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Abstract: Energy forecasting based on univariate time series has long been a challenge in energy
engineering and has become one of the most popular tasks in data analytics. In order to take
advantage of the characteristics of observed data, a partially linear model is proposed based on
principal component analysis and support vector machine methods. The principal linear components
of the input with lower dimensions are used as the linear part, while the nonlinear part is expressed
by the kernel function. The primal-dual method is used to construct the convex optimization problem
for the proposed model, and the sequential minimization optimization algorithm is used to train
the model with global convergence. The univariate forecasting scheme is designed to forecast the
primary energy consumption of the electric power sector of the United States using real-world data
sets ranging from January 1973 to January 2020, and the model is compared with eight commonly used
machine learning models as well as the linear auto-regressive model. Comprehensive comparisons
with multiple evaluation criteria (including 19 metrics) show that the proposed model outperforms all
other models in all scenarios of mid-/long-term forecasting, indicating its high potential in primary
energy consumption forecasting.

Keywords: support vector machines; principal component analysis; partially linear models; primary
energy consumption

1. Introduction

Energy forecasting has long been a hot spot in this era of energy revolution. In
most recent years, energy forecasting is already available to bring profits to enterprises
by helping them make more reasonable financial plans [1]. On the other hand, energy
consumption is not only an indicator for economics or finance but also an important factor
for environmental issues, especially for carbon-related issues [2]. With the more diverse
impact of real-world problems, energy forecasting is appealing to many researchers and
engineers to make their own contributions. Topics of energy forecasting are also broadened
to wider areas, such as energy consumption [3], energy production [4], energy price [5], the
relationship between energy and economics and the environment [6], etc.

There is a long history of the application of primary for industrial production. Ac-
curate forecasts of primary energy forecasting are still of great importance for making
decisions in energy marketing, management, and also in the policies for pollution emis-
sions. However, our investigation of the existing literature on energy forecasting (presented
in Section 2) indicates that there are still issues in existing methods and implies that there is
a research gap in the application of partially linear models for primary energy forecasting.
In actuality, the time series of primary energy consumption often has very clear patterns of
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variation, especially for the stable economical entities in mid–short periods; therefore, it is
suitable to use the deterministic models to fit such properties. On the other hand, with the
development of data-capturing technologies, it is much easier to obtain more data sets to
build forecasting models. Thus, it is natural to consider using machine learning models
to further improve forecasting accuracy. Above all, it is more reasonable to combine the
merits of these models for better practice and higher accuracy in real-world applications.

The partially linear model is a typical example of the practice of combining models
with deterministic and indeterministic formulations. The earliest work using the partially
linear model should be credited to Engle et al., in which a very simple combination of
linear regression and a nonlinear function was used [7]. The semi-parametric support
vector machines (SVM) presented by Smola and Schölkopf was the first work that used
machine learning models to build such a partially linear structure [8] in a uniform way,
and the linear kernel was used to represent the linear part. Espinoza et al. presented
another version of a kernel-based partially linear model based on the framework of least
squares support vector machines (LSSVMs) [9]. Conversely, this work uses the nonlinear
kernel to represent the nonlinear part, and it also presented an analytic way of training
the model for the first time. Such properties of analytical solutions make them much
easier to implement more models, and several models have been developed for function
estimation and system identification [10–12]. In the last several years, Ma et al. used a
simplified formulation to build the kernel-based grey system models by regularizing all
linear parameters and parameters in the feature space [13–15], which actually also shares
the philosophy of Hammerstein system models. The work by [16] Matí also uses the
method of regularizing all parameters and made it easier to train a partially linear SVM.
Within the different specific ways for implementation, all of these works have proven that
the kernel-based partially linear models are much more efficient in the cases in which prior
knowledge is available, such as a known linear relationship between the input and output.

It can be learned from the previous works that an efficient partially linear model can
be developed if the features of the data are properly treated. For instance, Xu et al. [17]
pointed out that it is also reasonable to separate the linear and nonlinear functions of the
input, where the partially linear LSSVM based on this idea can then outperform the other
models. Enlightened by this pattern, a new partially linear SVM using principal linear
components extracted using a principal component analysis (PCA) is developed, and its
related theoretical and computational problems will be discussed in detail. The real-world
applications of forecasting the monthly primary energy consumption of electric power
sector in the US will be presented, and the proposed model will be compared with several
other machine learning models that have been very popular in recent research studies.

The rest of this work is organized as follows: literature studies are presented in
Section 2; preliminary examinations on the specific formulation of the partially linear model,
with the related theoretical basis, and the computational details of the PCA are introduced
in Section 3; a complete representation of the proposed partially linear component support
vector machine (PLC-SVM) is presented in Section 4, including its formulation in primal
and dual spaces and its computational details for univariate time series forecasting; the
case study forecasting the monthly primary energy consumption of the electric power
sector in the US based on a data set with 565 months of real-world data is presented in
Section 5, along with a comprehensive comparison between different models and a detailed
discussion; the conclusions are drawn in Section 6.

2. Literature Study

In this section, some recent literature on energy forecasting will be reviewed, and
the details of the most commonly used structured and non-structured models for energy
forecasting will be briefly summarized. A short discussion on the findings and research
gaps will also be presented in the last subsection. For convenience, an overview of the main
models for energy forecasting reviewed in this section is presented in Figure 1.
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Figure 1. Overview of the models for energy foecasting in recent years.

2.1. The Structured Models for Energy Forecasting

In this subsection, the structured models are roughly categorized into empirical mod-
els, linear models, and grey system models.

The empirical models are often presented as specific functions (see [18]), which are
often built with engineering experience and are directly validated in practice. These models
are often easy to use but are not suitable for very complex data sets. Recent works have
paid significantly fewer attention to such models.

The linear regression (LR) and autoregressive integrated moving average (ARIMA)
models both share linear structures. While the LR model only simulates a simple linear
correlation between the input and output variables [19,20], the ARIMA model mainly
considers the auto-correlation of the time series. The linear models are quite popular in
the application of energy forecasting and have been used to forecast oil consumption [19],
electricity consumption [21,22], demand [20,23], wind generation [24], total energy demand
and supply [25], etc. However, the ARIMA model often suffers from “overdifferece” [26],
and both of these linear models are limited in describing nonlinear data sets.

Grey system models are increasingly popular in energy forecasting. There are several
techniques used in the recent literature, including designing new structures to fit the data
(e.g., nonlinear whitening equations [27], time-delayed terms [28], and periodic terms [29]),
using complex accumulation operators (e.g., Hausdorff fractional order accumulation [30]
and buffer operators [31]), and combining grey system models with other methods (e.g.,
Kalman filter [32] and Markov model [33]). Researchers often use intelligence optimizers
when new methods contain nonlinear parameters [27,29–31]. One advantage of grey
system models is their ability to make reliable predictions with limited data. However, for
more complex forecasting applications, the proper structure or preprocessing methods still
require the experience of researchers.

2.2. The Non-Structured Models for Energy Forecasting

Non-structured models do not have deterministic structures; a complete formulation
can only be determined by the data sets. Machine learning is one of the most popular non-
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structured models, and recent literature has shown considerable interest in the application
of these models. The most popular machine learning models for energy forecasting are
neural networks, support vector machines, and regression trees.

Neural networks, particularly multilayer perceptrons, remain popular for energy
forecasting, with applications in areas such as electricity [34–36] and building energy
consumption [37], ocean wave energy and photovoltaic plants generation forecasting [38],
etc. Deep learning has led to the development of more complex models, such as LSTM-
based networks with fully connected layers [39,40] or convolutional layers [41–43]. Other
types of layers, such as bagged echo state networks [44], echo state networks [45], and
radial belief networks [46], are also used. While these complex networks improve flexibility,
they increase computational costs and require expert knowledge for the design. Thus,
developing general models for energy forecasting remains challenging.

Kernel-based machine learning models, especially SVMs, remain popular for energy
forecasting. Recent studies have focused on combining SVMs with evolutionary algo-
rithms such as particle swarm optimization (PSO) [47], differential evolution (DE) [48],
improved chicken swarm optimization (ICSO) [49], covariance matrix adaptation evolu-
tionary strategy (CMAES) [50], improved fruit fly optimization (IFFO) [51], and Harris
Hawks optimization [52], to optimize the hyperparameters automatically. These models
are less time-consuming and have higher generality. However, partially linear kernel-based
models have not been used in recent energy forecasting studies.

