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Abstract: Digitalization is globally transforming the world with profound implications. It has enor-
mous potential to foster progress toward sustainability. However, in its current form, digitalization
also continues to enable and encourage practices with numerous unsustainable impacts affecting our
environment, ingraining inequality, and degrading quality of life. There is an urgent need to identify
such multifaceted impacts holistically. Impact assessment of digital interventions (DIs) leading to
digitalization is essential specifically for Sustainable Development Goals (SDGs). Action is required
to understand the pursuit of short-term gains toward achieving long-term value-driven sustainable
development. We need to understand the impact of DIs on various actors and in diverse contexts. A
holistic understanding of the impact will help us align the visions of sustainable development and
identify potential measures to mitigate negative short and long-term impacts. The recently developed
digitainability assessment framework (DAF) unveils the impact of DIs with an in-depth context-aware
assessment and offers an evidence-based impact profile of SDGs at the indicator level. This paper
demonstrates how DAF can be instrumental in guiding participatory action for the implementation
of digitainability practices. This paper summarizes the insights developed during the Digitainable
Spring School 2022 (DSS) on “Sustainability with Digitalization and Artificial Intelligence,” one of
whose goals was to operationalize the DAF as a tool in the participatory action process with collabo-
ration and active involvement of diverse professionals in the field of digitalization and sustainability.
The DAF guides a holistic context-aware process formulation for a given DI. An evidence-based
evaluation within the DAF protocol benchmarks a specific DI’s impact against the SDG indicators
framework. The participating experts worked together to identify a DI and gather and analyze
evidence by operationalizing the DAF. The four DIs identified in the process are as follows: smart
home technology (SHT) for energy efficiency, the blockchain for food security, artificial intelligence
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(AI) for land use and cover change (LUCC), and Big Data for international law. Each of the four
expert groups addresses different DIs for digitainability assessment using different techniques to
gather and analyze data related to the criteria and indicators. The knowledge presented here could
increase understanding of the challenges and opportunities related to digitainability and provide a
structure for developing and implementing robust digitainability practices with data-driven insights.

Keywords: digitainability; digitalization; sustainability; artificial intelligence; blockchain; smart
homes; Big Data; sustainable development; SDGs; technology assessment framework; Agenda 2030;
digital age

1. Introduction

Digitalization is driving the world toward an era where a significant part of our lives is
reliant on digital technologies. These technologies are shaping the future by supporting the
sustainable improvement in socio-economic, environmental, and climate-related concerns
through more effective use of existing processes [1]. From fostering equitable access to
education, to reducing poverty and improving healthcare services, digital technologies
are instrumental in raising the quality of life and increasing access to resources. With
internet access expanding to four billion people, digitalization is breaking barriers by
enabling prompt communication and networking, access to knowledge, and improved
cost-efficiency. Digitalization brings together an innovative set of tools and techniques
that enable the process of converting physically collected information and knowledge
into a machine-readable language. As a result, robust integrated workflows that connect
physical objects to the internet are being developed using embedded sensors, software,
and other technologies that enable real-time data collection and analysis. Massive data
analysis capability enables timely and informed decisions that contribute to sustainable
development [2]. Several challenges, however, have been left largely untapped to meet the
Sustainable Development Goals (SDGs).

The United Nations (UN) Agenda 2030 [3] is a global roadmap defined by the UN
toward equity and sustainable development with a horizon set in 2030. The 17 SDGs
form the backbone of the UN Agenda 2030, providing a guiding framework for worldwide
policies to guarantee a good life for present and future generations. To achieve the SDGs, it is
crucial to reduce resource consumption, greenhouse gas emissions, poverty, and inequality,
while at the same time expanding education and welfare and combating biodiversity loss, to
name just a few factors [4]. The SDGs’ targets and indicators call for timely observation and
reporting of the progression in member states of the UN [5]. Recent literature emphasizes
that SDG progress can be aided by adopting innovative technologies, leading to accelerated
transformation in many sectors. Digital interventions (DIs) have been a primary focus in
most public discourses and policy circles [6]. The dawn of artificial intelligence (AI) and
the development of machine learning (ML) have been deemed instrumental in achieving
the Agenda 2030 [6–8]. However, it needs to be clarified how and to what extent these
DIs provide opportunities and where they could lead to challenges limiting the progress
of SDGs. This calls for an analysis of the DI as they provide significant opportunities for
sustainable development and contribute to all the SDGs within the 2030 Agenda [9–12].

Applying the DIs in specific contexts is often “wicked”, with interlinked technological,
social, environmental, and governance-related challenges. They are associated with positive
and negative impacts [13]. On the one hand, the DIs can serve as levers and set off dynamic
transformation toward sustainability in different sectors. For instance, various reports
point to the potential of digitalization to boost energy productivity, avert resource waste,
improve access to sustainable services, and establish new sustainable practices [4]. On the
other hand, its development and use could trigger knock-on effects with a negative impact
on the environment [14–16] and society [17,18], prompting a call for closer examination of
the ethical and political issues associated with its rapid proliferation [16,19].
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Much of the foregoing work has centered on identifying the role of the DIs for SDGs.
However, most scholarly attention has been directed at identifying their relevance at the
goal level. Given that SDGs are composed of various targets and indicators, this approach is
rather superficial. As a result, insight into the impacts of DI is limited by the fact that, to date,
they have been measured from a narrow perspective. The gap also exists in understanding
the context that defines the relation of the DI to SDGs progress. Nevertheless, it has been
widely acknowledged that SDGs are interlinked, and the impact on one SDG can have
cascading negative or positive impacts on other SDG targets and indicators. Thus, it is
crucial we uncover the interlinked impact of the DI on SDGs in a more holistic manner,
moving beyond the impact measurement of DIs on isolated SDGs. Instead of measuring
the impact on a particular goal or target, the aim should be to establish a multidisciplinary
view of the direct and indirect impacts the DI may have on all SDGs in a certain context.
The context-specific assessment of the DI requires analyses in a broader system, whereby
the impacts on most of the SDGs are considered integral to it.

2. Background

Gupta et al. [20] and Vinuesa et al. [6] identified the role of the DIs at the target
level, one level deeper. The limitation of these works is their consideration in evaluating
the impact of selected DI on a specific target at a time but not exploring the interlinked
consequential impact of the particular DI on all other targets and indicators of SDGs. Since
sustainable development requires holistic actions on all the essential aspects, the most
meaningful way to identify the real impact of technology is to identify where and how it
supports bringing the change required for the advancement of all the SDGs. Indicators of
the SDGs are the impact measures, reflecting the “what” that has been achieved thus far.
Therefore, it is essential to measure the “what” change at the indicator level is achieved
when the DI is utilized to measure consequential impact.

