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Abstract: Air pollution directly affects people’s life and work and is an important factor affecting pub-
lic health. An accurate prediction of air pollution can provide a credible foundation for determining
the social activities of individuals. Scholars have, thus, proposed a variety of models and techniques
for predicting air pollution. However, most of these studies are focused on the prediction of individ-
ual pollution factors and perform poorly when multiple pollutants need to be predicted. This paper
offers a DW-CAE model that may strike a balance between overall accuracy and local univariate
prediction accuracy in order to observe the trend of air pollution more comprehensively. The model
combines deep learning and signal processing techniques by employing discrete wavelet transform
to obtain the high and low-frequency features of the target sequence, designing a feature extraction
module to capture the relationship between the variables, and feeding the resulting feature matrix
to an LSTM-based autoencoder for prediction. The DW-CAE model was used to make predictions
on the Beijing PM2.5 dataset and the Yining air pollution dataset, and its prediction accuracy was
compared to that of eight baseline models, such as LSTM, IMV-Full, and DARNN. The evaluation
results indicate that the proposed DW-CAE model is more accurate than other baseline models at
predicting single and multiple pollution factors, and the R2 of each variable is all higher than 93% for
the overall prediction of the six air pollutants. This demonstrates the efficacy of the DW-CAE model,
which can give technical and theoretical assistance for the forecast, prevention, and control of overall
air pollution.

Keywords: air pollution predict; multivariate forecasting; discrete wavelet transform; deep learning

1. Introduction

Due to rapid industrialization and urbanization, industrial waste gases will be un-
avoidably emitted into the atmosphere, considerably increasing the concentration of air
pollutants. High levels of air pollution can harm and irritate the respiratory system which
has a direct impact on a person’s cardiopulmonary function and may even lead to lung
cancer. Precise prediction of air pollution concentrations aids in providing early warnings
of fluctuating levels, and based on the predicted pollution levels, authorities can take
appropriate remedial measures and individuals are able to come to plan their activities.
This can significantly reduce the adverse effects of air pollution on individuals.

For the purpose of forecasting air pollution, many researchers have examined the
subject and developed various models, such as the Autoregressive model (AR), Moving
average model, Support vector machines (SVR), Convolutional neural network (CNN),
Recurrent neural network (RNN), Long-short-term memory (LSTM), and their variants.
It has been experimentally demonstrated that among basic deep learning models, the
LSTM model is well suited to predict air pollution concentrations, all internal nodes of
an LSTM unit may be linked and can selectively recall or erase the information in the

Sustainability 2023, 15, 7367. https://doi.org/10.3390/su15097367 https://www.mdpi.com/journal/sustainability

https://doi.org/10.3390/su15097367
https://doi.org/10.3390/su15097367
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com
https://orcid.org/0000-0002-6468-2309
https://doi.org/10.3390/su15097367
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com/article/10.3390/su15097367?type=check_update&version=2


Sustainability 2023, 15, 7367 2 of 19

network. Thus, the LSTM model can learn information that is distant from the current
location, and numerous researchers have developed and proposed new prediction models
based on LSTM. However, they ignore the fact that the pollutants’ concentration in the
atmosphere is cyclical and varies with the season and the hour, and the memory of LSTM
is unable to store the specific cyclical trend separately. Moreover, most studies focus on
particulate matter (e.g., PM2.5 or PM10), using weather factors and historical concentrations
of particulate matter to train models and make predictions. These studies ignore the fact
that other pollutants in the atmosphere, such as sulfur dioxide, nitrogen dioxide, carbon
monoxide, and ozone (SO2, NO2, CO, and O3), are also extremely hazardous to human
health, and the concentrations of these six pollutants do not vary independently but interact
with one another.

In this paper, we propose a new prediction model, DW-CAE (discrete wavelet and
convolution-based autoencoder) which integrates wavelet transform, convolution layer,
and auto-encoder structure, using wavelet transform to extract the periodic features of
pollution concentration sequences, and the convolution layer to extract the linkages and
intrinsic features between individual variables for subsequent auto-encoder prediction.
We use the DW-CAE model to predict the PM2.5 concentration of the Beijing PM2.5 dataset
and the Yining air pollution dataset, and to predict the concentration of the six pollutants
on the Yining air pollution dataset. The comparative results in mean square error (MSE),
mean absolute error (MAE), and coefficient of determination (R2) are all better than the
comparison models. The contributions of this paper are summarized as follows:

1. A feature extraction module is proposed which could extract the time–frequency
characteristics and local features of the original data, thus achieving multivariate
prediction and achieving better results than univariate prediction superposition.

2. A multivariate prediction model named DW-CAE is proposed. The multivariate
prediction takes into account the overall prediction accuracy of multiple pollutants
and the prediction accuracy of each pollutant which is a significant improvement
compared to the based models.

The remainder of this paper is organized as follows. Section 2 introduces the related
works in the field of air pollution prediction. Section 3 describes the DW-CAE model
in detail. Section 4 shows the experimental results and analysis, and Section 5 gives the
conclusion.

2. Related Work

Air pollution prediction models can be mainly classified into three categories: tradi-
tional statistical models, machine learning methods, and deep learning models.