Many new models based on the basic regression trees have been developed in the past
decade and are also widely adopted in energy forecasting, such as in carbon trading volume
and price [53], building energy consumption [54], solar radiation [55], hydro-energy [56],
etc. One significant merit of the regression tree-based models is that the ones with shallow
structures are generally explainable. However, efficient regression trees usually become
deeper with larger or more complex data sets, and a large amount of hyperparameters may
also make the overall forecasting process too complex.

Hybrid models are gaining more interest in energy forecasting in both the literature
and in competitions [57]. The main schemes found in the literature can be categorized
into three classes. The first class is to combine the machine learning models and the
preprocessing methods, such as variational mode decomposition (VMD), autoencoder [58],
singular spectrum analysis (SSA) [59], wavelet transform [60], etc. The second class is to
combine different machine learning models using the ensemble learning scheme [61–63]
or multiple combining scheme [64,65], among other schemes. The third class is actually
the integration of the above two schemes. In these works, the decomposition methods are
often adopted, such as empirical mode decomposition (EMD) [66] and complete ensemble
empirical mode decomposition (CEEMD) [67]. Despite being simple and effective, these
hybrid models are more complex than other machine learning models and can lead to
longer training times, less explainability, and the need for better hardware.

2.3. A Brief Summary of Literature Study

According to the literature study presented above, the research gaps can be briefly
summarized in two parts: (1) In terms of methodology, machine learning models are
becoming more popular in recent works for energy forecasting. However, along with
the higher performance of more complex models, it raises other issues such as higher
computational complexity and an incomplete framework of appropriate models in real-
world applications. (2) In terms of applications, more complex models often need larger-
sized data sets, and many works only present good performance in mid-/short-term
predictions. The PLSVM method illustrates a new way of combining the linearity and
nonlinearity of the data sets but has not been used in energy forecasting applications based
on our investigation.

To fill the above research gaps, this work presents a new machine learning model for
energy forecasting in real-world applications, and the main contributions can be summa-
rized as follows:
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• A partially linear component support vector machine is developed, which uses the
principal linear features of the input data set obtained by a PCA. This way will reduce
the risk of multi-collinearity and keep the model as simple as possible.

• A theoretical analysis is also presented, showing that the computational complex-
ity of the main training process of the proposed model is in the same order as the
existing SVM model.

• A complete partially linear auto-regression scheme for out-of-sample time series fore-
casting is presented in a real-world application with different scenarios on forecasting
the primary energy consumption of the electric power sector of the United States,
showing that the proposed model outperforms the cutting-edge models, especially in
mid-/long-term forecasting.

3. Preliminaries

In this section, the main idea of the partially linear model and key steps of the principal
component analysis (PCA) will be briefly summarized.

3.1. Main Idea of the Partially Linear Model

One typical definition of the partially linear model is [68]

y = βTxlin + g(xnonl), (1)

where xlin consists of the linear dimensions of the input x, xnonl consists of the nonlinear
dimensions, and g(·) is an unknown nonlinear function. However, it has been argued that
this formulation only separates the linear dimensions of the input vectors, and a more
reasonable approach is to separate the linear functions of the input vector [17]. Enlightened
by this idea, a simpler formulation is considered

y = βTx + g(x), (2)

where βTx is the linear function of x and g(x) is an unknown nonlinear function of x.

Remark 1. It is well known that any differentiable real function can be written by the formulation

f (x) = f (x0) + D f (x0)(x− x0) + R(x− x0) (3)

according to Taylor’s theorem [69], where D is a differential operator (For multivariable functions,

the differential operator can be written as D f =
(

∂ f
x1

, ∂ f
x2

, ..., ∂ f
xd

)T
, and the products of between the

vectors are inner products). This formulation can be transformed compactly by

f (x) = D f (x0)x + [R(x− x0) + f (x0)− D f (x0)x0]. (4)

It is clear that the first term is a linear function of x and the second term is a nonlinear function
(with constant bias). It is obvious that this formulation is mathematically equivalent to (2).

Based on this idea, the linear function of the input will be treated in a more direct way,
and this will make it more stable than treating the linear part in a fully nonlinear way. For
example, if the real nonlinearity follows a polynomial function such as

F(x) = a0 + a1x + a2x2 + a3x3, (5)

it will be unstable to approximate it using a full nonlinear function as the linear term a1x
will be over-estimated. Above all, the formulation in (2) is considered to build the partially
linear model in this paper.
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3.2. Principal Component Analysis

As described above, a partially linear model (2) has a linear function of the input. But in
real-world applications, the elements in such a linear input may have high multicollinearity,
which may lead to ill-posed problems and higher computational complexity. In this work,
the principal component analysis (PCA) is used to reduce the dimension of the input.

PCA is one of the most popular classical linear methods, which can efficiently extract
the linear features of the input vector and make it more stable for linear function estimations.

For the original input x =
(

x1, x2, . . . , xd
)T

, where xi(i = 1, 2, . . . , d) represent the elements
(features) of the input, the main goal of the PCA is to find a linear transformation A that
transforms the original input x into a new vector z, of which the features are linearly
independent to each other. For convenience, a set of an input is denoted by

X =
(
x1, x2, · · · , xN

)
(6)

and the objective of the PCA is to find a linear matrix that satisfies:

Ad×d(Xd×N −Ud×N) = Zd×N (7)

where U is the matrix of mean values of X, of which the elements are uij =
1
N ∑N

k=1 xj
k

(i = 1, . . . , N, j = 1, . . . , d). The transformation matrix A can be denoted by

A =
(
ξ1, ξ2, · · · , ξd

)
(8)

where ξi are the eigenvectors of the auto-covariance matrix (X−U)(X−U)T , i.e.,

(X−U)(X−U)Tξi = λξi. (9)

The order of the eigenvectors is coincidental with the descending order of the corre-
sponding eigenvalues λi of the auto-covariance matrix of X.

The contribution ratio of the k-th linear component in the new features Z is calculated by

rk =
λk

∑d
i=1 λi

. (10)

The total contributions of the first k components are the sum of the first k ratios
defined in (10). As the auto-covariance matrix (X−U)(X−U)T is a positive semi-definite
symmetric matrix, all eigenvalues are non-negative; thus, the contribution ratios rk are all
non-negative. Furthermore, the total contributions of the first k components are in the range
[0, 1]. Usually, if the contributions of some components are larger than a threshold rp, they
can contain almost all of the information of the original samples, and these components are
called the principal components.

4. The Proposed Partially Linear Component Support Vector Machines

The modeling procedures and some key notes on the theoretical basis of the proposed
partially linear component support vector machines for regression will now be presented.

4.1. Partially Linear Component Model in the Feature Space

A support vector machine model for regression essentially estimates a nonlinear
function in a feature space, which is defined by

y = wT ϕ(x) + b, (11)

where
ϕ : Rd → F (12)
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is a feature mapping that maps the vector inRd space to a feature space, and wT ϕ(x) + b
is a linear approximation in the feature space of a nonlinear function, i.e., g(x) in (2) can
be approximated in this way. Based on this idea, it is very natural to rewrite the partially
linear function (2) into the following formulation

y = βTz + wT ϕ(x) + b, (13)

where z is a vector only containing the principal linear components corresponding to x.
According to the basic principles of functional analysis, it is very easy to build a new feature
space using

F̃ =

{(
z

ϕ(x)

)
| z ∈ Rp, ϕ(x) ∈ F ; x ∈ Rd

}
, (14)

where p is the number of principal linear components and d is the dimension of x. Thus, it
is very easy to define a new feature mapping φ : Rd → F̃ using

φ(x) =
(

z
ϕ(x)

)
. (15)

The linear weights can then be concatenated using

ω =

(
β
w

)
. (16)

The partially linear model can then be compactly written in the new feature space F̃ by

y = ωTφ(x) + b. (17)

4.2. Partially Linear Component Support Vector Machines in Primal and Dual Formulations

Within Formula (17), the primal problem of the partially linear component support
vector machine for regression (PLC-SVM) can be defined as

min
ω

1
2
‖ω‖2 + C

N

∑
i=1

(ξi + ξ∗i ) (18)

s.t.


yi −ωTφ(x)− b ≤ ε + ξi

ωTφ(x) + b− yi ≤ ε + ξ∗i
ξi, ξ∗i ≥ 0

.