As digitalization combines the individual, organizational, and societal transformation
brought by the multitude of algorithms and data-driven interfaces, utilizing it for sustainable
development also needs diverse stakeholders’ inclusiveness and active involvement with their
perspectives. We need to understand the consequential impacts and mindfulness in using
digitalization to support the achievement of SDGs and their specific targets. Digitainability is
introduced by Gupta et al. [20] as the effort to uncover the impact of digital tools considering
their interlinked impacts in a specific context with a multidisciplinary perspective to secure the
mindful application of digital technology to foster sustainable development. After its introduc-
tion, digitainability has been perceived as essential to capturing the cross-fertilization potential
of digitalization and sustainability, the two mega-trends for innovation and new sustainable
business development [21], but more from the theoretical perspective rather than a practical
one. Quite recently, Gupta and Rhyner [22], in their article, introduced the digitainability
assessment framework (DAF) as a practical tool that can help operationalize the digitainability
assessment of the DI in great detail with various levels of evidence.

For the timely achievement of Agenda 2030, inclusive and participatory approaches
that enable the exchange of resources and knowledge are increasingly crucial [23]. There
is a need for assessment tools to cope with collaborative, governance, and context specific
uncertainties to harness the opportunities offered by DIs for sustainable development [24].
Recent advances suggest that participatory action as an approach to problem solving that
emphasize collaboration and active involvement of stakeholders in the process could help
to facilitate the exchange of knowledge and improve the comprehensive understanding of
digitainability practices and develop solutions to support sustainable development [25]. As
an instrument in the participatory action process, DAF could help improve understanding of
digitainability challenges collaboratively, structure problem-solving processes, and increase
participation and engagement of diverse stakeholders to make evidence-based decision making.

The DAF draws from and adapts concepts of the Theory of Change (ToC), which
lays out the mapping of cause-and-effect pathways that follow the DI. Its incorporation
of context, the potential direct impact, indirect impacts, and cascading effects mapped
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for the SDG indicator(s) could be considered a practical approach to assess the impact
of DIs. Utilizing several levels of evidence, the DAF approach is instrumental in holis-
tically identifying impacts and detecting potentially unforeseen implications. Please
refer to Gupta and Rhyner [22] for detailed insights about the DAF. This comprehensive
assessment further facilitates the mapping of impacts, taking into account long-term
and short-term priorities in a given context. By undertaking a holistic assessment, the
potential pathways that enable or inhibit the progress of the SDGs can be understood
and used to support sustainable digitalization. Overall, the DAF is an effective tool that
helps consolidate and contextualize a vast amount of multidisciplinary knowledge to
understand the interlinked direct, indirect, and progressing consequential impact of the
DIs for sustainable development in a qualitative manner.

Consideration of the qualitative assessment in our paper is based on the emerging na-
ture of digitainability as the topic, and the limited availability of diverse standardized data
sources related to SDG indicators in a specific context and digitalization impact data [24]. The
gap exists concerning the availability of sufficiently large time series for sustainability and
digitization data to perform a quantitative assessment at the country scale [26]. Given how
the digitainability assessment aims to measure the impact of the DI within a specific context
considering complex interactions between multiple factors, granular spatial and temporal scale
data are often required, where data gaps become more prominent. Taking into consideration
the recommendations made by Naudé and Vinuesa [27] for bridging data gaps by increasing
the awareness of existing biases in understanding particular contexts and evidence, better
domain understanding of the multidisciplinary fields, and effective collaboration between
diverse stakeholders at the cross-section of digitalization and sustainability, such as developers,
policymakers, and experts (e.g., from business, data, law, and research), our paper aims to
address this knowledge gap and demonstrates the concrete step required for bringing experts
in the domain together and operationalizing the DAF for gathering essential insights required
at the cross-section of digitalization and sustainability, which is highly fragmented at this point
in time [28].

This paper provides insights into the operationalization of the DAF in the participatory
action process and how it could guide a structured and systematic collaborative exercise
to address digitalization and sustainability-related challenges as a community. The DAF
as a tool guides the participatory action process and ensure a comprehensive approach
to developing the digitainability practitioner community. In this paper, we explore the
operationalization of DAF digital technologies in a real-world scenario and how it paves the
way toward mindfulness in applying a DI for sustainable development. The paper presents
the outcome of the Digitainable Spring School 2022 (DSS), which involved four groups
thoroughly analyzing the digitainability of a specific DI selected in the discussion by the
experts in light of the SDGs. The DSS aimed to bring together a diverse group of experts and
practitioners from different disciplines who have experience working at the intersection of
digitalization and sustainability. A participatory analysis of the methodology was deemed
appropriate to fully explore and identify the strengths and weaknesses of the DAF and
the impacts of a DI on SDGs. The primary outcome of the DSS was a practical application
of digitainability as a concept and an enriched analysis of the impacts of DIs for SDGs,
considering different perspectives and contributions using the DAF as a methodology.

The paper is structured as follows: Section 3 elaborates on the methodology we have
undertaken for this study and further expands on the methodological consideration of
the DIs. in Section 4, we present the results after operationalizing the DAF for selected
DIs, followed by a detailed discussion on the findings of four studies in Section 5; finally,
conclusions are drawn in Section 6.

3. Method: Digitainability Assessment

Considering the overarching topic of digitalization and sustainability, diverse stake-
holders such as practitioners are usually not typically inclined to engage with research that
they consider the realm of specialized academic researchers [24]. They are more favorably



Sustainability 2023, 15, 6844 5 of 37

prone to ‘doing’ and experimenting using trial and error, discussions, reflection in, on, and
after taking action, considering the action cycles for transformation. To foster sustainable
development, it is paramount to promote exchanges between diverse disciplines and the
research community to convert concepts into practices focusing on inclusion, collaboration,
and participation. This is all the more important considering the importance of digitain-
ability for mindful sustainable digital transformation. Identifying and defining the key
aspects and processes of digitalization and sustainability that are interdependent and vital
for maximizing holistic sustainable development is essential.