2.1. Traditional Statistical Models

Widespread use has been made of statistical approaches, primarily Autoregressive inte-
grated moving average (ARIMA) [1], exponential smoothing [2], and structural models [3].
Siew et al. [4] used the ARIMA and Autoregressive fractionally integrated moving average
(ARFIMA) models to predict the air pollution index in Malaysia as early as 2008; however,
based on the paper’s visualization results, the two statistical models used can only predict
the approximate trend of the air pollution index and cannot accurately predict the sudden
change in air pollution values. In 2015, Zhu et al. [5] utilized an ARIMA model and a
Holt exponential smoothing model (Holf) to predict the air pollution index in Yanqing
County, Beijing. The results demonstrate that the ARIMA model outperformed the Holf
model. Statistical models require the assumption that the target time series is a smooth
stochastic process. However, the air pollution concentration series is non-smooth and has to
be differenced until the data are smooth which limits the increase in the statistical model’s
accuracy of prediction.
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2.2. Machine Learning Methods

Constructing the parametric models used in statistical approaches requires extensive
subject knowledge. Therefore, numerous machine learning approaches, such as Gadient-
boosted regression trees (GBRT) [6,7] and vector machine models, are extensively utilized
in time series prediction to reduce this load. For instance, Liu et al. [8] used a combination
model of EWT, MAEGA, and SVM [9] to make multi-step predictions of PM2.5, SO2, NO2,
and CO, achieving very good prediction results. Sun et al. [10] suggested a model based on
Principal component analysis (PCA) and Least squares support vector machine (LSSVM)
for PM2.5 concentration prediction using the Cuckoo search method. Machine learning
methods learn the temporal dynamics of time series in a data-driven way, and kernel
techniques may be used to handle non-linear models; however, artificial feature selection
and model design are still required.

2.3. Deep Learning Models

Deep neural networks (DNNs) have a potent learning potential for rich data, and a
number of deep learning-based methods for air pollution prediction have been proposed,
achieving better prediction accuracy than traditional techniques in many cases. Classical
deep learning models, such as Recurrent neural networks (RNNs) [11,12], Long short-term
memory networks (LSTM), and Gated recurrent units (GRU), are commonly utilized for
air pollution prediction. For instance, Saravanan et al. [13] designed a monitoring and
prediction system for PM2.5 concentrations in the United States by combining Internet
of Things (IoT) technologies with bidirectional RNN models. Madaan et al. [14] used a
bidirectional LSTM network with an attention mechanism to forecast NO2, PM2.5, and
PM10 concentration levels and estimate future air pollution levels. Liu et al. [15] proposed
a novel wind-sensitive attention model, employing an LSTM technique to forecast airborne
PM2.5 concentrations. For the prediction of PM2.5 in Anhui, China, Ma et al. [16] suggested
a model based on transfer learning and Stacked bidirectional long- and short-term memory
(Stacked BiLSTM) networks. Some researchers have also made modifications to standard
deep-learning models. For instance, Hu et al. [17] proposed a TG-LSTM model to predict
PM2.5 concentrations in Beijing by adding a transformation gate to the forget gate of the
original LSTM and processing the input gate and the stored state of the previous moment
with hyperbolic tangent functions. The revised TG-LSTM model improves its capacity to
collect short-term abrupt change information and performs well in predicting pollution
concentrations at their peaks. Yao [18] put forward a two-stage attention model (DA-RNN).
The model includes a two-stage attention mechanism based on Transformer, in which input
features are first extracted by attention and sent to the encoder, then the relevant hidden
state of the encoder is selected in all time steps by second attention, and the hidden state is
passed to the decoder where both the encoder and decoder are composed of LSTM. Deep
learning algorithms are able to extract more precise information from time series; however,
the accuracy of complicated feature prediction must be enhanced. Numerous researchers
have therefore advocated combining two or more classical deep-learning models to in-
crease the accuracy of predictions. Qin [19] integrated CNN and LSTM to forecast PM2.5
concentrations in Shanghai. Wu [20] developed a Multi-scale spatiotemporal network
(MSSTN) to forecast PM2.5 concentrations in several cities. Chang et al. [21] proposed an
MTNet model and performed predictions on the Beijing PM2.5 dataset, while the above
DA-RNN model was also used for PM2.5 predictions and compared in this paper. Air
pollution series are stochastic, highly non-linear, and non-smooth; therefore, the application
of data decomposition methods may capture the frequency domain characteristics of the
time series and also improve prediction performance. Variational mode decomposition
(VMD), Empirical mode decomposition (EMD), and wavelet transform are common data
decomposition techniques. Jin [22] proposed a model based on EMD, CNN, and GRU
to predict PM2.5 concentrations in Beijing. The summary of the deep learning methods
mentioned above is shown in Table 1.
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Table 1. Comparison of deep learning methods in related works.

Model Factor Dataset Improvement Than LSTM Performance (RMSE)

BiLSTM-A [14] PM2.5, PM10, NO2 CPCB (Indian) 10.18%, 6.42%, and 8.04% 37.69, 90.38, and 19.79
WALSTM [15] PM2.5 EPA PM2.5 data 2.82% 11.39

TLS-BLSTM [16] PM2.5, NO2, O3 collected in Anhui 33.25%, 22.32%, and 26.96% 7.96, 8.51, and 8.00
TG-LSTM [17] PM2.5 Beijing PM2.5 dataset 63.08% 4.82
DA-RNN [18] PM2.5 Beijing PM2.5 dataset (GRU *) 63.41% 42.07

MTNet [21] PM2.5 Beijing PM2.5 dataset (GRU *) 66.50% 38.52
CNN-LSTM [19] PM2.5 collected Shanghai data 20.33% 14.30

MSSTN [20] PM2.5
Urban Air Pollution

Datasets in North China 11.66% 11.29

EMDCNN_GRU
[22] PM2.5 beijing data in stateair 29.29% 46.26

* In the literature [18,21], LSTM was not used for prediction of the dataset, so the improvement of DA-RNN and
MTNet models were compared with GRU instead.

The calculation formula of improvement than LSTM is 1−
(

RMSEproposed/RMSELSTM

)
.

It should be noted that the RMSE evaluation metrics are related to the dataset and data
processing, and the number of LSTM hidden layers used in each article varies, so the
performance and improvement in Table 1 can only be used as a reference as it does not
mean that the lower the performance, the better the model effect.