This formulation shares the same primal problem of the support vector regression,
which is often known as the ε-insensitive formulation. However, this formulation is not
available for computation use; thus, its corresponding dual problem should be used, which
is defined by Smola et al. [70]

max
α,α∗

J(α, α∗) = −1
2

N

∑
i,j=1

(αi − α∗i )(αj − α∗j )φ
T(xi)φ(xj)

− ε
N

∑
i=1

(αi + α∗i ) +
N

∑
i=1

yi(αi − α∗i )

(19)

s.t.


N

∑
i=1

(αi − α∗i ) = 0

αi, α∗i ∈ [0, C]

.
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It is very important to notice that the linear weight ω in the feature space can be
expressed by the linear combination of the mapping φ, and the weights are the Lagrangian
multipliers, i.e.,

ω =
N

∑
i=1

(αi − α∗i )φ(xi) =

(
∑N

i=1(αi − α∗i )zi

∑N
i=1(αi − α∗i )ϕ(xi)

)
. (20)

Then the partially linear function can be written as

ωTφ(x) =

(
N

∑
i=1

(αi − α∗i )z
T
i ,

N

∑
i=1

(αi − α∗i )ϕT(xi)

)
·
(

zj
ϕ(xj)

)

=
N

∑
i=1

(αi − α∗i )z
T
i zj +

N

∑
i=1

(αi − α∗i )ϕT(xi)ϕ(xj)

. (21)

Recalling the definition of ω in (16), it is easy to notice that

β =
N

∑
i=1

(αi − α∗i )zi. (22)

Thus the partially linear function can be rewritten as

ωTφ(x) = βTzj +
N

∑
i=1

(αi − α∗i )ϕT(xi)ϕ(xj). (23)

According to the kernel trick, the inner product of a feature mapping can be expressed
by a kernel function that satisfies Mercer’s condition, i.e.,

ϕT(xi)ϕ(xj) = k(xi, xj). (24)

Noticing that the nonlinear mapping φ contains a linear and nonlinear part according
to its definition (15), the inner products should be written as

φT(xi)φ(xj) =
(

zT
i , ϕT(xi)

)( zj
ϕ(xj)

)
= zT

i zj + ϕT(xi)ϕ(xj)

= zT
i zj + k(xi, xj)

. (25)

Finally, the partially linear model can now be written as

y = ωTφ(x) + b

= (βT , wT)

(
z

ϕ(x)

)
+ b

= βTz + wT ϕ(x) + b

= βTz +
N

∑
i=1

(αi − α∗i )k(xi, x) + b

. (26)

The Gaussian kernel (also known as the radial basis function kernel) is often used

k(xi, xj) = exp
(
−γ
∥∥xi − xj

∥∥2
)

, (27)
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where γ is known as the reciprocal of the squares of the kernel width σ. The dual problem
that can be used for computation can now be expressed within the inner product (25) as

max J(α, α∗) = −1
2

(
N

∑
i,j=1

(αi − α∗i )(αj − α∗j )(ZTZ + K)

)

− ε
N

∑
i=1

(αi + α∗i ) +
N

∑
i=1

yi(αi − α∗i )

(28)

s.t.
{

∑N
i=1
(
αi − α∗i

)
= 0

αi, α∗i ∈ [0, C]
,

where K = (k(xi, xj))N×N .

Remark 2. The Gram matrix ZTZ is a positive semi-definite symmetric matrix, while K is also
known as a positive semi-definite symmetric matrix; thus, their addition ZTZ + K is also a positive
semi-definite symmetric. Thus, the dual problem (28) satisfies the condition of the typical quadratic
programming (QR), and it can be solved using sequential minimum optimization (SMO) with
global convergence as proven by Takahashi et al. [71].

Within the above procedures and analysis, the overall computational steps of the
proposed PLC-SVM are now clear, and a summarization is presented in the pseudo-code
in Algorithm 1. The main computational steps can be roughly divided into four parts:
the first part is preparing the data set and initializing the key settings; the second part
utilizes the PCA to extract the principal linear components while building the kernel matrix
used in (28); the third part solves the dual problem using the SMO algorithm, which has
the same implementation as LibSM [72]; the last part makes predictions using the trained
PLC-SVM model.

Algorithm 1: Algorithm of PLC-SVM (training and predicting).

Input: Training sample S =
{
(xi, yi)

∣∣∣i = 1, 2, . . . , N
}

1 Set: ε = 10−6, C in (28), γ for Gaussian kernel (27), threshold rp = 0.95
2 A, λk ← eigen decomposition in (9) A defined in (8) rk ← Equation (10)

3 npc ← argk

{(
∑k

i=1 ri

)
≥ rp

}
number of principal components for i = 1 to N do

4 zi ← first npc elements of A(xi − u) as defined in (7)
5 end
6 for i = 1 to N do
7 for j = 1 to N do
8 Ki,j ← Equation (27) the kernel gram matrix
9 end

10 end
11 α, b in (26)← solve the dual problem (28) SMO in LibSVM [72]
12 for i = 1 to Npred do
13 ypred

i ← output function in Equation (26) with xi
14 end

15 output values of the PLC-SVM Output: Y =
{

yi | i = N + 1, ..., Npred

}
Remark 3. The complexity of the proposed PLC-SVM model is mainly contributed by the PCA and
the cost for solving the dual problem (28). The complexity of the PCA is known to beO(d2 ·N + d3)
for the worse cases. The complexity of the SMO in LibSVM is between O(N2) and O(N3).
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In general, the sample size is much larger than the dimension of the input vector, i.e.,
N � d; therefore, the total complexity of the PLC-SVM model is generally slightly larger
than the SVM model with the same hyperparameters.

4.3. Forecasting Scheme for Univariate Time Series

The proposed model presented above essentially estimates a static model describing
the relationship between the input and the output. But for time series forecasting, the
model should estimate the correlation between the time series and the former points. One
typical formulation is the auto-regressive model, which is represented by

yt = f (yt−1, yt−2, . . . , yt−τ). (29)

In other words, the former series with τ points constructs a vector xt = [yt−1, yt−2, . . . ,
yt−τ ]T , which play a role as the input of the regression models. When the function f (·) is
nonlinear, the Equation (29) is known as the nonlinear auto-regressive model (NAR). In
this regard, it is easy to use the PLC-SVM model to build such an auto-regressive model;
the main difference is that PLC-SVM considers the principal linear components of the input.
Thus, the final model used in this work can be written as

yt = wTzt + g(yt−1, yt−2, . . . , yt−τ). (30)

where zt is the vector of which the elements are the linear components that are transformed
by the PCA.

A complete partially linear auto-regression forecasting scheme is presented in Algorithm 2.
When executing the forecasting procedures, the newly predicted values of yt would

be added into the input at the next time step; thus the future points can be estimated using
the models based on such recurrent scheme. It should be noticed that such a procedure is
different to the n-step ahead forecasting, while all the future values would be forecasted
only based on the in-sample data.

Algorithm 2: Algorithmof partially linear auto-regression based on PLC-SVM.
Input: Time series yt, t = 1, 2, . . . , N

1 Set: time lag τ, prediction horizon
2 stage I: reconstruct the sample data for t = 1 to N − τ do
3 xt ← (yt+τ−1, yt+τ−2, . . . , yt)T

4 end

5 S =
{
(xt, yt)

∣∣∣t = 1, 2, . . . , N − τ
}

6 stage II: train the base model PLC-SVM← Train PLC-SVM using Algorithm 1
with sample S

7 stage III: forecasting by trained model xin = (yN , yN−1, . . . , yN−τ+1)
T

8 for t = 1 to Npred do
9 ypred

t ← PLC-SVM(xin)
10 update the input values remove the last element of xin

11 append ypred
t as the first element of xin

12 end

Output:
{

ypred
t | t = N + 1, 2, . . . , Npred

}
5. Case Study

In this section, a real-world case study of forecasting the monthly primary energy
consumption of the electric power sector in the US will be presented with three cases.
The background information, evaluation metrics, and models for comparison will be
introduced first, and then the results along with a discussion of the results will be presented.
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The general framework illustrating the overall procedures of this case study is presented
in Figure 2.