To perform the digitainability assessment in our study, we considered participatory
action as the context to draw on the expertise of participants of the DSS using DAF as a
tool. The qualitative assessment within participatory action was deemed suitable for our
work as participants are encouraged to think collaboratively about phenomena. It allows
participants to be observers and critical reflectors to explore the role of digitalization in
holistic sustainable development. Furthermore, considering the major goal of DSS, the
participatory action provides us with the opportunity to develop skills and knowledge
to continue working on their own whilst also learning about the value of collaboration
and collective knowledge development [29]. Participatory action is a holistic, integrative
concept that incorporates related concepts and values such as participation, collabora-
tion, communication, community of practice, networking, and synergy [30]. It include
the methods of action learning where a group-based process of engaging, learning, and
reflecting exists; where a group of peers interact under the guidance of a facilitator for a
given time-frame to address a specific real-world issue in real-time [31]. The DSS brought
together an international group of real-life practitioners and experts in digitalization and
sustainability. Based on their experience with certain technologies, they operationalized
the DAF as a tool for understanding the complex impact of the DIs on sustainability. Given
their diverse background, disciplines, and expertise, the DSS participants combined into a
single arena their multidisciplinary views on standardization processes, reflections, and
perspectives on the theoretical and practitioner contexts that supported the process of
digitainability assessment.

The DAF is used to systematically analyze the intra- and interlinked impacts of DIs on
SDGs [22]. It is designed to help perform technology impact assessments and map them
considering various synergies, trade-offs, and complex interlinkages between SDGs at the
indicator level within certain contexts. The following steps were followed:

1. Participants of the DSS are grouped based on their preference or considering the equal
distribution of multidisciplinary experts with diverse experiences in each group;

2. Each group brainstorms and identify the DI, measures, actors, target group, context,
and targeted SDG indicator they want to consider for digitainability assessment;

3. Each group performs their research based on the scope decided in previous steps;
4. Each group starts evaluation and gathers relevant information, refining and populat-

ing the information in the DAF with group discussion;
5. Collaborative participants discuss the individual findings with the group to analyze

the impacts of DI in a particular context and its interlinked effects on all the indicators
of SDGs beyond the targeted indicator;

6. External experts’ help can be requested to develop coherent insights from the general
analysis, and participants can learn about the essential knowledge points;

7. Depending on the level of evidence and type of integration identified, the group starts
populating the impacts on DAF;

8. If participants identify any vital information that DAF does not allow incorporating, the
comment section could be used to integrate this essential information with other inputs;

9. After various group discussions and consciences, groups summarize the results, map the
impact and develop the overall impact profile of DI on SDGs in the DAF;

10. All groups discuss and learn from the digitainability assessment exercise and provide
feedback to each other for corrective knowledge synthesis and actions.
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The analysis results are visualized in the form of a heatmap or matrix, presenting
not only the impact results (synergy, ambivalent, trade-off, bi-directional, or uncertain)
but also including the context and the main SDG indicators under focus. For detailed
insights of the DAF and how it is practically used, we recommend referring to Gupta and
Rhyner [22]. Four groups conducted the digitainability assessment using various forms of
evidence from a multidisciplinary perspective and identified strengths and weaknesses
in the methodology and data gaps regarding DI and SDGs. The four DIs chosen by the
respective expert groups during the discussions based on their current relevance are as
follows: smart home technologies (SHT) for energy efficiency, the blockchain for food
security, AI for land use cover and changes (LUCC), and Big Data for international law.

3.1. Group 1: Smart Home Technologies (SHTs) as DI for Energy Efficiency

The concept of “data-driven smart sustainable cities” has emerged from the advance-
ments in information and communications technology (ICT), particularly Big Data, coupled
with alarming worldwide challenges related to the environment, climate change, natural
resources, and energy consumption [32]. In this context, numerous strategies are presented
in order to reach resource efficiency and climate responsibility through modern technolo-
gies, i.e., smart grid and advanced metering infrastructure, smart buildings, smart home
appliances and devices, and environmental control and monitoring [33]. In particular, en-
ergy efficiency is considered crucial to overcoming environmental challenges and meeting
the growing demands for energy [34].

In this respect, SHTs for energy efficiency exhibit many opportunities for innovative
technological solutions by combining Big Data analytics, the Internet of Things (IoT) and
associated smart sensors and meters, and machine learning technologies and techniques.
Thus, this technology provides better monitoring, control, and conservation of energy [35].

From the perspective of household residents, it will increase awareness, control, and
efficient monitoring of energy consumption. From the operator’s perspective, this approach
allows not only for precise monitoring and analysis of electricity consumption but also
enables forecasting electrical energy consumption using data mining and machine learning
methods; this is beneficial specifically when power is drawn from renewable power plants
that are highly dependent on the weather [36].

Group 1 focused on the question of how do SHTs impact the achievement of SDGs con-
sidering digitainability? To answer the question, the DAF methodology was applied. The
analysis mainly focuses on the SDGs 7 (affordable and clean energy), 8 (decent work and
economic growth), 9 (industry, innovation, and infrastructure), 10 (reduced inequality),
and 11 (sustainable cities and communities), considering their relevance to the intended
application of DI.

3.2. Group 2: Blockchain as a DI for Food Security

Recent trends in global food sustainability and improved nutrition show growing
concern, and food security is far from guaranteed for all [37]. Following several decades of
substantial progress in reducing hunger by several hundred thousand people [38], food
insecurity is regaining ground year after year [39]. When world grain prices soared in
2007–2008, the Malthusian specter of a “global food crisis” was brandished by the media.
Ever since, the problem of food insecurity has returned to the agenda, while the rise in
the price of food commodities, of which Russia and Ukraine are major producers, is at its
highest level since 2008 [40].

DI can help transitions to address the challenges of food and agricultural systems, sup-
porting the timely achievement of SDG 2 (end hunger) and 12 (responsible consumption and
production). The blockchain brings commercial transaction standardization to improve security
and reduce costs. Several recent studies [37,41–43] have highlighted the positive and potentially
transformational nature of the blockchain, particularly concerning the reconfiguration of mar-
ket exchange. Research suggests that blockchain systems may reduce uncertainty, insecurity,
and ambiguity in transactions by providing full transactional disclosure and unified credible in-
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formation to all participants in the network Zhao et al. [44], Xu et al. [45], van Hilten et al. [46].
The blockchain is also increasingly deployed in areas where traceability and product auditing
is essential, such as the supply chain in food systems [42]. Group 2 focused on the question
of how can blockchain technology support the fulfillment of goals 2 and 12 while considering holistic
sustainability, socio-economic and environmental aspects?

3.3. Group 3: AI as a DI for Land Use Cover and Changes (LUCC)

Given the high level of interest and the need to understand various processes that
are triggered in one part of the globe and affect certain processes in another part of the
globe, AI has been introduced as a powerful information tool to address this issue. Many
approaches, such as ML, deep learning (DL), agent-based models, and others, are used to
empower AI for better tracking of LUCC patterns.

