 0.1

Ambient Relative Humidity % 0–100% ±2% @20 ◦C (10%−90$ RH) 1%

Atmospheric pressure Pascal 300 to 1100 hpa ±0.5 hPa @25 ◦C 0.1 hPs

Wind speed m/s 0.01 m/s to 60 m/s ±3% to 40 m/s|± 5% to 60 m/s 0.01 m/s

Wind direction deg 0–359 ◦C ±3% to 40 m/s|± 5% to 60 m/s 1◦

The ACCIONA ROCK monitoring system is a modular platform for remote mon-
itoring, follow-up and analysis of any type of environmental parameter. An interop-
erable platform enables the collection and exchange of data. The platform consists of
three differentiated layers: monitoring hardware, data collection and transmission and a
web interface.

The monitoring hardware layer comprises all the physical devices (sensors, power
supply, communications, etc.) needed for measuring all parameters that need to be moni-
tored. The data collection and transmission layer acts as a bridge between the hardware
monitoring layer of a specific monitoring installation, and the ROCK central remote server
that stores the monitored data in each monitoring installation. The collected data and the
transmission layer sent to the remote ROCK server will benefit from the most optimal
Internet connection available in each ROCK pilot.

4.2. Envi-Met Simulation and OMM

Each case study environment was modelled by Envi-Space and Envi-Sim, by using
the following model dimension: 210 m × 255 m, equal to 140 × 170 cells. Each cell has a
dimension of 1.5 m × 1.5 m, allowing a good detailed representation for each area. At the
end of the simulation, the following actions were completed:

• verification of the completeness of outputs;
• simulation, for each scenario, of the physiologically equivalent temperature (PET)

with BIO-met;
• creation of an outdoor microclimate map (OMM) with Leonardo 4.4.0 Envi-met.

An OMM at times 10:00, 12:00 and 14:00 e 16:00 was extrapolated for the following variables:

• air temperature, measured in ◦C;
• relative humidity, measured in %;
• wind speed, direction and intensity, measured in m/s;
• surface temperature, measured in ◦C;
• thermal comfort with PET.

The outdoor microclimate map (OMM), obtained through Envi-met, reports two
variables: air temperature (◦C) and physiological equivalent temperature (PET, measured
in ◦C). Table 3 reports PET values and thermal comfort ranges.

Envi-met simulations were performed for two consecutive days, both in June and
August. Each couple of days included a day with a public event (concert or opera drama)
and one without public events.
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Table 3. Physiological equivalent temperature (PET, in ◦C) from [72].

PET (◦C) Thermal Perception Thermal Stress

18 Comfortable No thermal stress

23 Slightly warm Slightly thermal stress

29 Warm Moderate thermal stress

35 Hot Strong thermal stress

41 Very hot Extreme thermal stress

>42 Too hot Very extreme thermal stress—heat stroke risk

4.3. People Flow Measurement by DRFC

The crowd monitoring instrumentation, developed by DFRC and used within the
ROCK project, uses the LBASense system, a network of sensors (Wi-Fi/GPS—4 kits), placed
in the demonstration areas. The LBASense system analyses data over time and provides
real-time insights into activity and mobility patterns within the monitored area. This
combination of sensors allows the system to perform a more comprehensive reading of the
crowd’s nature, enabling end-users to access demographic figures and mobility patterns on
a wider scale, in ordinary and extraordinary conditions (i.e., festivals and events). The goal
is to determine footfall in real-time and change rate in the crowd size, besides dwell time,
revisit and flow patterns and distribution, as well as any abnormalities, in the overall area
under monitoring, with an additional focus on selected key locations.

The pedestrian crossing detection sensors are inserted in 24 × 19 × 9 cm derivation
boxes and installed next to the existing derivation boxes along with video surveillance
cameras of the Bologna Municipality (Figure 5).
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DFRC sensors measure crowds of people (giving aggregate and anonymous data)
thanks to smartphone Wi-Fi and/or GPS signals. The data collected concerns the number
of people present in an area (approximately 50 m radius from the sensor), their movements
within the covered area and their nationalities. The accuracy compared to the actual
presence has been calculated at approximately 91%, comparable to the one of much more
expensive technologies that make use of cameras. The data are anonymized and processed
in an aggregated way in order to be returned on the ROCK project platform or on detailed
platforms, as well as through mobile applications.