Figure 2. The general framework of the proposed PLC-SVM model structure and its application in
US primary energy consumption in the electric power sector forecasting.

5.1. Data Collection and Preprocessing

As discussed in Section 1, the primary energy consumption is of great importance for
industrial economics. In this section, the real-world case of the primary energy consumption
of the electric power sector in the US was considered.
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The raw data of the monthly primary energy consumption from January 1973 to Jan-
uary 2020 were collected from the US Energy Information Administration (EIA) website
(https://www.eia.gov/totalenergy/data/monthly/ Monthly Energy Review of the US, ac-
cessed on 1 March 2020). As shown in Figure 3, the data set contains 565 points of monthly
primary energy consumption of the electric power sector in the US (unit: trillion Btu). The
time series data were firstly reconstructed using the steps presented in line 2 to line 5 in
Algorithm 2. Then, the first 90% of points are used as in-sample data, and the remaining 10%
of points are used as out-of-sample data; furthermore, the first 90% as in-sample data are
finally used for training the models, and the remaining 10% of in-sample data are used for
validating the performance of the models. In order to make it easier to train the machine
learning models, the raw data were divided by the largest value in the in-sample data before
training, and the final predicted values were multiplied by the same largest value.
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Figure 3. Raw data of monthly primary energy consumption of the electric power sector in the US
from January 1973 to January 2020.

5.2. Models for Comparison and Evaluation Metrics

Nine models were selected for comparison with the proposed PLC-SVM, of which
their information is summarized in Table 1 with descriptions of the corresponding hyperpa-
rameters. As described above, the PLC-SVM model is essentially based on the methodology
of the SVM model; thus, the most closely related models are chosen for comparison. For
convenience, the Gaussian kernel (27) is selected for SVM and LSSVM, and the rational
quadratic kernel is selected for GPR, as suggested in [73]. On the other hand, the PLC-SVM
model has a partially linear structure, and the linear auto-regressive model is also used as
the baseline model for comparison.

• AR: The linear auto-regressive model (AR) used in this work is formulated as
yt = a0 + a1yt−1 + a2yt−2 + · · · + aτyt−τ , which can be regarded as a simplified
version of PLC-SVM (without the kernel-based term and C → ∞), and the parameters
are estimated using the ordinary least squares method. With no hyperparameters, the
AR does not need to be further optimized by the grid search cross-validation like in
the other machine learning models.

• SVM: The ε-insensitive support vector machine (SVM) model for regression is selected
in this work, of which the modelling details are described in [70,72]. It shares the most
similar regularization formulation to PLC-SVM but has no partially linear part.

• LSSVM: The least squares support vector machine (LSSVM) model presented by
Suykens in 1999 [74] is another version of SVM that uses quality constraints. The
regression version of LSSVM is based on the LSSVM model for function estimation
described in [75].

• GPR: The Gaussian process regression (GPR) model also uses the kernel combinations
developed from the SVM model as described in [73]; the main difference is that the
GPR approach is mainly based on the Bayesian theory.

Decision tree-based models are another kind of cutting-edge method, and they are
widely used in the energy forecasting fields, such as in carbon energy [53], building

https://www.eia.gov/totalenergy/data/monthly/
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energy [54], solar energy [55], and hydro-energy applications [56], among others. These
models all use the regression tree and ensemble learning method, such as boosting and
bagging, and often have high performance in time series forecasting with high accuracy
and stability and very low time cost. Thus, it will be very interesting to see whether the
proposed PLC-SVM can outperform these emerging models in this case. Information on
these models is listed below:

• RF: The random forest (RF) model is one of the most classical tree-based models,
which mainly ensembles the weak regressors using bagging. The general method was
first proposed by Ho in 1995 [76], and a complete work was first presented by Breiman
in 2001 [77].

• XGB: The extreme gradient boosting (XGB) model was proposed by Chen in 2015, and
the complete work was published in 2016 [78]. It was famous for its high performance
in dealing with complex features and its extremely fast speed [79].

• LGBM: The light gradient boosting model was proposed by Ke in 2017 [80], who
has won the one million bonus from Alibaba Ltd. using this model with his partners.
The LGBM model uses multiple technologies to boost the original gradient boosting
models, and it can even be more stable and faster than XGB in some tasks.

• CATB: Gradient boosting with categorical features support (CATB) was proposed by
Prokhorenkova et al. in 2018 [81]. It has a very good performance in dealing with
categorical features and has very good robustness.

The recurrent neural networks are widely used in time series forecasting and in related
works in recent years. In this work, a state-of-the-art gated recurrent unit is used for
comparison. The detailed information of this model is described as follows.

• GRU: The gated recurrent unit (GRU) model was introduced by Cho et al. [82] in 2014
as a simplified version of the long short-term memory (LSTM) model by Hochreiter
and Schmidhuber [83] in 1997. In time series forecasting, the GRU model is often
combined with other layers to capture more complex data patterns or shapes. In
this study, a three-layer neural network was used, consisting of a GRU layer directly
connected to the input data, an activation layer using a sigmoid function, and an
output layer with a linear full connection.

Table 1. Models for comparison and their hyperparameters.

Model Abbreviation References Hyperparameters

Auto-Regressive AR [21]
Support Vector Machine SVM [70,72] Kernel parameter, regularization parameter

Least Squares Support Vector
Machine LSSVM [74] Kernel parameter, regularization parameter

Gaussian Process Regression GPR [73] Kernel type

Random Forest RF [76]
Bootstrap (whether bootstrap samples are used when building trees),

maximum tree depth, number of features for the best split, minimum samples
at a leaf node, minimum samples for splitting an internal node, number of trees

Extreme Gradient Boosting XGB [78] Minimum loss reduction, learning rate, maximum tree depth, minimum weight
for new node, L1 regularization parameter

Light Gradient Boosting LGBM [80] Maximum tree depth, maximum tree leaves, minimum number of data needed
in a child, L1 regularization parameter, L2 regularization parameter

Gradient Boosting with
Categorical Features Support CATB [81] Maximum number of trees, tree depth, L2 regularization parameter

Gated Recurrent Unit GRU [82] Hidden size

To ensure a fair comparison, all machine learning models were utilized as nonlinear
auto-regressive models, similar to PLC-SVM in Algorithm 2 (one can use these models in
line-6 to implement the overall workflow). The models were implemented using Python 3.7,
and their forecasting performances were evaluated using the multiple criteria listed in
Table 2. The scikit-learn [84] library’s built-in grid search method was used for tuning
the hyperparameters of the models except for the AR model. Detailed information on the
hyperparameters and original references are summarized in Table 1. In order to make the
grid search process executable, we only choose the most important hyperparameters for
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each model, following the engineering experience or suggestions made by the original
references. As time series require forward series validation to determine the model’s
performance, it is more reasonable to use 90% of the in-sample data for training and the
remaining 10% for validation, as in [85].

Table 2. Metrics used in this paper.

Metrics Abbreviation Formula

Average Error AE 1
n

n
∑

k=1

(
x(0)(k)− x̂(0)(k)

)
Average Relative Error ARE 1

n ∑n
k=1

∣∣∣∣ x(0)(k)−x̂(0)(k)
x(k)

∣∣∣∣
Index of Agreement IA 1− ∑n

k=1(x(0)(k)−x̂(0)(k))
2

∑n
k=1

(
|x(0)(k)−x̄(0)|+

∣∣∣x̂(0)(k)−x̂(0)
∣∣∣)2

Mean Arctangent Absolute Percentage Error MAAPE 1
n

n
∑

k=1
arctan

(∣∣∣∣ x(0)(k)−x̂(0)(k)
x(k)

∣∣∣∣)
Mean Absolute Error MAE 1

n

n
∑

k=1

∣∣∣x(0)(k)− x̂(0)(k)
∣∣∣

Mean Absolute Percentage Error MAPE 1
n

n
∑

k=1

∣∣∣∣ x(0)(k)−x̂(0)(k)
x(k)

∣∣∣∣× 100%

Median Absolute Error MedAe 1
n

n
∑

k=1
arctan

(∣∣∣∣ x(0)(k)−x̂(0)(k)
x(k)