As can be seen from the above-related works, more research is based on deep learning
models compared to classical statistical and machine learning models, and deep learning
models do achieve good results in the field of air pollution prediction. Most models have
focused on studying the prediction of the concentration of one factor in the atmosphere,
especially PM2.5 or PM10, and a few models have made multivariate predictions of all the
pollution factors affecting the air quality index (AQI). Thus, different from previous studies,
this paper will make predictions for six atmospheric pollutants which can contribute to a
holistic view of the overall atmospheric pollution situation.

3. Materials and Methods

The main problem addressed in this paper is to predict the concentrations of six air
pollution factors (PM2.5, PM10, SO2, NO2, CO, and O3) for the next moment using the
proposed DW-CAE model based on hourly monitoring data of meteorological and six air
pollution factors for the past period (e.g., 10 h). The pollutant concentration that needs
to be predicted may be seen as a time sequence, denoted as av (v = 1, 2, ..., 6), for PM2.5,
PM10, SO2, NO2, CO, and O3, respectively. Additionally, other input variables that do not
need to be predicted, such as weather factors, are noted as bu (u = 1, 2, . . . , n), and n is the
number of other related variables.

Figure 1 illustrates the structure of the DW-CAE model which consists of three major
modules: the data preprocessing module, the feature extraction module, and the auto-
encoder module. The data preprocessing module is primarily responsible for the missing
value processing of the original input data, the Discrete wavelet transform (DWT) of the
pollution concentration sequence to be predicted, the extraction of the periodic information
of atmospheric pollution, the tensor stacking and normalization of the original input
data and the data obtained by wavelet decomposition, and the use of the rolling window
division as the input data for the feature extraction module. The feature extraction module
relies mostly on convolutional layers to extract features and generate a feature matrix. And
the symbol * in feature extraction module of Figure 1 indicates the convolution operation
using convolutional kernels and the original matrix X. The encoder and decoder in the
auto-encoder module both employ an LSTM structure, and the input feature matrix is fed
into the encoder. The cell state Ce of the encoder LSTM cell is utilized as the initial cell state
of the decoder. In the fully connected layer, the output of the decoder is computed linearly
and becomes the final predicted value of the model.
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Figure 1. DW-CAE model structure.

3.1. Data Preprocessing
3.1.1. Outlier and Missing Data Processing

It is necessary to process the original data’s outliers and missing values. As the data
came from the official platform and no illogical values were found after the screening, for
example, no negative values for atmospheric concentration and air pressure are within
reasonable limits, so the data are considered to be true and valid, and no outliers need to be
processed. As for missing data processing, in the experimental dataset, there are only 1%
and 4.6% missing values in the Yining air pollution dataset and the Beijing PM2.5 dataset,
respectively; this is not a significant issue, so the non-missing previous values are used to
fill in the missing values directly.

3.1.2. Sequence Decomposition

Due to the air pollutant concentrations, av (v = 1, 2, ..., N) has seasonal and diurnal
periodicity; if pollution concentrations are directly fed into the deep learning model, the
length of the sequence that can be modeled is too short to fully extract the periodicity
information. The proposed model employs the discrete wavelet transform to decompose
av, since the seasonal and diurnal patterns of air pollution concentration are related to the
low and high-frequency components of the non-smooth series. The air pollutant concen-
tration series is divided into low- and high-frequency components at various frequency
scales [23], and the Mallat algorithm procedure for the discrete wavelet transform is shown
in Equation (1). {

Aj+1 = ∑m h(m− 2k)Aj
Dj+1 = ∑m g(m− 2k)Aj

, (1)

where m ∈ Z, k ∈ Z, low-pass h(m), and high-pass g(m) are associated with the se-
lected wavelet basis functions. Ai and Di represent the ith decomposition’s low and high
frequency components, respectively, where A0 is the original input sequence av.
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The results of decomposition will vary depending on the wavelet basis functions
utilized. Among the various wavelet basis functions, Daubechies (dbn) and Symlets (symn)
are widely used. Wavelet basis functions with different values of n have different impacts
on the decomposition of a sequence with the filter length increasing as n increases. We show
the experimental results of the choices of wavelet function and parameters in Section 4.4,
where the final wavelet basis function chosen is Daubechies with parameter db9.

When executing wavelet transforms, the decomposition order is one of the most im-
portant determinants of the model’s generalization capabilities [24], and the decomposition
order is generally determined by Equation (2).

K = int[log(M)], (2)

where K is the decomposition order and M is the amount of data in the sequence to be
decomposed. Based on the datasets used in this paper, it can be calculated that K = 4.
Then, a fourth-order decomposition of av may be utilized to obtain four high-frequency
components and four low-frequency components. If all eight components were fed into
the subsequent model, it would be too computationally costly, so low-frequency andhigh-
frequency components with the largest improvement in accuracy of prediction were chosen.
A2 and D1 are the experimentally determined components for which tensor stacking
is subsequently performed. A2·v and D1·v represent the low-frequency component and
high-frequency component of av’s decomposition, respectively.

3.1.3. Sequence Integration

The stacking of tensors av, A2·v, D1·v (v = 1, 2, . . . , N), bu (u = 1, 2, . . . , n) produce
SM ∗ (n + 3N) M is the total record number in the dataset N is the number of variables
need prediction, n is the number of other related variables, such as weather, that do not
need prediction.

To accelerate the gradient descent, all input variables are normalized to 0–1. The
formula for calculating max–min normalization is presented in Equation (3).

Snorm = (S− Smin)/(Smax − Smin), (3)

where S represents the dataset after tensor stacking, and Smax and Smin represent the
dataset’s maximum and minimum value matrices, respectively.

After the prediction is complete, max–min inverse normalization is performed to map
the predicted air pollution concentration from 0–1 back to the original data range and
calculate the model accuracy. The max–min inverse normalization is calculated as shown
in Equation (4).