We obtained data for Piazza Verdi and Piazza Scaravilli, from the website provided
by DFRC: “LBA sense Proactive Business Intelligence” “Visitor Count” from sensors
“7—Piazza Verdi”, “6—via Del Guasto”, “5—Palazzo Poggi”, “4—Piazza Scaravilli”.
Figure 6 reports an example of these data.
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Data collected by DFRC sensors are people counting (i.e., No. of people detected),
on a daily, hourly and per minute resolution, per region and for the entire site; and visit
duration distribution (i.e., no. of people per visit’s duration range), on a daily and hourly
resolution, per region and for the entire site; for the research reported in this article, only
people counting is relevant.

Data are available for visualisation and monitoring via a credential-protected dash-
board (web-based and mobile app), and they are integrated via APIs (application program-
ming interfaces).

Users who are given an account to access data, upon the municipality’s request, can
select and export data per region and time span by any of the above-mentioned means; for
some queries, like real-time counting, there are constraints related to data availability that
prevent the system from crashing due to workload (e.g., via APIs, real-time data ca nnot
be retrieved for dates earlier than the day before the current one; via dashboard, real-time
data is available in read-only mode).

5. Simulations and Results

The results were processed at the end of the monitoring campaign and simulations
with Envi-met. The first step was the Envi-met results calibration necessary to correctly
consider the OMMs. The validation of the Envi-met model was carried out following previ-
ous studies [25,44,45]. Once it was confirmed that the OMMs were calibrated according to
on-site measurements of environmental parameters, the extrapolation of the OMMs related
to air temperature and PET was performed, as described below.

5.1. Envi-Met Results Calibration

In order to calibrate the Envi-met model, a test simulation on 10 January 2019 for
each selected area was performed, adopting the same outdoor variables and data (air
temperature, relative humidity, wind speed, etc.) recorded in the city of Bologna (DEXTER—
ARPER source and Acciona on-site measurement data). In this first step the aim was only
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to check the model (adequate size, data, vegetation, etc). Each simulation required between
110 and 130 h of simulation running. As shown in the following paragraph, air temperature
was used to validate the model with measured data and the input data based on the
preliminary results were not needed.

In this research, on-site climate data were monitored through ACCIONA sensors
located in Piazza Verdi and Piazza Scaravilli. In order to calibrate the model with the
measured data, air temperature (◦C) was used, as usual in scientific literature, as it is not so
influenced by local meteorological factors such as wind, rain, etc.

Both Piazza Verdi and Piazza Scaravilli models were calibrated considering the
26 June and the 16 August 2019: being their results homogenous, it can be ensured that all
models are calibrated, without significant errors.

Figure 4 shows the location of ACCIONA sensors in the area. For the research
scopes, sensor codified 102 for Piazza Verdi calibration and sensor 101 for Piazza Scaravilli
were used.

The calibration concerns a statistical comparison between on-site measured data,
in this case through Acciona sensors, and Envi-met simulation data, both referring to
the specific points where sensors are located. In other words, real and simulated data
of air temperature were compared at the same point, following the ASHRAE Guideline
14-2014, “Measurement of Energy, Demand, and Water Savings” which explains a calibration
statistical index.

Tables 4–7 reports the statistical indexes: mean bias error (MBE, model calibrated if
result less than 10%); root-mean-square error (CV RMSE, results calibrated if is less than
30%); Pearson coefficient (if there is a correlation between 0.3 and 0.7, if greater than 0.7 is a
strong correlation); and linear regression R2 (if there is a correlation between 0.5 and 0.7, if
greater than 0.7 is a strong correlation).

Table 4. Piazza Verdi 26 June 2019—calibration results.

Index Results Calibration Results ASHRAE Guideline 14 Value

MBE [%] 6.12% Calibrated Fall If MBE > 10%

CV (RMSE) [%] 11.70% Calibrated fall if MBE > 30%

PEARSON 0.97 Strong Correlation >0.7 (strong)|0.3–0.7 (correlation)

Linear Regression R2 0.9363 Strong Correlation >0.7 (strong)|0.3–0.7 (correlation)

Table 5. Piazza Verdi on 16 August 2019—calibration results.