∣∣∣∣)
Mean Percentage Error MPE 1

n

n
∑

k=1

x(0)(k)−x̂(0)(k)
x(k) × 100%

Mean Squared Error MSE 1
n

n
∑

k=1

(
x(0)(k)− x̂(0)(k)

)2

Mean Squared Logarithmic Error MSLE 1
n

n
∑

k=1

∣∣∣log
(

x(0)(k) + 1
)
− log

(
x̂(0)(k) + 1

)∣∣∣2
Normalized Root Mean Square Error NRMSE

√
1
n

n
∑

k=1
(x(0)(k)−x̂(0)(k))

2

x(0)(k)max−x(0)(k)min

Percent Bias Pibas

n
∑

k=1
(x(0)(k)−x̂(0)(k))

n
∑

k=1
x̂(0)(k)

Coefficient of Determination R2 1−

n
∑

k=1
(x(0)(k)−x̂(0)(k))

2

n
∑

k=1
(x(0)(k)−x̄(0))

2

Root Mean Square Error RMSE

√
1
n

n
∑

k=1

(
x(0)(k)− x̂(0)(k)

)2

Root Mean Square Logarithmic Error RMSLE

√
1
n

n
∑

k=1

∣∣log
(
x(0)(k) + 1

)
− log

(
x̂(0)(k) + 1

)∣∣2
Root Mean Square Percentage Error RMSPE

√
1
n

n
∑

k=1

∣∣∣ x(0)(k)−x̂(0)(k)
x(k)

∣∣∣2
Symmetric Mean Absolute Percentage Error SMAPE 1

n

n
∑

k=1

∣∣∣∣ x(0)(k)−x̂(0)(k)
0.5x(0)(k)+0.5x̂(0)(k)

∣∣∣∣× 100%

Theil U Statistic 1 U1

√
1
n

n
∑

k=1
(x(0)(k)−x̂(0)(k))

2

√
1
n

n
∑

k=1
(x(0)(k))

2
+

√
1
n

n
∑

k=1
(x̂(0)(k))

2

Theil U Statistic 2 U2

√
1
n

n
∑

k=1
(x(0)(k)−x̂(0)(k))

2

√
n
∑

k=1
(x(0)(k))

2

5.3. Results

In order to make a comprehensive comparison between the PLC-SVM model and the other
models, three sub-cases based on the same data sets with different lags were carried out.

5.3.1. Case I: τ = 18

In this case, the time lag is set as τ = 18, i.e., every point will be predicted based on the
former 18 points in the way presented in Algorithm 2. Four linear principal components
are transformed by the PCA (r = 0.95) from eighteen dimensions, which are presented in
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Equation (A1) in Appendix A. Then, the semi-analytical output function of PLC-SVM can be
written as

y = βTz + wT ϕ(x) + b

= −0.1643z1 − 0.0156z2 − 0.2404z3 − 0.0692z4 + wT ϕ(x) + 0.6824.
(31)

The testing metrics of all models are listed in Table 3. It is clear that the overall
performance of the PLC-SVM model is the best among all models as all of its metrics are
the best. It is very interesting to see that the SVM model has the closest performance to
PLC-SVM in this case, and this is easy to explain as they share similar methodologies
(kernel method and ε-insensitive loss function). In the kernel-based models, the SVM
model has the best performance aside from the PLC-SVM model, while the GPR model
has the worst performance. The RF model performs the best and CATB performs the worst
in the tree-based models. The GRU model only outperforms the worst tree-based models,
which is a performance that is even worse than the linear AR model.

Table 3. Results of the metrics of the ten models with time lag τ = 18.

PLC-
SVM SVM LSSVM GPR RF LGBM XGB CATB GRU AR

AE −30.4026 −31.9230 −131.3443 −144.5654 −105.5290 −135.2636 −86.1456 251.4290 161.4449 −79.9688
ARE 0.0372 0.0379 0.0489 0.0511 0.0387 0.0478 0.0398 0.0866 0.0622 0.0423
IA 0.9371 0.9347 0.9114 0.9224 0.9492 0.9194 0.9354 0.5436 0.8856 0.9202

MAAPE 0.0372 0.0379 0.0488 0.0510 0.0386 0.0477 0.0397 0.0859 0.0621 0.0422
MAE 115.2908 117.3400 145.8265 157.6530 116.6060 144.3825 119.7081 290.9737 193.6625 127.7884

MAPE 3.7240 3.7935 4.8940 5.1123 3.8695 4.7775 3.9777 8.6588 6.2247 4.2286
MedAe 94.8200 97.0436 123.2384 135.7107 106.0792 119.4479 88.2682 205.1306 178.9841 95.8115

MPE −1.3489 −1.4058 −4.5055 −4.7546 −3.5528 −4.5172 −3.0012 7.2134 5.0866 −2.9021
MSE 19,396.6580 19,970.1730 32,269.8433 33,986.8550 20,322.6371 33,104.5516 24,215.1642 146,391.5235 51,779.6932 26,994.5302

MSLE 0.0020 0.0021 0.0034 0.0033 0.0022 0.0034 0.0026 0.0142 0.0060 0.0028
NRMSE 0.1181 0.1199 0.1524 0.1564 0.1209 0.1543 0.1320 0.3245 0.1930 0.1394

Pibas −0.0096 −0.0101 −0.0402 −0.0440 −0.0325 −0.0413 −0.0267 0.0871 0.0543 −0.0249
R2 0.8228 0.8175 0.7051 0.6895 0.8143 0.6975 0.7787 −0.3376 0.5269 0.7533

RMSE 139.2719 141.3159 179.6381 184.3552 142.5575 181.9466 155.6122 382.6115 227.5515 164.3001
RMSLE 0.0446 0.0453 0.0587 0.0575 0.0464 0.0582 0.0506 0.1192 0.0777 0.0534
RMSPE 0.0457 0.0464 0.0615 0.0599 0.0481 0.0610 0.0529 0.1087 0.0739 0.0559
SMAPE 3.6733 3.7405 4.7180 4.9439 3.7609 4.6019 3.8561 9.2711 6.4815 4.1009

U1 0.0220 0.0223 0.0279 0.0286 0.0222 0.0282 0.0244 0.0633 0.0370 0.0257
U2 0.0441 0.0448 0.0569 0.0584 0.0452 0.0577 0.0493 0.1213 0.0721 0.0521

The predicted values of all 10 models, along with the percentage errors at each point,
are plotted in Figure 4. It is very interesting to see that the values predicted by PLC-SVM
and SVM are very close, which is coincident with the results in the metrics described
above. It is also very clear that the predicted series of the other models except for CATB
appear to be larger than the raw data, which are less stable than PLC-SVM and SVM,
whereas the predicted values of CATB tend to be approximately constant in the last steps.
It is interesting to see that the predicted values of GRU in the first few steps are actually
acceptable, but most predicted values become smaller than the raw data with longer steps.
The predicted values of AR are very close to the average value, which is coincident with
its properties.

From another point of view, the PEs of PLC-SVM and SVM are approximately dis-
tributed around zero, as shown in Figure 4. However, more PEs of LSSVM, GPR, RF, LGBM,
XGB, and AR are larger than zero; this indicates that these models overestimated future
consumption. In contrast, more PEs of CATB and GRU are smaller than zero; this indicates
that these models underestimated the future trend of consumption. Overall, the PLC-SVM
model has the best performance in primary energy consumption in this case.
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Figure 4. Predicted values using (a) PLC-SVM, (b) SVM, (c) LSSVM, (d) GPR, (e) RF, (f) LGBM,
(g) XGB, (h) CATB, (i) GRU, and (j) AR with τ = 18.

5.3.2. Case II: τ = 24

In this case, the time lag is set as τ = 24, i.e., every point will be predicted based
on the former 24 points as described in Algorithm 2. The PCA (r = 0.95) transforms
the 24 dimensions into 5 principal components, which are presented in Equation (A1) in
Appendix A. Then, the output function of the PLC-SVM model can be written as:

y = βTz + wT ϕ(x) + b

= −0.074z1 − 0.0036z2 − 0.2802z3 + 0.0157z4 − 0.2419z5 + wT ϕ(x) + 0.6149
(32)

The testing metrics of all models are listed in Table 4. In this case, the performance of
PLC-SVM is also the best among these models, and the errors are smaller than the other
models on a more significant scale; SVM still has the closest performance to PLC-SVM. RF
performs best among the tree-based models, while GRP and CATB perform the worst in
the kernel-based and the tree-based models, respectively. In this case, GRU has the worst
performance of all of the models. For the AR model, although it outperforms several other
models, its metrics are still significantly worse than PLC-SVM.
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Table 4. Results of the metrics of the ten models with time lag τ = 24.