Sre−norm =
(

Spred + Smin

)
∗ (Smax − Smin), (4)

where Spred is the prediction matrix of the model, and Sre−norm is the concentration matrix
mapped to the actual range.

In order to use the data from the previous L time steps to predict air pollution values
in the next time step, the dataset needs to be partitioned using a sliding window with
steps size of L + 1. The first L entries in the window are used as input to predict the air
pollution concentration values in the (L + 1)th entry, then the dataset is separated into
M− L samples of time series. (M− L, L, n + 3N) is the size of the model’s input tensor X,
and (M− L, 1, N) is the dimension of the predicted value Ỹ and the actual Y.

The ith time step input tensor X(i), the predicted value Ỹ(i), and the true value Y(i) are
shown in Equations (5)–(7), respectively.

X(i) =


ai

1 . . . ai
N bi

1 . . . bi
n Ai

2·1 Di
1·1 . . . Ai

2·N Di
1·N

ai+1
1 . . . ai+1

N bi+1
1 . . . bi+1

n Ai+1
2·1 Di+1

1·1 . . . Ai+1
2·N Di+1

1·N
. . .

ai+L−1
1 . . . ai+L−1

N bi+L−1
1 . . . bi+L−1

n Ai+L−1
2·1 Di+L−1

1·1 . . . Ai+L−1
2·N Di+L−1

1·N

, (5)
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where at
v, At

2·v, and Dt
1·v (v = 1, 2, . . . , N) denotes the value of av, A2·v, and D1·vt, and

bt
u (u = 1, 2, . . . , n)t of the sequence that does not need to be predicted.

Ỹ(i) =
[
ãi+L

1 ãi+L
2 . . . ãi+L

N

]
, (6)

where ãt
v is the predicted value of variable av at time t using the proposed model.

Y(i) =
[
ai+L

1 ai+L
2 . . . ai+L

N

]
. (7)

3.2. Data Forecasting
3.2.1. Feature Extraction Module

Generally, the values of real-world variables are affected by other variables. For
instance, the concentration of air pollution is directly tied to weather, seasons, etc., and these
variables must be considered while predicting. It is difficult to determine the relationship
between air pollution concentrations and the related variables from large amounts of
complex data, so a feature extraction module is essential. If a fully connected layer is
employed in the feature extraction module, there is not only a large number of network
parameters to be learned but also duplicate information. What is more, some related
studies [25–27] have used CNN networks for feature extraction of time series, generating
multiple convolutional features through the convolutional layer and then generating a
low-dimensional matrix through secondary sampling through the pooling layer. However,
considering the time series is ordered, some important features may be missed in the
pooling process, so in the proposed model, only a 2D convolutional layer is used to extract
the hidden features, its local receptive fields and shared weights effectively reduce the
computational effort and alleviate the harsh requirements on device computing power
during training.

For a 2D convolution layer, the computation method is depicted in Equation (8).

X′ = δrelu((Kc ⊗ X) + bc), (8)

where X′ is the extracted feature matrix, Kc denotes the weight matrix of the convolution
kernel, bc denotes the bias vector,⊗ denotes the convolution operation, and δrelu (z) denotes
the activation layer. The Relu function used in the activation layer is shown in Equation (9).

δrelu(z) =
{

0, z < 0
z, z ≥ 0

. (9)

3.2.2. Auto-Encoder Module

Next, an auto-encoder module is created to comprehend the resulting feature matrix.
Figure 1 depicts the auto-encoder module, which consists of an encoder and a decoder, both
of which use the LSTM [28] structure due to the correlation between the time steps before
and following the series of air pollution concentrations and their periodicity. Both the
encoder and the decoder can selectively remember or delete information from the network.
This way, they can keep important information to pass on to the subsequent node and learn
things that are far away from where they are now. The encoder encodes the feature matrix
X′ into a final cell state Ce, extracts and compresses the valid information from the feature
matrix, and transmits it to the decoder. The decoder uses Ce as the initial state of the LSTM
cell and uses LSTM calculations to reconstruct Ce’s internal features to get the output hd;hd

Ỹ of the model. The use of such an auto-encoder structure is also an effective solution to
the problem of inconsistent time steps between the model’ fLSTM to abbreviate the LSTM
computation method.

C, h = fLSTM(Xin, Cinit), (10)



Sustainability 2023, 15, 7367 8 of 19

where Xin is the input tensor of LSTM and Cinit is the initial cell state of LSTM. C and h are
the cell state and the hidden state of the last time step of the LSTM, respectively. Then, the
encoder is calculated as shown in Equation (11).

Ce, he = fLSTM
(
X′, Z1

)
, (11)

where Z1 is a zero tensor, and the hidden state he is left out of the subsequent calculations.
Similarly, the decoder is calculated as shown in Equation (12).

Cd, hd = fLSTM(Z2, Ce), (12)

where Z2 is also a zero tensor, and Ce is the last cell state of the encoder. hd is the final
output of the decoder.

Finally, hd is then fed into the fully connected layer, and the final prediction is obtained
by linear calculation as shown in Equation (13).

Ỹ = WFC × hd + bFC, (13)

where WFC and bFC denote the weight matrix and bias of the fully connected layer, respec-
tively, and Ỹ is the final output of this model.

4. Experiment and Discussion
4.1. Data Sets

Beijing PM2.5 dataset [29]: This dataset [30] contains PM2.5 data and meteorological
data from Beijing from 1 January 2010 to 31 December 2014 at one-hour intervals with
a total of 43,800 data records. The PM2.5 data are taken at the US Embassy in Beijing
(116.47◦ E, 39.95◦ N), and the meteorological data are from Beijing Capital International
Airport (116.60◦ E, 40.07◦ N). The distance between the US Embassy and BCIA is 17 km,
but they experience the same weather. Thereafter, dividing the train dataset/validation
set/test set on a 0.7/0.15/0.15 scale.