Index Results Calibration Results ASHRAE Guideline 14 Value

MBE [%] 6.12% Calibrated fall if MBE > 10%

CV (RMSE) [%] 11.70% Calibrated fall if MBE > 30%

PEARSON 0.97 Strong Correlation >0.7 (strong)|0.3–0.7 (correlation)

Linear Regression R2 0.9363 Strong Correlation >0.7 (strong)|0.3–0.7 (correlation)

Table 6. Piazza Scaravilli on 26 June 2019—Calibration results.

Index Results Calibration Results ASHRAE Guideline 14 Value

MBE [%] 5.05% Calibrated fall if MBE > 10%

CV (RMSE) [%] 8.16% Calibrated fall if MBE > 30%

PEARSON 0.80 Strong Correlation >0.7 (strong)|0.3–0.7 (correlation)

Linear Regression R2 0.6459 Correlation >0.7 (strong)|0.3–0.7 (correlation)
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Table 7. Piazza Scaravilli 16 August 2019—calibration results.

Index Results Calibration Results ASHRAE Guideline 14 Value

MBE [%] 5.43% Calibrated fall if MBE > 10%

CV (RMSE) [%] 8.82% Calibrated fall if MBE > 30%

PEARSON 0.78 Strong Correlation >0.7 (strong)|0.3–0.7 (correlation)

Linear Regression R2 0.6048 Strong Correlation >0.7 (strong)|0.3–0.7 (correlation)

Figures 7–10 report graphics of air temperature as measured by ACCIONA sensors
and through Envi-met simulations, and linear regression R2 graphics.
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5.2. Envi-Met Simulation Results

The data related to weather were taken from Dexter ARPAER, the Bologna City
weather station. The days of simulations were selected as follows:

• 26 June, during the concert of Neri Marcorè. On this day, the outdoor average air
temperature was 27.8 ◦C;

• 27 June, without any public events and with an outdoor average air temperature of
27.8 ◦C;

• 16 August, without public events and with an outdoor average air temperature of
23.4 ◦C;

• 17 August, during the public event Opera Tosca, with an outdoor average air tempera-
ture of 24.6 ◦C.
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For each above-mentioned day, the initial boundary conditions were defined
as follows:

• starting date: (e.g., 16.08.2017)
• starting time: 06:00
• simulation time: 24 h, with the 2nd day used for evaluation
• wind speed measured at 2 m of height (in m/s): 1.86 m/s
• wind direction (in degrees): E 97◦

The duration of the software calculation time was approximately 180–200 h for
each simulation.

Four outdoor microclimate maps were simulated for both areas, one for each of the
four days, including the variables of air temperature and PET at 12:00, 16:00, 20:00 and
22:00. Sixty-four outdoor microclimate maps were obtained in total.

Figure 11 reports an example of the results’ comparison for each dataset, with and
without public events, with OMMs at 12:00, 16:00, 20:00 and 22:00 h, and considering air
temperature and PET; therefore, it is possible to observe the outdoor microclimate variation
and the extension of the crowd for each hour.
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5.3. Correlation between Outdoor Microclimate and Visitors Count

Piazza VerdiJune 26 and 27 June 2019, during the concert of Neri Marcorè on 26 June.
The OMM comparison (Figures 11 and 12) shows that on the outdoor microclimate, there
are some differences between the two days in respect of the air temperature: the 27th of
June air temperature is +3 ◦C higher than the 26th of June one. The air temperature range
(or temperature excursion) on those days differs from 32 ◦C at 12:00, to 27 ◦C at 22:00.
The air temperature distribution in the area is uniform, except in Piazza Verdi where it
is slightly lower (−2◦C) than in the rest of the area. The visitor count comparison shows
(Figure 11) that, at 22:00, the number of visitors was near 3500 people, on the 26th of June,
during the public event, while it was near 1500 visitors on the 27th of June. Accordingly,
the high number of visitors depends on the presence of the public event and, in part, on
the air temperature and outdoor thermal comfort.
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In this case, a gap of 1500 people on site can be observed between the 26th and 27th
of June (with and without the event). It is possible to suppose that this gap depends both
on events and/or outdoor microclimate. In detail, Table 8 shows that nearly 2000 people
stay in Piazza Verdi with 30 ◦C of air temperature, probably the gap of 1500 people depend
sonly by public event.