PLC-
SVM SVM LSSVM GPR RF LGBM XGB CATB GRU AR

AE −69.5776 −88.3138 −146.5563 −158.9098 −122.4937 −129.8408 −140.6233 198.5871 −290.2731 −126.2264
ARE 0.0396 0.0417 0.0504 0.0532 0.0439 0.0504 0.0505 0.0742 0.1009 0.0488
IA 0.9309 0.9262 0.9178 0.9200 0.9365 0.9044 0.9078 0.6071 0.7168 0.9054

MAAPE 0.0395 0.0416 0.0503 0.0531 0.0438 0.0502 0.0503 0.0738 0.1001 0.0486
MAE 120.1745 125.5630 152.0696 163.6975 132.1869 152.4988 151.0061 248.7770 298.6850 145.9707

MAPE 3.9617 4.1726 5.0412 5.3196 4.3856 5.0356 5.0492 7.4202 10.0853 4.8787
MedAe 94.6035 104.8577 123.1539 143.7897 119.0864 116.1281 125.8849 169.8898 294.6203 123.9808

MPE −2.5357 −3.1289 −4.8879 −5.1840 −4.1159 −4.3672 −4.7381 5.5953 −9.8633 −4.3340
MSE 23,899.4588 26,147.9685 33,695.2393 36,364.6930 25,312.3053 39,167.0882 37,253.4219 106,653.0431 119,973.9310 35,560.0139

MSLE 0.0025 0.0028 0.0035 0.0035 0.0027 0.0040 0.0039 0.0100 0.0122 0.0037
NRMSE 0.1311 0.1372 0.1557 0.1617 0.1349 0.1679 0.1637 0.2770 0.2938 0.1599

Pibas −0.0217 −0.0274 −0.0446 −0.0482 −0.0376 −0.0397 −0.0429 0.0676 −0.0847 −0.0387
R2 0.7816 0.7611 0.6921 0.6677 0.7687 0.6421 0.6596 0.0255 -0.0962 0.6751

RMSE 154.5945 161.7033 183.5626 190.6953 159.0984 197.9068 193.0115 326.5778 346.3725 188.5736
RMSLE 0.0502 0.0527 0.0591 0.0594 0.0516 0.0629 0.0625 0.1002 0.1106 0.0611
RMSPE 0.0524 0.0552 0.0620 0.0620 0.0536 0.0663 0.0659 0.0929 0.1193 0.0645
SMAPE 3.8536 4.0426 4.8589 5.1372 4.2496 4.8406 4.8452 7.8382 9.4289 4.6886

U1 0.0243 0.0253 0.0285 0.0295 0.0248 0.0307 0.0299 0.0536 0.0526 0.0293
U2 0.0490 0.0513 0.0582 0.0604 0.0504 0.0627 0.0612 0.1035 0.1098 0.0598

The predicted values and PEs of all 10 models are plotted in Figure 5. The values
predicted by PLC-SVM and SVM still seem to be close. But in this case, it is more obvious
that LSSVM, GPR, RF, LGBM, XGB, and AR all overestimate the observations, and it is clear
that the overall trends reflected by these models are less stable and appear to be increasing.
The values predicted by CATB still appear to decay, of which the peak values are too far
away from the observations. Only some of the first predicted values by GRU are close to
the raw data, but most of the following predicted values are larger than the average value
of the corresponding raw data.

By analyzing the PEs shown in Figure 5, it is very clear that most PEs of LSSVM, GPR,
RF, LGBM, XGB, GRU, and AR are larger than zero. This presents a clearer picture that
these models all overestimate the future trend of real consumption. Meanwhile, most PEs
of CATB are smaller than zero, and most of them are too large, indicating that the results of
this model are not acceptable at all. The positive and negative PEs of PLC-SVM and SVM
appear to be approximately equivalent, and the MPE (defined in Table 2) is closest to zero.
Overall, the advantage of PLC-SVM over the other models is still significant in this case.

5.3.3. Case III: τ = 30

In this case, the time lag is set as τ = 30, i.e., every point will be predicted based on
the former 30 points. There are five principal components that are transformed by the PCA
(r = 0.95), which are presented in Equation (A1) in Appendix A. The output function of the
PLC-SVM model is obtained as:

y = βTz + wT ϕ(x) + b

= −0.1029z1 − 0.1242z2 − 0.2137z3 − 0.0626z4 − 0.104z5 + wT ϕ(x) + 0.9909
(33)

The testing metrics of all models are listed in Table 5. PLC-SVM is still the best model
in this case, and it is very interesting to see that all of its metrics are generally better than
the previous two cases. GRU has the second-best performance in this case, and its MedAe
is even closer to zero than PLC-SVM. The performance of SVM is significantly worse than
PLC-SVM in this case. XGB performs the best among the tree-based models, which has
the closest performance to PLC-SVM. Meanwhile, GPR and CATB still have the worst
performance in this case.
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Figure 5. Predicted values using (a) PLC-SVM, (b) SVM, (c) LSSVM, (d) GPR, (e) RF, (f) LGBM,
(g) XGB, (h) CATB, (i) GRU, (j) AR with τ = 24.

Table 5. Results of the metrics of the ten models with time lag τ = 30.

PLC-
SVM SVM LSSVM GPR RF LGBM XGB CATB GRU AR

AE −85.5618 −123.2492 −145.0989 −157.4847 −131.4612 −128.6614 −108.7032 173.3637 −95.0323 −138.1859
ARE 0.0390 0.0458 0.0492 0.0517 0.0447 0.0486 0.0428 0.0676 0.0402 0.0494
IA 0.9321 0.9161 0.9196 0.9215 0.9345 0.9086 0.9317 0.6547 0.9235 0.9063

MAAPE 0.0389 0.0457 0.0491 0.0516 0.0446 0.0485 0.0427 0.0673 0.0400 0.0492
MAE 117.0587 136.7596 148.3506 158.8722 135.0314 145.6343 128.2523 224.7215 120.2737 147.6295

MAPE 3.8959 4.5838 4.9192 5.1695 4.4729 4.8630 4.2765 6.7565 4.0169 4.9359
MedAe 94.3220 111.6924 114.1242 129.1694 121.9611 123.7311 108.4888 147.0317 76.1974 128.1547

MPE −3.0065 −4.2051 −4.8233 −5.1293 −4.3722 −4.3847 −3.6771 4.8896 −3.2737 −4.6751
MSE 23,675.5999 30,820.1597 32,348.9584 34,821.7870 26,206.9815 33,890.0351 26,217.1006 85,262.6857 29,073.8466 35,635.1807

MSLE 0.0025 0.0033 0.0034 0.0034 0.0027 0.0036 0.0028 0.0080 0.0031 0.0037
NRMSE 0.1305 0.1489 0.1525 0.1583 0.1373 0.1561 0.1373 0.2477 0.1446 0.1601

Pibas −0.0266 −0.0379 −0.0444 −0.0480 −0.0404 −0.0395 −0.0336 0.0587 −0.0295 −0.0423
R2 0.7736 0.7053 0.6907 0.6671 0.7494 0.6760 0.7494 0.1848 0.7220 0.6593

RMSE 153.8688 175.5567 179.8582 186.6060 161.8857 184.0925 161.9170 291.9977 170.5105 188.7728
RMSLE 0.0502 0.0571 0.0579 0.0583 0.0522 0.0597 0.0525 0.0894 0.0553 0.0611
RMSPE 0.0525 0.0600 0.0606 0.0608 0.0543 0.0628 0.0547 0.0837 0.0586 0.0644
SMAPE 3.7758 4.4170 4.7445 4.9923 4.3319 4.6801 4.1388 7.0836 3.8643 4.7417

U1 0.0242 0.0274 0.0280 0.0290 0.0252 0.0287 0.0253 0.0479 0.0267 0.0294
U2 0.0490 0.0559 0.0572 0.0594 0.0515 0.0586 0.0515 0.0929 0.0543 0.0601
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The predicted values of all 10 models are plotted in Figure 6. The values predicted
by PLC-SVM appear to be closer to the observations in this case than they were in the
previous two cases. Having the closest performance to PLC-SVM, the predicted values of
GRU are very close to most peak values, which appear to be closer to the raw data than
the tree-based model XGB. The values predicted by CATB still decay with more steps. It is
very interesting to see that only the predicted values by PLC-SVM and CATB all fall within
the range of the observations, while there are several points by the other models that are
larger than the nearby peak values.