Yining air pollution dataset: This dataset contains air pollution data and meteorological
data from 1 January 2020 to 30 May 2022, where the air pollution data are from the
National Air Quality Release Platform [31], and the meteorological data are from the Central
Meteorological Station [32]. Different from the Beijing PM2.5 dataset, both meteorological
and pollution data in the Yining air pollution dataset are not actual measurements from a
specific station but rather are integrated and processed by the national department for the
city of Yining as a whole. The data interval is one hour with a total of 21,145 data records,
and the train set/validation set/test set was divided in the ratio of 0.7/0.15/0.15.

The visualization of the various variables in the Beijing PM2.5 dataset and the Yining air
pollution dataset are shown in Figure 2a,b, respectively. The variables from top to bottom in
Figure 2a are dew point (°C), temperature (°C), air pressure (hPa), wind speed (m/s), snow
(mm), rain (mm), and PM2.5

(
µg/m3), respectively. In addition, the variables from top

to bottom in Figure 2b are PM2.5
(
µg/m3), PM10

(
µg/m3), SO2

(
µg/m3), NO2

(
µg/m3),

CO
(
mg/m3), O3

(
µg/m3), temperature (°C), air pressure (hPa), barometric humidity (%),

wind speed (m/s), wind direction (◦), and rainfall (mm), respectively.
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Figure 2. The raw data change curve of: (a) the Beijing PM2.5 dataset; (b) the Yining air pollution dataset.

4.2. Performance Evaluation

There are a variety of evaluation criteria [19,22,33] to verify the accuracy and effective-
ness of a model. Therefore, the mean squared error (MSE), mean absolute error (MAE), and
coefficient of de-termination (R2) were used to evaluate the performance of the models. The
MAE and MSE represent the error between the predicted and actual values with smaller
errors indicating better predictions and R2 ranging from 0 to 1 with closer to 1 indicating
better predictions. Their respective calculation formulas are provided in Equations (14)–(16).

MSE =
1
N

N

∑
i=1

(
Ỹt

i −Yt
i

)2
, (14)

MAE =
1
N

N

∑
i=1

∣∣∣Ỹt
i −Yt

i

∣∣∣, (15)

R2 = 1−
∑N

i=1

(
Ỹt

i −Yt
i

)2

∑N
i=1
(
Yi −Yt

i
)2 , (16)

where, Ỹt
i and Yt

i denote the predicted value and true value of variable i at time t, respectively,
Yi is the mean value of the variable i, and N is the number of samples in the test set.

4.3. Experimental Parameter Setting

All experiments are based on the Keras framework, and the programming language is
Python 3.6.6. Additionally, the server’s CPU model is Intel(R) Xeon(R) Silver 4210 CPU
@ 2.20 GHz with the operating system being Ubuntu 18.04.6. The GPU model used is
NAVIDA GTX 2080T.
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To evaluate the performance of the proposed model in air pollution prediction, eight
models are selected as baseline methods for comparison, including LSTM [34], bi-LSTM [35],
Autoencoder [36], Conv-AE, IMV-Full [37], IMV-Tensor [37], DA-RNN [18], and Multistage
Attention [38]. The following two sets of comparison experiments are conducted to evaluate
the performance of these models: (1) Univariate prediction using the Beijing PM2.5 dataset
and the Yining air pollution dataset with meteorological data and pollution concentrations
of the previous ten hours to estimate PM2.5 values for the next hour; (2) Multivariate
prediction on the Yining air pollution dataset by inputting meteorological data and six-
factor (PM2.5, PM10, SO2, NO2, CO, and O3) air pollution concentration data of the past ten
hours to generate predicted values for the next hour’s six-factor concentrations.

In the experiments, the hyperparameters of baseline procedures were modified over
a large number of iterations in order to determine the optimal combination. After deter-
mining the optimal hyperparameters, all baseline techniques were trained and tested ten
times, and the evaluation parameters from these ten evaluations were averaged to decrease
random errors. As for the selection of epochs, since each model converges at a different rate,
the experiments use Early stopping instead of a set value. Early stopping is a technique
that enables the model to be fully trained while preventing overfitting and minimizing the
effective size of each parameter dimension. The training was terminated after 25 epochs if
the model’s error on the validation set does not reduce, and it is capped at 500 epochs.

The following are the classical models in deep learning, including LSTM, bi-LSTM,
autoencoder, and conv-AE with hyperparameters chosen based on considerable experi-
mentation to get the maximum prediction accuracy.

(1) The LSTM model [34] with LSTM and a full connection layer was chosen. The number
of LSTM neurons was chosen from 16, 64, and 128, and 64 is the best. The batch size
was chosen between 64, 128, and 256, where 128 is optimal. The learning rate was
chosen between 0.01 and 0.001, where 0.001 is optimal.

(2) The structure of the bi-directional LSTM model [35] was composed of Bi-LSTM and a
full connection layer. The number of LSTM neurons was chosen from 16, 64, and 128,
and 128 is the best. The batch size was chosen between 64, 128, and 256, where 128 is
optimal. The learning rate was chosen between 0.01 and 0.001, where 0.001 is optimal.

(3) The same LSTM structure is used in both the encoder and decoder in the auto-encoder
model [36], selected from one or two layers, unidirectional or bidirectional, with 16, 64,
or 128 neurons, respectively, and batch size is selected from 64, 128, or 256. Following
testing, the single-layer bidirectional neuron number 128 is determined to have the
best structure, and batch size = 128 is chosen.

(4) In the Conv-AE model, the input data are passed through a 2D convolutional layer
with filters of 64, a convolutional kernel size of 4, and a step size of 1. The extracted
feature values are fed into the above autoencoder.