Table 8. Piazza Verdi comparison of the number of people present in the square on 26th June and
27th June in relation to simulation results of air temperature and PET for each day.

26 June 27 June

20.00 h 22.00 h 20.00 h 22.00 h

People (nearly) 2000 3500 1900 2000

Air Temperature 30–32 ◦C 26−27 ◦C 32–33 ◦C 29–30 ◦C

PET 25◦C <24 ◦C 28 ◦C <27 ◦C

The comparison of thermal perception (PET, Figures 12 and 13) shows a PET value of
24 ◦C during public events, corresponding to the thermal sensation “slightly warm”, while
on the 27th of June the PET value is 27 ◦C, corresponding to the thermal sensation “warm”,
which produces moderate thermal stress.

Finally, the outdoor microclimate of 26 June (Figure 13) presents two positive condi-
tions: PET values correspond to slightly thermal stress during public events. On the other
side, on 27 June (Figure 14) at 20:00 and at 22:00 there was moderate thermal stress without
events. This can explain the presence of fewer visitors.
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The comparison of Piazza Scaravilli data (Figures 15–18) during the same days, shows
the same increase (+3◦C) in air temperature as June 27th, with a uniform air temperature
distribution, especially at16:00 and 20:00. The number of visitors are the same for both
days, approximately 800–1100 visitors. The PET results need more attention, because the
PET records great differences during the same day, at 12:00 and 16:00, with respect to
the evening, at 20:00 and 22:00. Thus, two kinds of OMMs with two PET scales were
extrapolated. The average value of PET at 12:00 and 16:00 is approximately 36–44 ◦C which
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corresponds to “Hot” e “Very Hot” thermal sensation, with “Strong” and “Very Extreme”
thermal stress.
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Figure 18. Piazza Scaravilli 27 June PET (◦C).

The same difference cannot be found in the area of Piazza Verdi. Therefore, this air
temperature and PET difference must depend on the specificities of architectural and urban
design: building geometry, square geometry, urban canyon, pavement textures, absence of
tree or grass, albedo and reflectance of materials.

The above figures show the results of the simulations during 17 August and, the latter
during a public event (Opera Tosca). These results confirm the previous discussion but
with some specific differences.
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Visitors in Piazza Verdi increased from 800 at 22:00 on the 16 August to 1400 on the
17th of August. That depends probably only on the presence of the public event, despite an
increase of +1 ◦C in the air temperature. In both days, at 22:00, the thermal sensation was
Comfortable, corresponding to a 20–21 ◦C PET value.

In Piazza Scaravilli, the PET value was approximately 20–22 ◦C during the evening,
while it was more than 35 ◦C during the day. In Piazza Verdi the PET value was equal to
24 ◦C during day and 20 ◦C during evening.

These data confirm two results: (a) in Piazza Verdi the weather has a high influence
on the microclimate but (b) architectural pattern and urban design, especially materials,
have a role on outdoor thermal comfort.

The comparison between PET values and number of visitors during the days without
events (Table 9, 27 June and 16 August) shows that the numbers of visitors are not directly
correlated with the outdoor microclimate conditions, but, probably, they depend on points
of attractions (bar, pubs, restaurants, etc.). However, it is possible to argue that PET values
corresponding to more comfortable situations (20–21 ◦C) are often linked with a higher
number of persons outdoor, while in presence of less comfortable thermal sensations,
e.g., in Piazza Verdi, the number of visitors depends more on public events (Table 10,
26 June and 17 August).

Table 9. Comparison of the number of people presents in both squares in relation to simulation
results of PET and Visitors Count at 22:00 h, both areas WITHOUT public events.

Area Date PET (◦C) Persons (Num.)

Piazza Verdi
27th of June 27–28 1500

16th of August 20–21 900

Piazza Scaravilli
27th of June 21–22 600

16th of August 20–21 200

Table 10. Comparison of the number of people presents in both squares in relation to simulation
results of PET and Visitors Count at 22:00 h, both areas WITH public events.

Area Date PET (◦C) Persons (Num.)