Implementing ML algorithms can help to detect the land type, as well as spatial and
temporal trends in land class/type over time. ML algorithms can be used to assess the
accuracy and validate the results of land classification. Thus, the method can benefit from
predicting future scenarios of land use change and implementing an accurate and reliable
system to monitor land class and type. It has the potential to allow large-scale interventions
across space and time. As halting and restoring land degradation is a crucial priority to
protect biodiversity and ecosystem services that support life on planet Earth [47], in this
case, the study group focused on the following SDG Indicators: SDG 15.1.1 (forest area as
a proportion of total land area) and SDG 15.3.1 (proportion of land that is degraded over
total land area).

According to Vinuesa et al. [6], AI could bring positive contributions for 88% of the
targets related to SDG 15 (life on land), and negative impacts for 33% of them; however, sound
empirical evidence is lacking so far [48]. The main contribution of AI relies on enhancing the
monitoring and surveillance systems by leveraging multiple data sources from remote sens-
ing [49] and satellite-based earth observation and geospatial information [47,48,50,51]. Global
datasets suffer limitations in terms of resolution and accuracy, while Earth Observation (EO)
information (e.g., LandSat, Sentinel) is mostly free and open access, available for large regions,
provides long time series and data continuity, and represents a complement to traditional
statistics for SDG monitoring [50,51].

Therefore, merging AI and EO provides reliable and disaggregated data for better moni-
toring of the SDGs [52,53], and facilitates data analysis, capacity for measurement, and efficient
interventions [54]. Nevertheless, despite the progress in geoscience, the net impact of AI on
SDG 15 is still poorly understood. Yu et al. [55] claim that the use of AI to determine LUCC in
arid ecosystems has not been sufficiently researched but can provide predictions about land
degradation and guide policies to mitigate potential issues. Isabelle and Westerlund [56] ex-
plore AI’s role in positively contributing to the SDG 15 targets. Indeed, the literature evidence
contributions of AI to several SDG 15 targets; (SDG 15.2 (by 2020, promote the implementation
of sustainable management of all types of forests, halt deforestation, restore degraded forests,
and substantially increase afforestation and reforestation globally), 15.3 (by 2030, combat deser-
tification, restore degraded land and soil, including land affected by desertification, drought
and floods, and strive to achieve a land degradation-neutral world), 15.5 (take urgent and
significant action to reduce the degradation of natural habitats, halt the loss of biodiversity, and
by 2020, protect and prevent the extinction of threatened species), 15.7 (take urgent action to
end poaching and trafficking of protected species of flora and fauna and address both demand
and supply of illegal wildlife products), 15.8 (by 2020, introduce measures to prevent the
introduction and significantly reduce the impact of invasive alien species on land and water
ecosystems and control or eradicate the priority species)) ranging from predicting deforestation
and enhancing forest management [57–60], managing land degradation [47,60], combating
poaching and protecting endangered species [61,62], halting biodiversity loss and habitat
degradation [63], reducing invasive species [64,65], and spotting plant diseases and fires or
identity seeds [66]. Kolevatova et al. [67] claim the relevance of explainable AI (XAI) to support
the climate effects of land changes (land cover, deforestation, urbanization) with enhanced
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computational time and data usage. Palomares et al. [66] underscore the great potential of AI
systems for SDG 15 while claiming the need for high-quality open data and infrastructures.

Nonetheless, some limitations are also observed. Isabelle and Westerlund [56] stress
that ML and DL training is complex and time-consuming, demanding large amounts of
data and skills which are not always available (e.g., endangered species), particularly
in the least developed countries with a lack of universal access to datasets, computing
power, and capacity. High-resolution data are needed, but its costs are beyond the reach
of small farmers. Using AI for deforestation or even maintaining digital infrastructures
are perceived as a challenge in these contexts due to logistic problems. In addition, major
forests/habitats (e.g., Amazonia) are also subjected to restrictive national policies [56,66].
Group 3 focused on the question of how does AI for LUCC monitoring impact holistic SDG
achievement? In this study, we applied and complemented the DAF with the literature from
the Scopus database.

3.4. Group 4: Big Data as DI for International Law

The analysis of Big Data as DIs in the context of international law is intended to examine
its potential role in designing treaties and how it impacts the progressing SDGs. In the field
of International Law, there is a growing academic interest in the phenomenon of “Big Data”.
However, the relationship between international law and the massive use of data has not yet
been explored [68]. “Big data” is a broad concept that cannot be reduced only to the notion of
an extensive dataset because this concept includes (among other things) the analysis techniques
applied to the data [69]. Similarly, Boyd and Crawford [52] concluded that “less about data
that is big than it is about a capacity to search, aggregate, and cross-reference large data sets”.
Under those considerations, carrying out the analysis of the SDGs in the light of Big Data
and international law is an opportunity to study and propose an effective mechanism for
compliance with the SDGs. When two or more states agree on a specific object and wish
to give legally binding value to said agreement, they conclude a treaty [70]. In this regard,
target 2.5 (by 2020, maintain the genetic diversity of seeds, cultivated plants, and farmed and
domesticated animals and their related wild species, including through soundly managed
and diversified seed and plant banks at the national, regional, and international levels, and
promote access to and fair and equitable sharing of benefits arising from the utilization of
genetic resources and associated traditional knowledge, as internationally agreed) and its
indicators propose international cooperation at various levels. It aims to promote access to fair
and equitable education as well as share the benefits derived from the use of genetic resources
and associated traditional knowledge. It also seeks to increase investment, correct and prevent
trade restrictions and distortions in world agricultural markets, adopt measures to guarantee
the proper functioning of the markets for primary food products and their derivatives, and
facilitate timely access to information on the market, including on food stocks, to help limit
extreme volatility in food prices [71]. Unfortunately, according to the UN [72], the quantity
of people suffering from hunger and food insecurity has been rising continuously since 2014.
Due to the inadequate solutions at the international level, it is urgent to update and adjust
the mechanisms of international law in order to achieve SDGs [73]. The group focused on the
question of what is the possible impact Big Data could have on the achievement of SDG 2 through
international policy platforms? The analysis explores the state-of-the-art within the framework of
the DAF methodology.

4. Result/Outcome
4.1. Group 1: Smart Home Technologies (SHTs) as DI

The results of the digitainability assessment conducted by performing the literature
review illustrate (Figure 1 & Table 1) that indicators 7.1.1 (percentage of population with
access to electricity), 7.1.2 (proportion of population with primary reliance on clean fuels
and technology), 7.2.1 (renewable energy share in the total final energy consumption), and
7.3.1 (energy intensity measured in terms of primary energy and GDP) have a synergistic
impact. Data-driven solutions hold great potential for energy security and equity, and



Sustainability 2023, 15, 6844 9 of 37

environmental sustainability [74,75]. SHTs can identify the best energy sources at the right
time, reduce costs and optimize accessibility and sustainability [76,77]. Considering the
long-term impact of SHTs, their use over the next ten years will allow us to achieve the
objectives of reducing CO2 emissions at the global level [78,79], enabling households to
operate in “zero emission” mode [80]. Further, data-driven solutions through IoT are a
potential way to increase the share of renewable energy. Smart grids allow the integration
of renewable energies and can ensure energy security and sustainability [81–83].