Several researchers have come up with the following models to predict air pollution,
and they all use the same Beijing PM2.5 dataset, so no changes are made to the hyperpa-
rameters, and the models are described below.

(1) IMV-Full and IMV-Tensor [37] are two versions of the LSTM that improve the way
the hidden state matrix is updated by making each element of the hidden matrix hold
information from only one of the input variables.

(2) DA-RNN [18] is a Transformer model that uses an attention mechanism at both the
encoder and decoder stages, using an attention to adaptively extract features at each
moment before the encoder and using an attention mechanism to select the encoder
state associated with it before the decoder.

(3) Multistage Attention [38] also uses a Transformer model with two-stage attention,
using multi-stage attention to extract features and input them into a variant encoder
structure of TG-LSTM, with the decoder being an LSTM structure incorporating an
attention mechanism capable of adaptively selecting the relevant time steps to be used
for prediction.
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The hyperparameters to be tuned in the DW-CAE model proposed in this paper are
batch size, learning rate, filter numbers of the conv2D, convolutional kernel size, sliding
step (stride), and number of LSTM hidden sizes. The epochs are also obtained by the same
Early Stop method as above. After comparison, the final parameters were set as shown in
Table 2.

Table 2. Hyperparameter values chosen for the proposed DW-CAE model.

Batch Size Learning Rate Filter Kernel Size Strider Hidden Size

64 0.001 128 4 1 128

4.4. Decomposition Sequence Selection

Univariate predictions were performed on the Beijing PM2.5 dataset to compare the
difference in prediction accuracy when using different wavelet basis functions and different
component stacks, respectively.

The PM2.5 data were decomposed using different wavelet basis functions, and the
decomposition of A2 and D1 components were stacked with the original data. Table 3
displays the R2 of test set, the higher the R2, and the higher the prediction accuracy is.
From the experimental results, it can be concluded that db9 corresponds to the highest
prediction accuracy, so db9 is chosen as the wavelet basis function in this model.

Table 3. Comparison of the prediction results of different wavelet basis functions on the Beijing PM2.5 dataset.

Wavelet Basis Functions R2 Wavelet Basis Functions R2

db2 0.9795 sym2 0.9784
db3 0.9842 sym3 0.9850
db4 0.9877 sym4 0.9863
db5 0.9899 sym5 0.9897
db6 0.9914 sym6 0.9903
db7 0.9919 sym7 0.9929
db8 0.9931 sym8 0.9917
db9 0.9932 sym9 0.9927

The Ai and Di (i = 1, 2, 3, 4) are the low-frequency and high-frequency PM2.5 se-
quences obtained after the ith decomposition using a db9 wavelet, and the test set R2 is
shown in Table 4 after stacking a low-frequency or high-frequency component on the origi-
nal data. From the data in Table 4, it can be seen that the low-frequency component with the
greatest enhancement to the prediction results is A2, and the high-frequency component is
D1. Then, A2 and D1 are chosen for the subsequent tensor stacking.

Table 4. Selection of low and high frequency components of the Beijing PM2.5 dataset.

Low Frequency Component R2 High Frequency Component R2

A1 0.9754 D1 0.9701
A2 0.9785 D2 0.9454
A3 0.9641 D3 0.9377
A4 0.9476 D4 0.9393

4.5. Comparison of Results
4.5.1. Univariate Forecasting

On the Beijing PM2.5 dataset and the Yining air pollution dataset, the DW-CAE model
proposed in this paper and eight comparison models were used to conduct univariate
prediction comparison tests, inputting meteorological information and pollution concentra-
tions of the previous ten hours to predict PM2.5 concentrations for the following hour and
the experimental results are shown in Tables 5 and 6, respectively.



Sustainability 2023, 15, 7367 12 of 19

Table 5. Comparison of model prediction results on the Beijing PM2.5 dataset.

Model Name MSE MAE R2

LSTM [34] 572.4357 14.8971 0.9077
Bi-LSTM [35] 549.3633 14.3893 0.9115

Auto-encoder [36] 545.6932 14.0922 0.9121
Conv-AE 524.1656 11.5053 0.9155

IMV_Full [37] 456.6853 11.1016 0.9264
IMV_Tensor [37] 475.2328 11.7472 0.9234

DA-RNN [18] 463.4121 11.8116 0.9253
Multistage Attention [38] 479.1348 12.2256 0.9228

DW-CAE (ours) 35.3004 3.6327 0.9943

Table 6. Comparison of model prediction results on the Yining air pollution dataset.

Model Name MSE MAE R2

LSTM [34] 40.1417 4.2279 0.9599
Bi-LSTM [35] 42.5767 4.3007 0.9576

Auto-encoder [36] 38.7649 4.1696 0.9614
Conv-AE 41.9782 4.2617 0.9582

IMV_Full [37] 38.4223 4.0865 0.9617
IMV_Tensor [37] 38.9129 4.1865 0.9612

DA-RNN [18] 32.6569 3.9665 0.9674
Multistage Attention [38] 28.7293 3.6801 0.9713

DW-CAE (ours) 23.2173 3.3651 0.9768

As can be seen from Tables 5 and 6, the MSE and MAE of the proposed model are
lower than those of the eight comparison models on two different datasets, and the R2

correlation coefficients are higher than those of the comparison models, indicating that the
prediction values of DW-CAE are closer to the true values and can achieve more accurate
prediction results. Taking the Beijing PM2.5 dataset as an example, the MAE of DW-CAE
was reduced by about 75.5% and 72.4% compared with LSTM and Bi-LSTM, respectively.
For time series with complex features, a single LSTM model cannot extract all the features
which leads to low prediction results. IMV_Full and IMV_Tensor Models are enhancements
to the LSTM cell structure that share the disadvantages listed above. The models Conv-AE,
DA-RNN, and Multistage Attention have improved their prediction accuracy by adding
CNN or attention, but they are still lower than the proposed model.