Piazza Verdi
26th of June 24–25 3500

17th of August 20–21 1400

Piazza Scaravilli
26th of June 24–25 600

17th of August 20–21 250

6. Discussion and Limits

Research results show that the comparison of homogeneous physical areas simulated
through Envi-met to obtain outdoor thermal comfort maps (by PET) can be correlated
with outdoor comfort and the number of visitors. Moreover, the proposed methodology
allows for a first method to evaluate how architecture and urban design impact thermal
comfort and, consequently, crowds and visitors’ presence in a public space. However, it is
possible to say that more aspects and indicators can influence people’s presence in urban
space, even if microclimate conditions seem to be important. Nevertheless, microclimate is
influenced by several aspects. Thus, this paragraph includes a general discussion of the
results and the identification of the major limitations of the research.

The results can lead to reflection by comparing the number of visitors, for each hour,
the outdoor microclimate maps, and the possible impacts on public events on the microcli-
mate conditions of the area. These hypotheses were followed: (a) DFRC sensors show the
number of persons in the area, so if the number of visitors is the same with/without events,
it can be supposed that the crowd does not depend on the presence of events but only on
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outdoor microclimate; (b) if the visitor count graph reports a visitor count difference with
the same outdoor microclimate conditions, it is possible to argue that the crowd depends
mainly on public events.

Results demonstrate that air temperature and thermal comfort (PET) in outdoor spaces
depend on the specific characteristics of the urban space, especially considering its geometry,
the building fronts and their shadow on the open space, and thermophysics parameters
such as reflectance and/or albedo.

In fact, Piazza Verdi is surrounded by tall buildings: the large volume of the Theatre
(Teatro Comunale), which is 18 m high on the south-west side; Palazzo Paleotti on the
south-east and south side, which is approximately 13–15 m high. The sky view factor of
Piazza Verdi square is small, which means that there is a limited surface directly irradiated
by the sun.

On the other hand, Piazza Scaravilli is surrounded by a portico of 4 m high and a
building of 8 m high, while another building of 13 m high does not directly face the square
but is nearby. Thus, in this case, a wide surface is directly irradiated by solar radiation.

Another effect depends on the boundary area of the simulation model: Piazza Verdi
boundaries include a garden, called Giardino del Guasto, which is a green area, with
vegetation and high trees, located at the north of the theatre. Conversely, in the case of
Piazza Scaravilli, there are no green surrounding areas, which explains the higher air
temperature values and the worst PET values, as the ACCIONA sensors also confirm.

Finally, street and square pavements have a considerable influence on albedo (or
reflectance) due to mineral materials. Piazza Verdi and the adjacent streets have a homoge-
nous pavement with an albedo of nearly 0.40, while Piazza Scaravilli has several types
of street materials: asphalt (albedo 0.20) and two other types of mineral pavements with
albedos of 0.4 and 0.80 under the portico. In these areas, as it often happens in historic city
centres, the ceiling is mainly characterised by the presence of mineral pavements, while
diverse kinds of pavement (e.g., brick, ceramic, etc.) or green areas are substantially absent.

To summarise, from the analysis of the data, it can be said that the microclimate can
have a role in people’s presence. From the comparison between the number of people on
days with and without a public event, it is clear that the event is the factor that determines
the crowding (Table 8 and Figure 12). However, outdoor microclimatic conditions at other
times of the day, for example, at 1 pm, as shown in Table 11, prove that there is still a
relationship between PET and the number of people. Although the increase in people is
not high (between 50 and 200) for both pairs of days (26–27 June and 16–17 August) and for
both areas (Piazza Scaravilli and Verdi), Envi-met simulations show a direct relationship
with PET value: better thermal comfort conditions (low PET values) correspond to a higher
people flow in the squares.

Table 11. Comparison of the number of people present in both squares in relation to the simulation
results of PET and Visitors Count at 13:00 h, both areas.

Area Date PET (◦C) Persons (Num.)

Piazza Verdi

26th of June 26–27 2500

27th of June 29–30 2400

16th of August 20–21 700

17th of August 22–23 600

Piazza Scaravilli

26th of June 46–48 1400

27th of June >48 1200

16th of August 38–40 250

17th of August 40–42 200

All considerations are empirical because it is not possible to express the direct correla-
tion between microclimate conditions and people’s flow. The reasons why people move are
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different and multiple. In this case, it was possible to correlate microclimatic conditions
with a precise cause of people’s movement, namely the event.