By looking at the results of PEs plotted in Figure 6, most values of PEs of CATB are
negative, and most PEs of the other models are positive; this indicates that most models
over-estimated the raw data in this case. Moreover, it is very clear that the distributions
of PEs of PLC-SVM and GRU appear to be more uniform than others. However, it is clear
that the PEs of GRU with larger steps become larger than PLC-SVM; this is the reason why
the overall metrics for GRU are not the best. Overall, although GRU presents a highly
competitive performance, the PLC-SVM model still performs the best in this case.

Figure 6. Predicted values using (a) PLC-SVM, (b) SVM, (c) LSSVM, (d) GPR, (e) RF, (f) LGBM,
(g) XGB, (h) CATB, (i) LSTM, (j) AR with τ = 30.
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5.4. Discussion

It is clear that the PLC-SVM model has the best performance in all cases. One sig-
nificant finding is that the PLC-SVM model indeed improved the accuracy of the SVM
model. Having a similar structure and training algorithm, the SVM model can approach
PLC-SVM with a smaller τ, as it was shown when τ = 18, 24. But it is interesting to note
that the difference between PLC-SVM and SVM becomes larger with longer lag, as it is
shown that the related metrics of PLC-SVM are significantly better than SVM when τ = 30.
This indicates that the PLC-SVM model has a better performance in higher dimensional
problems than the SVM model. It is very interesting to note that although the performance
of the AR model is not the best, it generally presents a moderate performance in all cases.
This indicates that there indeed exists a linear relationship between the current primary
energy consumption and the former ones. Having a partially linear structure, the PLC-SVM
model has taken advantage of such linear features. It is easy to see that such improvements
are from its structure of a partially linear formulation, which takes most advantages of
the linear features of the original series. At this stage, it can be confirmed that such linear
features make the predicted series using the PLC-SVM model more accurate and stable
than the SVM model, and this is also reflected in the Figures 4–6.

It should also be noted that the tree-based models are also very competitive compared
with the PLC-SVM model. The best tree-based model in each case often presents a very
close performance to the PLC-SVM model and is even much better than the other kernel-
based models in some cases. Moreover, it is very interesting to see that the XGB model
performs the second best when τ = 30 and is much better than the other kernel-based
models. This greatly coincides with a well-recognized result that tree-based models have
very good performance in high-dimensional problems.

Although neural networks using the GRU model often perform much worse than
other models with shorter lags, it is also very interesting to see that it performs quite well
when τ = 30, of which the metrics are the closest to the best model in this case, and even
the MedAe model is better than that of the PLC-SVM model. This implies that the GRU
model is very competitive with larger lags. However, even in such conditions, the overall
performance of GRU is still slightly worse than PLC-SVM.

However, the advantages of PLC-SVM over the tree-based models and GRU is still
significant. One of the most significant advantages of PLC-SVM is that it only has some
hyperparameters to tune. In the above cases, only the regularization parameter C and kernel
parameter γ are tuned, while the ε is set as a determined value (this is reasonable because
it uses the ε-insensitive cost function). However, all tree-based models and GRU (also the
other neural networks) have a lot of hyperparameters to tune, such as the maximum depth
of trees, the number of estimators, and even other parameters that need fine-tuning. This is
very important because less hyperparameter often means that the model is easier to tune,
less time-consuming, and further makes it easier to design an optimal prediction scheme in
real-world applications. Another advantage of PLC-SVM is its global convergence. And as
mentioned in Section 4.2, the dual formulation is essentially a convex optimization; thus,
the PLC-SVM model can be trained with global convergence. However, the algorithms used
for the tree-based models and GRU (e.g., bagging for RF and gradient-based algorithms for
other tree-based models and GRU) do not have global convergence; thus, they generally
need more trials to obtain well-trained models.

For application implications, it is first suggested to use larger time lags as the PLC-SVM
model presents a better performance with such settings, and this implies that more features
may make the performance of PLC-SVM better. Another point is that the forecasting terms
considered in this work are not short. In the above cases, the forecasting steps are all 55,
which means that the monthly primary energy consumptions in 55 months (almost 5 years)
are predicted. Considering the performance of stability and accuracy, it is reasonable to
say that PLC-SVM is eligible to be used for primary energy consumption forecasting in the
electric power sector for the mid-/long-term. Such performance may make it a potential
tool for decision-making and marketing planning in the future.
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6. Conclusions

A partially linear component support vector machine, named PLC-SVM, was proposed
in this work. By using the PCA algorithm, the linear part of PLC-SVM has fewer linear
dimensions, reducing the risk of multicollinearity and computational complexity. The
methodology of SVM was used to construct the partially linear framework, and the use
of the primal-dual trick causes the PLC-SVM model to have global optimality and easy
implementation. The case study focused on the primary energy consumption forecasting
of the electric power sector in the US by using the univariate time series data from January
1973 to January 2020, which contains 565 points of monthly primary energy consumption.
The results of three sub-cases showed that the PLC-SVM model presents more accurate
and stable forecasting results than the other three kinds of typical machine learning models
and the linear AR model with different lags; larger lags might improve the performance
of the PLC-SVM model. Within the above discussions, the PLC-SVM model is eligible to
make mid-/long-term forecasting for primary energy forecasting of electric sectors in the
US. Considering its general formulation, it can be expected to be used for forecasting more
kinds of energies in future works.

The possible limitations of this work are twofold. The first issue is that this model
might not be suitable for cases with too small of data sets. In such conditions, the available
lags would be very small, which means that the original dimension of the linear part is
already small; thus, obviously, the PCA will not work well. Another limitation is that this
work only considered the most commonly used Gaussian kernel in the applications. More
kernels can be designed based on achieving a very good performance if proper knowledge
is used. In this regard, future works can also be extended by using more advanced kernels
or new kernels that are designed for specific cases, as is suggested in the kernel cookbook
by David [86].
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Appendix A

The expressions of the principal components obtained in the case studies are presented
in this section. In all of the following formulae, zi

t represents the ith element in the vector zt.
The four principal components in Case I:

https://www.eia.gov/totalenergy/data/monthly/
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z1
t = −0.2298yt−1 − 0.2321yt−2 − 0.2343yt−3 − 0.2353yt−4 − 0.2355yt−5

− 0.2346yt−6 − 0.2331yt−7 − 0.2326yt−8 − 0.2326yt−9 − 0.2332yt−10

− 0.2337yt−11 − 0.2348yt−12 − 0.2371yt−13 − 0.2391yt−14 − 0.2410yt−15

− 0.2417yt−16 − 0.2415yt−17 − 0.2401yt−18 − 2.7449

z2
t = 0.2538yt−1 + 0.3692yt−2 + 0.1697yt−3 − 0.1758yt−4 − 0.3613yt−5

− 0.2335yt−6 + 0.0537yt−7 + 0.2129yt−8 + 0.1098yt−9 − 0.1205yt−10

− 0.2098yt−11 − 0.0388yt−12 + 0.2465yt−13 + 0.3589yt−14 + 0.1618yt−15

− 0.1788yt−16 − 0.3623yt−17 − 0.2350yt−18 + 0.0178

z3
t = −0.2789yt−1 + 0.0345yt−2 + 0.3278yt−3 + 0.3192yt−4 + 0.0167yt−5

− 0.2898yt−6 − 0.2963yt−7 − 0.0460yt−8 + 0.2106yt−9 + 0.2058yt−10

− 0.0534yt−11 − 0.2939yt−12 − 0.2745yt−13 + 0.0343yt−14 + 0.3226yt−15

+ 0.3152yt−16 + 0.0162yt−17 − 0.2853yt−18 − 0.0094

z4
t = −0.1046yt−1 − 0.1707yt−2 − 0.1736yt−3 − 0.1765yt−4 − 0.1749yt−5

− 0.1029yt−6 + 0.0856yt−7 + 0.3274yt−8 + 0.5002yt−9 + 0.4970yt−10

+ 0.3211yt−11 + 0.0822yt−12 − 0.1002yt−13 − 0.1688yt−14 − 0.1716yt−15

− 0.1726yt−16 − 0.1686yt−17 − 0.0982yt−18 + 0.0197,

(A1)