The prediction accuracy of a combined model, such as DA-RNN, Multistage Attention,
and DW-CAE, will outperform the rest of several single models. Unlike the first two
models, the model proposed in this paper does not use attention to obtain the links between
variables but, instead, uses wavelet decomposition and CNN to obtain information about
the components of different trends which improves the prediction model’s accuracy. The
above results show that the proposed model is effective and feasible for air pollution
concentration prediction. The use of wavelet transform can decompose PM2.5 data into
different frequency scales which can reduce the complexity of air pollution concentration
prediction and enable the model to extract the variation pattern of PM2.5 concentration
from the simpler components at different scales so as to better fit the pollution changes.
In addition, the proposed model further improves the prediction accuracy, proving that
the prediction method combining convolutional layers and the Auto-Encoder structure
can effectively enable the model to focus on key information at different frequency scales
and suppress the interference of noise signals, verifying the effectiveness and feasibility of
the model.

The predicted visualization results for the first thousand data points from the test set
on both datasets are shown in Figure 3. It can be seen that the predicted PM2.5 concentration
value curves of the DW-CAE proposed in this paper basically fit the actual values, but the
predictions for the abrupt change values are still slightly off.
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Figure 3. Visualization result curve shows the predicted values of the proposed DW-CAE model for
the first 1000 PM2.5 data points from: (a) the Beijing PM2.5 dataset in the test set; (b) the Yining air
pollution dataset in the test set.

4.5.2. Multivariate Forecasting

On the Yining air pollution dataset, we used the DW-CAE model proposed in this
paper and eight base models to predict the concentrations of six pollutants, and the experi-
mental results are shown in Table 7.

Table 7. Comparison of six-factor prediction results on the Yining air pollution dataset.

Model Name R2_avg PM2.5 PM10 SO2 NO2 CO O3

LSTM [34] 0.7658
MSE 134.5532 733.8629 8.0147 106.5783 0.1982 185.7386
MAE 8.0372 17.1066 1.9419 7.1280 0.2499 10.4623

R2 0.8661 0.6882 0.6432 0.7530 0.8241 0.8205

Bi-LSTM [35] 0.7727
MSE 129.5385 677.9788 8.3106 102.8892 0.1852 180.0635
MAE 8.4016 15.4027 1.9188 7.1539 0.2429 10.0684

R2 0.8710 0.7119 0.6301 0.7615 0.8356 0.8259

Auto-encoder [36] 0.7724
MSE 109.4557 711.7048 8.4911 101.9029 0.1906 176.5992
MAE 7.0865 16.5308 2.1573 6.8780 0.2460 9.9542

R2 0.8910 0.6976 0.6220 0.7638 0.8308 0.8293

Conv-AE 0.7490
MSE 147.1291 697.8124 7.8029 114.2672 0.1967 285.6826
MAE 8.6457 16.0268 1.9973 7.4610 0.2530 13.5946

R2 0.8535 0.7035 0.6527 0.7352 0.8254 0.7238

IMV_Full [37] 0.7330
MSE 116.3191 832.8393 8.1901 89.6754 0.2186 158.2858
MAE 7.2308 18.0299 1.9100 6.6079 0.2823 9.3379

R2 0.8546 0.4998 0.6423 0.7706 0.8008 0.8298

IMV_Tensor [37] 0.7449
MSE 119.2915 748.4123 7.5788 91.3709 0.1980 161.1032
MAE 7.3517 16.0682 1.9022 6.8400 0.2638 9.4964

R2 0.8621 0.5737 0.6577 0.7479 0.8130 0.8151

DA-RNN [18] 0.8002
MSE 111.0254 939.5824 9.5175 42.9493 0.1148 62.8973
MAE 7.1288 18.6226 2.0695 4.5378 0.2263 5.9188

R2 0.8892 0.6008 0.5743 0.9002 0.8975 0.9389

Multistage
Attention [38] 0.8096

MSE 124.4401 817.1841 9.2226 41.8437 0.1144 61.2233
MAE 7.4535 16.9538 2.0737 4.5268 0.2234 5.7116

R2 0.8759 0.6528 0.5875 0.9028 0.8979 0.9405

DW-CAE (ours) 0.9669
MSE 14.6259 144.8389 1.4094 9.8438 0.0242 15.3215
MAE 2.6152 7.8337 0.9072 2.2866 0.0956 2.9775

R2 0.9854 0.9384 0.9369 0.9771 0.9783 0.9851
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As can be seen from Table 7, the R2 for the six pollutants predicted by the proposed
model is all higher than 0.93, while the R2 for most of the six pollutants predicted by the
comparative models is less than 0.93. Taking the mean absolute error (MAE) as an example,
the MAE for the six pollutants (PM2.5, PM10, SO2, NO2, CO, and O3) predicted by the eight
comparative models had the lowest values of 7.0865, 15.4027, 1.9022, 4.5268, 0.2234, and
5.7116, respectively, while the MAE of the DW-CAE model were 2.6152, 7.8337, 0.9072,
2.2866, 0.0956, and 2.9775. The average errors of the eight comparison models for the
six pollutants are higher than the proposed model DW-CAE’s average errors for the six
pollutants. The comparison shows that the evaluation indices of the DW-CAE model are
better than those of the eight comparison models, so the multivariate prediction accuracy
of the proposed model is also better than that of the comparison models.

The visualization result curves of the predicted values of the proposed model on the
Yining air pollution dataset corresponding to the first 1000 data items in the test set are
shown in Figure 4, where the orange curve is the true value, and the blue curve is the
predicted value. It can be seen that the six pollutants do interact with each other, with the
true values of several pollutants increasing substantially around the horizontal coordinate
300. The DW-CAE model fits the real curves for all six pollutants, but it does not do a very
good job of predicting the sudden rise in value.