7. Conclusions and Future Developments

The paper aims to relate the results of microclimatic simulations to the presence of
people in public spaces. In particular, the study focuses on Piazza Verdi and Scaravilli,
located in the historic centre of the city of Bologna, with the aim of investigating the
correlation between microclimatic factors (air temperature, wind speed, relative humidity)
and perceived thermal comfort (PET), evaluated thanks to the use of Envi-met software,
and people flows, detected through sensors.

The aim of the research is to assess whether the presence of people is linked exclusively
to the occurrence of events, or if specific microclimatic conditions can significantly affect
the choice of people to stay in the area in question. Finally, our research responds to the
question of whether a direct correlation exists between outdoor microclimate in public
space and people’s presence and if a public event plays a role in altering it. The results
show that such a correlation exists, and our research methodology allows us to study it,
making it possible to replicate our method in future research.

The research has chosen to simulate the pairs of days of 26–27 June and
16–17 August, since both include a day on which a public event has occurred (26th June,
during the performance by Neri Marcorè, and 17 August, during a public performance of
Tosca) and a day without events (respectively 27 June and 16 August). This has made it
possible to analyse whether the increase in visitors depended only on the event or if the
microclimatic conditions also had an impact on the attendance at outdoor spaces.

The research has some limitations: people’s presence does not depend solely on
outdoor microclimate and on events, but several factors can play a role in people’s presence
in the study areas, e.g., weather conditions (e.g., rain, etc.), holidays and weekdays (the
weekend is likely to be more crowded). For this reason, our simulation accounts for days
with and without public events. We know the complexity of motivations, so our other
ongoing research aims to improve this physics analysis by also using multiple indicators
that combine qualitative and quantitative indicators. This paper constitutes the quantitative
starting point of a more qualitative analysis that will be conducted in the future.

In conclusion, the research provides a method of analysis that, by merging data
about microclimate and crowd flows, allows one to gain a deeper knowledge of outdoor
thermal comfort in open spaces and to act in order to improve the outdoor thermal comfort.
However, it is important to highlight how outdoor thermal comfort in urban open spaces
is determined by urban elements such as squares, streets, neighbourhoods, districts, etc.
Meteorological conditions influence the microclimate, but the architectural and urban
spatial configuration, including the surface materials, play a crucial role in determining the
outdoor thermal comfort.

Future Studies

Finally, even if an analysis of the role of the crowd on microclimate would be topical,
the Envi-met software does not allow for the evaluation these types of data. Therefore, it
was not possible to evaluate the role of the crowd in the microclimate. However, this issue
can be developed in future research and studies. Moreover, our aim, in this research, is
to study the correlation between people’s presence in public spaces during public events
and their use on days without events. We consider PET as the best indicator to evaluate it.
Thus, we considered the influence of MRT in PET, but the impact of MRT and solar levels
on people’s presence should be improved in future research.

Also encouraged by the research and results described in this paper, the municipality
and the University of Bologna have carried out temporary regeneration actions experiments
that involved public spaces in the university area as part of the activities implemented in the
ROCK project framework. These experiments were not monitored with the methodology
illustrated in this article, but citizen satisfaction pushed the Bologna municipal administra-
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tion to undertake a transformation path of these spaces into a resilient and inclusive area,
moving towards a series of incremental interventions aimed at improving microclimatic
conditions, outdoor comfort and their general livability [73]. It is possible that, despite the
fact that the ROCK project ended in December 2020, future monitoring opportunities will
be activated to evaluate the impacts of such interventions.
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Nomenclature

APIs Application Programming Interface
ARPAER Agenzia Prevenzione Ambiente Energia Emilia Romagna
CH Cultural Heritage
DFRC Data Fusion Research Centre, http://www.dfrc.com.sg/ accessed 2 May 2023
ICT Information and Communication Technologies
OMM Outdoor Microclimate Map
PET Physiological Equivalent Temperature
PMV Predicted Mean Vote
ROCK Regeneration and Optimization of Cultural Heritage project in Creative and Knowledge cities
SVF Sky View Factor
UHI Urban Heat Island
UTCI Universal Thermal Climate Index
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