Nevertheless, the question of whether data-driven solutions promote energy sus-
tainability remains. This question highlights the ambivalent and bi-directional impact of
the different data-driven solutions on the energy sector, focusing on the 7.1.2 and 7.2.1
indicators. In fact, data-driven solutions are linked to high energy requirements and carbon
footprints [6]. Notwithstanding the above, indicators 7.a.1 (international financial flows to
developing countries in support of clean energy research and development and renewable
energy production, including in hybrid systems) and 7.b.1 (installed renewable energy-
generating capacity in developing countries (in watts per capita)) are considered to have
an uncertain impact on the DI.

Figure 1. DAF outcome of smart home technologies as DI.
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Table 1. Overview of of the impact of SHT as a DI on various SDG indicators. (Text color reflects the
Impact type in the DAF).

DAF Outcome for SHT

Impact Type Indicators

Synergy 3.1.1, 7.1.1, 7.1.2, 7.2.1, 8.1.1, 8.2.1, 8.3.1, 8.4.1, 8.4.2, 8.5.1,
8.5.2, 9.4.1, 9.5.1, 9.5.2, 9.b.1, 10.1.1, 10.2.1, 11.1.1, 11.6.2,
12.2.1, 12.2.2, 13.2.2, 15.1.1, 17.2.1, 17.3.1, 17.4.1, 17.7.1,
17.8.1, 17.10.1, 17.12.1, 17.14.1

Ambivalent 9.c.1, 10.4.1, 16.6.2

Trade-offs 1.1.1, 9.2.1,9.2.2, 12.4.2

Uncertain 3.9.1, 5.2.1, 5.4.1, 6.3.1, 6.3.2, 6.4.1, 9.3.1, 9.3.2, 10.3.1, 10.b.1,
10.c.1, 11.2.1, 12.5.1, 12.6.1, 12.a.1, 12.c.1, 14.1.1, 15.3.1,
15.5.1, 15.8.1, 16.2.1, 17.1.1, 17.1.2, 17.3.2, 17.9.1, 17.11.1,
17.13.1

Bi-Directional 4.4.1, 5.b.1, 11.3.1, 12.8.1, 13.3.1, 17.5.1, 17.6.1

With regard to SDG 8 (decent work and economic growth), a synergistic impact
supported by the literature has been reported for indicators 8.1.1 (annual growth rate
of real GDP per capita), 8.2.1 (annual growth rate of real GDP per employed person),
8.3.1 (proportion of informal employment in total employment, by sector and sex), 8.4.1
(material footprint, material footprint per capita, and material footprint per GDP), 8.4.2
(domestic material consumption, domestic material consumption per capita, and domestic
material consumption per GDP), 8.5.1 (average hourly earnings of employees, by sex, age,
occupation, and persons with disabilities), 8.5.2 (unemployment rate, by sex, age, and
persons with disabilities). Previous evidence showed that household energy efficiency
could help boost the economy and increase national GDP; this was conveyed in studies
and use cases from the UK and Canada [84–87]. For instance, in the UK, a potential 5%
improvement in energy efficiency (through technological improvements) would result in
an increase in the national GDP by 0.10% in the long term [84]. In Canada, researchers also
found that “investing in energy efficiency is a significant net benefit to the economy”. It
would add 118,000 jobs and increase GDP by 1% over the baseline forecast over the study
period (2017–2030) [85]. Direct jobs will arise from recalling energy service companies,
as well as indirect jobs for skilled professionals along the supply chain, such as energy
auditors and home energy raters, contractors, as well as retailers, and product distributors.
In addition, workers hired into new direct and indirect jobs would spend their income on
goods and services in the local economy, hence positively impacting the economy through
the redistribution of savings [84,86].

Nevertheless, other authors suggested that increased energy efficiency should be
implemented on a large scale for relevant impacts on energy efficiency [88]. The reason
for this is the “rebound effect”; when an item’s price decreases, users tend to use it more,
eroding the benefits of household energy efficiency. Furthermore, energy efficiency would
indeed have a positive impact on the economy if users were correctly educated on the
effective ways of dealing with energy efficiency, i.e., understanding labeling on appliances
based on energy efficiency. Some studies also showed a more positive impact when in-home
displays were available [87,89].

The literature review did not disclose a strong correlation between SHT and SDG 9
(industry, innovation, and infrastructure). SHT impact is ambivalent owing to potential new
business models that can again have positive as well as negative impacts on the value-added
by manufacturing processes. Indeed, SHTs are often part of a larger socio-technical system
of the Smart Home bubble that triggers the introduction of other systems into the ‘home’
(indicator 9.2.1) [90–92]. In addition, the impact of DI on indicator 9.2.2 (manufacturing value
added as a proportion of GDP and per capita) is ambivalent due to the new demand for
smart home energy experts and the way the system is maintained and produced. This further
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triggers the consequential effects on traditional heating/energy systems, and consumers take
over work from service providers [93]. Ambivalent impact on indicator 9.c.1 (proportion
of population covered by a mobile network, by technology) was also identified, due to the
inequality and accessibility of modern mobile infrastructure considering that smart home
systems require modern mobile infrastructure to communicate and receive data via the IoT or
5G network [94]. Additionally, considering that smart energy management at home and the
energy transition are developing faster, but also the overall growth in ICT energy demand is
increasing dramatically, there are synergistic impacts on indicator 9.4.1 (CO2 emission per
unit of value added) [90,95,96]. Indicators 9.5.1 (research and development expenditure as a
proportion of GDP), 9.5.2 (researchers (in full-time equivalent) per million inhabitants), and
9.b.1 (proportion of medium and high-tech industry value added in total value added) have
a synergistic impact based on opinion due to public and private sector funding and research,
as well as the high interest in implementing these systems, as they are deemed necessary for
energy efficiency. The DI is being implemented by large energy providers and established
technology providers, with little room for smaller-scale industries. It is possible to create
start-ups or new digital business models that can leverage smart home energy. This aspect
brings an uncertain impact based on opinion in indicators 9.3.1 (proportion of small-scale
industries in total industry value added) and 9.3.2 (proportion of small-scale industries with
a loan or line of credit).