Figure 4. Visualization curve of the predicted values of the DW-CAE model proposed in this paper
for the first 1000 data points in the test set on the Yining air pollution dataset.

5. Discussion

In this paper, a DW-CAE model is proposed, and PM2.5 concentration prediction was
carried out on an open-source Beijing dataset and compared with several models. The
experimental results showed that the MAE values of the DW-CAE model proposed in this
paper on the test set were reduced by a range of 67.28% to 75.61% when compared with
the rest of the models in univariate prediction and outperformed the rest of the prediction
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models in the three comparative benchmarks (MAE, MSE, and R2) which indicated that
the prediction accuracy of this model was higher than the rest of the models. Meanwhile,
this paper also collected air pollution and meteorological data for Yining City from January
2020 to May 2022 and conducted PM2.5 and multi-pollutant concentration predictions
on this dataset. The prediction accuracy of DW-CAE was also higher than the rest of
the comparison models when univariate PM2.5 concentrations were predicted. In the
multivariate prediction, the concentrations of six pollutants (PM2.5, PM10, SO2, NO2, CO,
and O3) were predicted simultaneously, and the MAE of the DW-CAE model was reduced
by 47.87–63.09% on the test set compared to the best-performing model for each pollutant
which provided a better fit to the actual values, indicating that the model proposed in this
paper is able to balance the overall multivariate prediction accuracy and the local univariate
prediction accuracy.

Moreover, as shown in Table 7, the evaluation results for SO2 and PM10 are not as
good as the other pollutants. For instance, in the testing results of DW-CAE, the R2 values
for SO2 and PM10 are about 0.93, while the R2 values for the other pollutants are all over
0.97, and the prediction accuracy for SO2 and PM10 is relatively low among all models.
The concentration ranges of PM2.5, PM10, SO2, NO2, CO, and O3 are shown in Figure 2.
It can be seen that PM10 and SO2 have more sudden changes which are more difficult to
predict. The pollution concentration levels do not have as great an impact as imagined on
prediction accuracy because data normalization is carried out prior to prediction, in which
the variables are subtracted from their corresponding means and the whole is transformed
to the same data range. In addition, the Environmental Protection Bureau of Yining County
conducts real-time monitoring of air quality, and when heavy pollution occurs, some
emergency measures [39] are taken to reduce air pollution which manifests itself in the
dataset as a sudden increase in pollution concentration followed by a gradual return to
normal, so some of the peaks in pollution concentration contain human intervention factors,
making the sudden increase more difficult to predict, so the peak has a greater impact on
prediction accuracy than the concentration. This is why peaks have a greater impact on
prediction accuracy than concentrations.

In Figure 4, it can be seen that the DW-CAE model does not predict very well at the
peaks. Meteorological parameters indeed have significant impacts on the peak values
of air pollution. Wind speed and direction affect the dispersion of air pollutants, while
temperature can affect their volatility and reaction rate. Humidity can also affect the
reaction and settling rates of pollutants, and rainfall can wash pollutants from the air,
potentially leading to a decrease in concentration during precipitation. We have visualized
some of the datasets that include peak pollution data, and the visualization results of some
datasets are shown in Figure 5. It can be observed that there is a certain periodicity in
the curves of O3, temperature, and humidity. As the datasets are based on hourly data
and are affected by the sunrise and sunset, under the sunlight, the temperature rises and
the humidity decreases which can accelerate photochemical reactions that catalyze the
production of ozone. Therefore, there is a consistency between the peak values of ozone
and temperature. Other pollutants also exhibit some periodicity but O3 is the most obvious.
Additionally, the curves of PM10 and SO2 in the figure each have one obvious peak value,
and there are no significant meteorological anomalies near the peak values. Apart from
meteorological factors, human activities also have a significant impact on air pollution
which is more difficult to predict.
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Figure 5. Visualization curves for the partial Yining air pollution dataset, which includes pollution peaks.

6. Conclusions

In this paper, a DW-CAE model is proposed for air pollution prediction using historical
data from Beijing and Yining as samples. The wavelet transform is used to extract the time
and frequency domain characteristics of the target sequence first, and then the convolution
layer is used for feature extraction, and the extracted feature matrix is input into the auto-
encoding structure for prediction. The experimental results show that the DW-CAE model
proposed in this paper is accurate and reliable, and its prediction accuracy is better than
other comparative models in both univariate and multivariate prediction. As a multivariate
prediction model, the DW-CAE model can provide timely information on the quality of
the entire atmospheric environment, which has positive implications for the control of
pollutant emissions by relevant departments. At the same time, the accurate prediction of
air pollution by the DW-CAE model allows people to be informed of the pollution situation
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in advance which also helps individuals take protective measures and environmental
protection departments plan pollution emissions.

The model proposed in this paper achieves high accuracy in both univariate and
multivariate prediction, but there are still some problems that need to be solved in the
future. For example, there are several fixed parameters in the model, and this paper uses
an exhaustive method to iterate through the permutations of all parameters and select
the most accurate one. This method of parameter tuning has achieved good results but
is computationally expensive, and if the dataset needs to be changed, the most suitable
combination of parameters needs to be found again. Some heuristics can be used to
optimize this. Moreover, the model proposed in this study is based on a single dataset,
and sometimes there may be data missing from that single dataset which could cause the
prediction results to be wrong. Therefore, in the future, relevant knowledge of multiview
learning [40] can be used to collect and combine data from multiple monitoring sites to
solve the problem of missing data in a single dataset and get more complete and accurate
information about the weather and pollution. At the same time, data about traffic and
satellite images can be added to the original set of data. These pieces of information are
closely related to air pollution and can improve the accuracy and reliability of the model.
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