The five principal components in Case II:

z1
t = −0.1974yt−1 − 0.1983yt−2 − 0.1994yt−3 − 0.2003yt−4 − 0.2006yt−5

− 0.2007yt−6 − 0.2013yt−7 − 0.2021yt−8 − 0.2031yt−9 − 0.2037yt−10

− 0.2041yt−11 − 0.2042yt−12 − 0.2045yt−13 − 0.2052yt−14 − 0.2060yt−15

− 0.2064yt−16 − 0.2064yt−17 − 0.2066yt−18 − 0.2066yt−19 − 0.2073yt−20

− 0.2082yt−21 − 0.2086yt−22 − 0.2088yt−23 − 0.2085yt−24 − 3.1723

z2
t = 0.2448yt−1 + 0.2681yt−2 + 0.0273yt−3 − 0.2352yt−4 − 0.2593yt−5

− 0.0202yt−6 + 0.2412yt−7 + 0.2631yt−8 + 0.0233yt−9 − 0.2385yt−10

− 0.2610yt−11 − 0.0239yt−12 + 0.2365yt−13 + 0.2601yt−14 + 0.0241yt−15

− 0.2340yt−16 − 0.2580yt−17 − 0.0217yt−18 + 0.2346yt−19 + 0.2550yt−20

+ 0.0197yt−21 − 0.2375yt−22 − 0.2598yt−23 − 0.0274yt−24 + 0.0187

z3
t = −0.1634yt−1 + 0.1274yt−2 + 0.2912yt−3 + 0.1644yt−4 − 0.1281yt−5

− 0.2937yt−6 − 0.1675yt−7 + 0.1244yt−8 + 0.2910yt−9 + 0.1672yt−10

− 0.1206yt−11 − 0.2850yt−12 − 0.1628yt−13 + 0.1231yt−14 + 0.2846yt−15

+ 0.1610yt−16 − 0.1273yt−17 − 0.2893yt−18 − 0.1642yt−19 + 0.1217yt−20

+ 0.2844yt−21 + 0.1630yt−22 − 0.1195yt−23 − 0.2806yt−24 + 0.0035

z4
t = +0.1268yt−1 + 0.2401yt−2 + 0.2935yt−3 + 0.2712yt−4 + 0.1755yt−5

+ 0.0331yt−6 − 0.1173yt−7 − 0.2321yt−8 − 0.2813yt−9 − 0.2537yt−10

− 0.1586yt−11 − 0.0226yt−12 + 0.1203yt−13 + 0.2325yt−14 + 0.2837yt−15

+ 0.2588yt−16 + 0.1609yt−17 + 0.0186yt−18 − 0.1304yt−19 − 0.2435yt−20

− 0.2899yt−21 − 0.2600yt−22 − 0.1640yt−23 − 0.0287yt−24 + 0.0157

z5
t = −0.2626yt−1 − 0.1649yt−2 − 0.0228yt−3 + 0.1231yt−4 + 0.2348yt−5

+ 0.2849yt−6 + 0.2609yt−7 + 0.1695yt−8 + 0.0315yt−9 − 0.1180yt−10

− 0.2375yt−11 − 0.2914yt−12 − 0.2640yt−13 − 0.1631yt−14 − 0.0192yt−15

+ 0.1277yt−16 + 0.2367yt−17 + 0.2839yt−18 + 0.2578yt−19 + 0.1635yt−20

+ 0.0244yt−21 − 0.1229yt−22 − 0.2389yt−23 − 0.2886yt−24 + 0.0057

(A2)
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The five principal components in Case III:

z1
t = −0.1751yt−1 − 0.1763yt−2 − 0.1776yt−3 − 0.1786yt−4 − 0.1791yt−5

− 0.1789yt−6 − 0.1783yt−7 − 0.1783yt−8 − 0.1786yt−9 − 0.1794yt−10

− 0.1800yt−11 − 0.1805yt−12 − 0.1816yt−13 − 0.1826yt−14 − 0.1838yt−15

− 0.1846yt−16 − 0.1850yt−17 − 0.1848yt−18 − 0.1839yt−19 − 0.1836yt−20

− 0.1838yt−21 − 0.1844yt−22 − 0.1848yt−23 − 0.1852yt−24 − 0.1860yt−25

− 0.1870yt−26 − 0.1880yt−27 − 0.1888yt−28 − 0.1890yt−27 − 0.1887yt−30 − 3.5511

z2
t = 0.1790yt−1 + 0.2921yt−2 + 0.1452yt−3 − 0.1319yt−4 − 0.2838yt−5

− 0.1779yt−6 + 0.0656yt−7 + 0.2018yt−8 + 0.1083yt−9 − 0.1034yt−10

− 0.2005yt−11 − 0.0685yt−12 + 0.1748yt−13 + 0.2863yt−14 + 0.1417yt−15

− 0.1319yt−16 − 0.2826yt−17 − 0.1787yt−18 + 0.0610yt−19 + 0.1952yt−20

+ 0.1042yt−21 − 0.1026yt−22 − 0.1974yt−23 − 0.0679yt−24 + 0.1700yt−25

+ 0.2787yt−26 + 0.1371yt−27 − 0.1307yt−28 − 0.2784yt−29 − 0.1765yt−30 + 0.0241

z3
t = −0.2259yt−1 + 0.0134yt−2 + 0.2487yt−3 + 0.2509yt−4 + 0.0205yt−5

− 0.2200yt−6 − 0.2301yt−7 − 0.0257yt−8 + 0.1870yt−9 + 0.1886yt−10

− 0.0226yt−11 − 0.2285yt−12 − 0.2235yt−13 + 0.0123yt−14 + 0.2446yt−15

+ 0.2475yt−16 + 0.0209yt−17 − 0.2171yt−18 − 0.2266yt−19 − 0.0258yt−20

+ 0.1822yt−21 + 0.1840yt−22 − 0.0227yt−23 − 0.2241yt−24 − 0.2184yt−25

+ 0.0123yt−26 + 0.2393yt−27 + 0.2427yt−28 + 0.0206yt−29 − 0.2127yt−30 − 0.0056

z4
t = −0.0758yt−1 − 0.1498yt−2 − 0.1754yt−3 − 0.1783yt−4 − 0.1588yt−5

− 0.0878yt−6 + 0.0486yt−7 + 0.2115yt−8 + 0.3274yt−9 + 0.3331yt−10

+ 0.2270yt−11 + 0.0685yt−12 − 0.0694yt−13 − 0.1451yt−14 − 0.1714yt−15

− 0.1734yt−16 − 0.1522yt−17 − 0.0802yt−18 + 0.0554yt−19 + 0.2159yt−20

+ 0.3289yt−21 + 0.3320yt−22 + 0.2245yt−23 + 0.0658yt−24 − 0.0718yt−25

− 0.1473yt−26 − 0.1729yt−27 − 0.1743yt−28 − 0.1526yt−29 − 0.0818yt−30 + 0.0134

z5
t = −0.1951yt−1 − 0.0796yt−2 − 0.0195yt−3 + 0.0073yt−4 + 0.0727yt−5

+ 0.1963yt−6 + 0.3028yt−7 + 0.2909yt−8 + 0.1277yt−9 − 0.1064yt−10

− 0.2759yt−11 − 0.2963yt−12 − 0.1997yt−13 − 0.0826yt−14 − 0.0198yt−15

+ 0.0100yt−16 + 0.0759yt−17 + 0.1962yt−18 + 0.2996yt−19 + 0.2851yt−20

+ 0.1207yt−21 − 0.1114yt−22 − 0.2777yt−23 − 0.2967yt−24 − 0.1998yt−25

− 0.0824yt−26 − 0.0190yt−27 + 0.0107yt−28 + 0.0745yt−29 + 0.1899yt−30 − 0.00001.

(A3)
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