Regarding SDG 10 (reduce inequality within and among countries), studies are needed
on a national level in order to uncover the impact of SHT. Nevertheless, if implemented
within a well-crafted national policy in the future, one could assume a positive impact
(based on opinion, indicators 10.1.1 and 10.2.1). The same could also be argued for the labor
share of GDP, especially when it comes to the green jobs created through this technology.
However, the consequent loss of traditional jobs should also be accounted for, hence
leading to a potentially ambivalent impact of the DI (based on opinion, indicator 10.4.1
(labor share of GDP)). In addition, an uncertain distant long-term impact of the DI could
be observed regarding the proportion of discrimination or harassment, alongside the total
flow of development resources between countries and the costs of remittances (based
on opinion, indicators 10.3.1 (proportion of population reporting having personally felt
discriminated against or harassed in the previous 12 months on the basis of a ground of
discrimination prohibited under international human rights law), 10.b.1 (total resource
flows for development, by recipient and donor countries and type of flow (e.g., official
development assistance, foreign direct investment, and other flows)), and 10.c.1 (remittance
costs as a proportion of the amount remitted)).

In the context of SDG 11, SHT included within the setting of “data-driven smart
sustainable cities” seems to be an optimal representation, thus explaining the distant
synergic impact on indicator 11.1.1 (based on opinion). A bi-directional impact is also
presented for indicator 11.3.1 (ratio of land consumption rate to population growth rate),
given that it could influence and be influenced by the DI (based on opinion). One additional
interesting synergy impact of this DI is on indicator 11.6.2 (annual mean levels of fine
particulate matter); previous evidence showed the positive impact of building energy
efficiency measures on air quality [97].

In that sense, SHT should be implemented together with smart grid energy-efficient
technology, a comprehensive national policy, and other smart home digital interventions
monitoring water and air quality, while also integrating renewable energy resources. Fur-
ther, policies are needed to ensure the SHTs are implemented in the right way while
respecting the ethical aspect of the DI, including the privacy and security of residents.

4.2. Group 2: Blockchain as a DI

To investigate potential responses to food production, distribution, and consumption
challenges, the group undertook an exploratory approach to understanding the state-of-
the-art regarding the potential of blockchain technology as a DI in the context of food
systems using DAF. To make the data interact, the group undertook a literature review
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at the intersection of these three contexts: distributed ledger technology (blockchain),
zero hunger, and sustainable consumption and production. We focused on the context
of developing countries with a significant number of consumers, producers, and retailers
participating in the process; e.g., household food waste could indeed increase by 50% by
2030 due to the growing consumption of the middle classes in developing countries [98].
We examined the interactions between the various goals and targets and the extent to which
they reinforce or conflict with each other.

Overall, the result (Figure 2 & Table 2) of this group exercise demonstrates that food
traceability with distributed ledger technology enables verification of food provenance
by immutably recording end-to-end transactions, which could prevent food waste and
improve trust among stakeholders [99]. The technology can help achieve food safety
and establish trust between actors by increasing the number of trusted transactions and
verifying food provenance [100]. Application of the DI puts in place an infrastructure that
fosters a more responsible production and consumption pattern in the food supply chain to
reduce food waste [44]. Monitoring and traceability of food can ensure the food is marketed
within its life cycle [100].

Figure 2. DAF outcome of blockchain as DI.

For SDG 2 (end hunger, achieve food security, and improve nutrition and promote
sustainable agriculture), we identified four indicators that were found to be relevant but
were somewhat ambiguous as to their potential impact. For indicator 2.3.2 (average income
of small-scale food producers, by sex and indigenous status), the literature pointed to
the empowerment of farmers (e.g., [101]) and other stakeholders (e.g., [102,103]) through
data as well as the potential increase in farmers’ incomes [104]. Regarding indicator 2.4.1



Sustainability 2023, 15, 6844 13 of 37

(proportion of agricultural area under productive and sustainable agriculture), several
papers underscored that food safety traceability systems which are backed up by Big Data
and the IoT ensure agility, transparency, integrity, reliability, and safety of traceability infor-
mation (e.g., [41,105,106]). Furthermore, the connections between food security and climate
change, as well as related risks and their respective stress on water and soil resources, are
acknowledged [107]. A particular emphasis in this regard was placed on the context of
developing countries such as India, where the public distribution system (PDS) could be
explored [108].

Regarding indicator 2.5.1 (number of (a) plant and (b) animal genetic resources for
food and agriculture secured in either medium- or long-term conservation facilities), Rao
et al. [109] highlight the need for DNA-based technologies in, e.g., meat markets. In
terms of indicator 2.c.1 (food price anomalies), traceability across an extended number
of stakeholders improves with blockchain-based trust management [44], bargaining
power, and democratization [110], which can be fostered through the involvement of
state actors [111]. Additionally, competition between traditional and online channels may
prove valuable [112], although the cross-channel information strategy and its relation to
performance remain unclear [113].

Table 2. Overview of the SDG indicators impacted by blockchain as the DI. (Text color reflects the
Impact type in the DAF).

DAF Outcome for blockchain

Impact Type Indicators

Synergy 6.4.1, 6.4.2, 9.2.1, 12.3.1, 14.1.1, 14.4.1

Ambivalent NA

Trade-offs NA

Uncertain 2.3.2, 2.4.1, 2.5.1, 2.c.1, 3.9.3, 6.3.2, 8.1.1, 8.2.1, 8.3.1, 8.4.2, 12.1.1, 12.2.1,
12.5.1, 12.7.1, 12.8.1,

Bi-Directional NA

For SDG 3 (ensure healthy lives and promote well-being for all at all ages), indicator
3.9.3 (mortality rate attributed to unintentional poisoning), the blockchain yields a
dubious impact on food selection and the spread of polluted foods (e.g., [42,114]),
wrongly labeled foods that caused death to customers [45], or improved efficiency while
also addressing concerns about animal welfare, environmental sustainability, and public
health [115]. As for SDG 6’s (Ensure Availability and Sustainable Management of Water
and Sanitation for All) indicator 6.3.2 (proportion of bodies of water with good ambient
water quality), the blockchain shows limited evidence of impact on real-time water
quality monitoring [116]. There is potential for synergistic effects with indicators 6.4.1
(change in water-use efficiency over time) and 6.4.2 (level of water stress: freshwater
withdrawal as a proportion of available freshwater resources), as crops can be irrigated
and managed with higher precision (e.g., [117,118]). Additionally, the blockchain may
be instrumental in generating insights on the characteristics of soil and water, climate
conditions, treatment with pesticides and fertilizers, production process, traceability,
transparency, labor and human rights, quality and safety, waste reduction, authenticity,
relationship with stakeholders, etc. (e.g., [107,119]).

The impact on SDG 8 is stated but not definite by indicators 8.1.1 and 8.2.1, al-
though the potential for a major impact on employment in the agriculture sector is
discernible (e.g., [42,120–122]). Indicator 8.3.1 highlights the diversity of affected actors
who could nonetheless be expected to benefit from blockchain technology [123], such
as SMEs [124]. Using the blockchain can improve indicators 8.4.1 and 8.4.2 insofar as
it improves supply chain operations’ economic, social, and environmental efficiency
(e.g., [42,121,125,126]).
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SDG 9 indicator 9.2.1 elaborates on the potential of blockchain technologies for the
procurement contract and industrial added value and operational performance [127–129].

For SDG 12 indicator 12.1.1 (number of countries developing, adopting, or implementing
policy instruments aimed at supporting the shift to sustainable consumption and production),
integrating organic, kosher, or halal certification into the blockchain could reassure stakehold-
ers [130] and ensure fairer supply chains [131]. Along those lines, indicators 12.2.1 (material
footprint, material footprint per capita, and material footprint per GDP), e.g., optimizing energy
consumption [132], 12.3.1 ((a) food loss index and (b) food waste index) and 12.5.1 (national
recycling rate, tons of material recycled) highlight food waste issues [133–136]. As such, the
blockchain is seen as a potential solution to contribute to the circular economy (e.g., Tripoli and
Schmidhuber [125], Rejeb et al. [137]). Indicator 12.7.1 (degree of sustainable public procure-
ment policies and action plan implementation) discusses blockchain-based digital contracts and
their contribution to public procurement [104]. For indicator 12.8.1 (extent to which (i) global
citizenship education and (ii) education for sustainable development are mainstreamed in
(a) national education policies; (b) curricula; (c) teacher education; and (d) student assessment),
the work of agricultural development cooperatives has been mentioned [138].

For SDG 14’s (conserve and sustainably use the oceans, seas, and marine resources
for sustainable development) indicator 14.2.1 (number of countries using ecosystem-based
approaches to managing marine areas), examples outlined in the literature demonstrate the
use of blockchain technology to inform consumers and society, providing more transparency
throughout the fish product value chain [139,140]. For indicator 14.4.1 (proportion of fish
stocks within biologically sustainable levels), blockchains provide added value to determine
the provenance and authenticity of seafood [141,142].

However, when we contrast these research findings with the general expectations
regarding the potential of blockchain technology in this particular field, we find that the
evidence is still lacking. Thus, our assessment mostly sits in the “uncertain” impact category.
Additionally, SDGs 1–3 (no poverty, zero hunger, and health and well-being) were rather
underrepresented compared to the purported potential in these domains.

The SDGs are universal in their application, and their scope aims to transcend the
boundaries between the developed and developing world. They provide a policy frame-
work that aims to ensure greater coherence between social, environmental, and economic
objectives, where such issues had previously been addressed in various diplomatic, po-
litical, and institutional arenas. However, keeping track of progress is hampered by the
difficulty of measuring sustainable development in all its complexity, partially due to
broadly defined objectives, the achievement of which is measured through a wide array
of narrowly outlined indicators. However, gathering data to monitor these indicators,
intended to assess the achievement of the SDGs, is a major data challenge that fails to ac-
count for local contexts: available data are, in many instances, outdated [143], and therefore
unusable, as it was with the decennial agricultural census in Lebanon, for instance, [144].
Moreover, the sheer number of indicators risks tilting the implementation of the SDGs into a
technocratic exercise far from the transformative ambition it was set out to achieve. Finally,
besides its technological challenges, the blockchain raises legal and regulatory issues, which
lawmakers are only beginning to tackle: the cross-border aspect of the technology hinders
the enforcement of set rules.

Transforming and improving the efficiency, inclusiveness, and sustainability of agri-
cultural and food systems is necessary to ensure that food loss and waste do not undermine
efforts to eradicate hunger, improve nutrition, and reduce pressure on natural resources
and the environment. To reconcile the challenges of food security and equity, decision
makers must be able to make informed strategic choices among a range of options for
managing food systems. However, the knowledge gaps found in the literature impede
estimates of the sustainable exploitation potential of blockchain technology.
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4.3. Group 3: AI as a DI

The digitainability assessment observed mainly synergistic impacts of AI on SDG
15 targets, as well as relevant connections with many of the SDGs, especially with SDG 2,
SDG 6, SDG 11, and SDG 13 (take urgent action to combat climate change and its impacts).

For SDG 1 (end poverty of all forms everywhere), we found by applying the DAF
methodology (Figure 3 & Table 3) that most of the indicators of SDG 1 are not relevant
to land management, with the exception of target 1.5 (by 2030, build the resilience of the
poor and those in vulnerable situations and reduce their exposure and vulnerability to
climate-related extreme events and other economic, social, and environmental shocks and
disasters), where AI can perform a vital role in terms of the exposure to extreme climate
events and environmental disasters. For example, AI can predict floods using Artificial
Neural Networks (ANNs), which run hydrological models [145] and can model heat waves,
as used by Vautard et al. [146].

Figure 3. DAF outcome of AI as DI.

In the case of SDG 2, which is related to the function of our soil and its productivity
for crop production, and the fairness of its distribution, we found that all targets related
to land use, target 2.3 (end hunger, achieve food security and improved nutrition and
promote sustainable agriculture). AI tools are used for crop monitoring, as in the model
of Singh et al. [147], who used AI and IoT to detect the most suitable land and conditions
for plant growth. AI has been shown to be a powerful tool in terms of Big Data analysis
for soil quality, as shown in the review by Eli-Chukwu and Ogwugwam [148].
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For SDG 3 (ensure healthy lives and promote well-being for all at all ages), to ensure
healthy lives and better well-being intersects with land management in some of its targets.
Consequently, there may be potential trade-offs in the application of AI on these indicators.
SDG 3 is targeted to ensure good mental health for all; mental health is directly associated
with recreational activities which are directly affected by land management. Therefore,
AI is being used to quantify and map recreational sites for better well-being and good
health [149]. Not only this, but since SDG 3 targets reducing deaths caused by road injuries,
AI-enhanced models in road management, predictions, and transportation are offered for
safety and for tracking injuries [150,151]. One of the most important factors for better
health is accessibility, either for education, medical services, or mental improvement. ANN
models are used for measuring land accessibility rates in urban areas, where it serves as
the main factor for better well-being [151]. As shown in SDG 2, Soil pollution is being
quantified, which serves as some of SDG 3’s indicators for reducing the death rate as a
result of food pollution [147].

Table 3. Overview of the SDG indicators impacted by AI as the DI. (Text color reflects the Impact
type in the DAF).

DAF Outcome for AI

Impact Type Indicators

Synergy 1.5.1, 1.5.2, 1.5.3, 1.5.4, 2.1.1, 2.1.2, 2.2.1, 2.2.2, 2.2.3, 2.3.1,
2.3.2, 3.1.1, 3.1.2, 3.4.1, 3.5.1, 3.6.1, 3.9.2, 3.b.1, 3.b.3, 3.c.1,
4.4.1, 4.a.1, 5.2.1, 5.5.2, 5.c.1, 6.1.1, 6.3.2, 6.4.1, 6.5.1, 6.a.1,
7.1.1, 7.1.2, 9.1.1, 9.1.2, 12.3.1, 12.6.1, 14.1.1, 14.3.1, 16.1.3,
16.1.4, 16.2.1, 16.6.2, 16.8..1, 16.9.1, 17.16.1, 17.18.1

Ambivalent 3.2.1, 3.8.1, 4.7.1, 5.1.1, 5.a.1, 7.3.1, 8.1.1, 9.4.1, 12.2.1, 12.4.2,
12.5.1, 14.2.1, 16.2.2, 16.2.3, 16.3.1, 16.10.1, 16.b.1,

Trade-offs 1.2.2, 8.5.2

Uncertain 3.9.3, 3.b.1, 3.d.1, 5.3.1, 5.4.1, 5.5.1, 6.2.1, 6.3.1, 6.4.2, 6.5.2,
9.2.1, 9.5.2, 9.a.1, 9.b.1, 16.1.1, 16.1.2, 16.3.3, 17.6.1, 17.14.1,
17.19.1

Bi-Directional 6.6.1, 7.2.1, 7.b.1, 9.c.1, 12.a.1, 12.b.1, 12.a.1, 12.b.1

For SDG 5 (achieve gender equality and empower all women and girls), synergistic
impacts exist between three of the indicators and AI use in relation to only one indicator
relevant to land and its ownership. These include: 5.2.1 (proportion of ever-partnered
women and girls aged 15 years and older subjected to physical, sexual, or psychological
violence by a current or former intimate partner in the previous 12 months, by form of vi-
olence and by age) [152], 5.5.2 (proportion of women in managerial positions) [153] and
5.c.1 ((a) proportion of total agricultural population with ownership or secure rights
over agricultural land, by sex; and (b) share of women among owners or rights bearers
of agricultural land, by type of tenure) [154,155]. Considering SDG 7 and SDG 13, the
energy sector is enduring a disruptive transformation toward a more decentralized,
digitalized, decarbonized, climate-neutral, and green future, with strong synergies with
the building, transport, and infrastructure sectors [156] and large impacts on climate.
AI brings huge potential to accelerate the green energy transition [157–159], but its
current application is limited to pilots, with barriers to scaling up. AI applications
for energy cover consist of high-fidelity models for predicting renewable generation
and demand, grid and systems optimization, operation and maintenance, and demand
management and innovation [160–162]. Virtual power plants can boost distributed
energy and automation of small, distributed devices such as electric vehicles [156,163].

Vinuesa et al. [6] claim that AI has the potential to contribute to all SDG 7 targets
positively but, at the same time, might be an inhibitor for 40% of the same targets. According
to the group analysis, AI could contribute positively to enhancing access to electricity (7.1.1.)
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and clean fuels (7.1.2). Particularly, AI for land management can help to identify better
supply needs and coverage of clean energy facilities (e.g., solar roofs) and match them
according to the population and available resources in the area [164–167].

In addition, AI might bring bi-directional impacts on indicator 7.2.1 and indicator
7.b.1 (installed renewable energy capacity in developing countries). Firstly, ML and
DL could help assess the availability of renewable energy resources (e.g., wind and
solar irradiation) [168–170] as well as support the enhanced planning and monitoring
of energy facilities [156,163]. Secondly, it is widely recognized that AI drives resource
efficiency gains and enables the flexible matching of supply and demand in real-time
through smart grids and microgrids [12,156,165,171,172]. Nevertheless, smart grids can
suffer cyber attacks and are prone to blackouts in the least developed contexts [66]. On
the other hand, renewable energy could help curb the growing carbon footprint of
energy-intensive algorithms (e.g., DL) and facilitate more sustainable use of digital
technologies by integrating green energy in data centers toward carbon neutrality and
green AI [163].

However, an ambivalent impact is observed on indicator 7.3.1, which merits further
analysis since the related net effect remains unclear. AI for land management can
support the efficient use of resources leading to lower energy consumption and intensity
of the economy [173,174]. However, potential rebound effects [175] may arise along
with growing energy demand from the DL algorithms [176,177], which might outweigh
the benefits. AI systems, particularly DL, require mitigating strategies to reduce their
large carbon emissions [178–180]. In addition, a lack of transparency and accountability
is observed regarding carbon emissions [181], which are generated in three ways: by its
use for applications with negative impacts (e.g., oil and gas) system-level impacts, the
life cycle of software and hardware [161].

Regarding SDG 13, AI brings huge potential for understanding the climate crisis,
and the literature provides evidence of its positive role in supporting crisis and disaster
management, early prediction of natural events, as well as opportunities for education
on climate responsibility and action [160,161,165]. Sætra [182] claims that AI shines in
dealing with complexity and enhancing climate science and policy, but the political harms
of algorithmic governance should be avoided. Vinuesa et al. [6] argue that AI systems
could bring benefits to 70% of the targets, causing negative effects on 20% of them.

According to our analysis, AI systems bring positive synergies to SDG 13.1.1 (number of
deaths, missing persons, and directly affected persons attributed to disasters per 100,000 pop-
ulation), providing enhanced disaster prediction and management [160,165,183,184]. An am-
bivalent impact is identified regarding SDG 13.2.2 (total greenhouse gas emissions per year), in
analogy with SDG 7, due to the yet unclear net effects of AI systems in terms of energy consump-
tion and related carbon footprint. In combination with earth observation (i.e., Land and Sentinel
satellites), AI could help assess the emissions and their effects, while algorithms generate a high
carbon footprint. Several experts call for more transparency in terms of the climate impacts of
AI. Regarding the contribution to SDG 13.3.1 (extent to which (i) global citizenship education
and (ii) education for sustainable development are mainstreamed in (a) national education
policies; (b) curricula; (c) teacher education; and (d) student assessment), AI has indeed the
potential to analyze massive educational data (e.g., massive open online course participation
data), adapt educational programs to the needs of the students, and provide augmented reality
[160]. At the same time, nonetheless, it could aggravate extant inequalities and biases. However,
limitations are observed with regard to most SDG 13 metrics as they are considered narrow and
mainly focused on the countries with established climate strategies and financial resources. SDG
13 targets and indicators do not reflect the complexity of this crucial goal and do not provide
suitable means for measuring progress. Even when AI has the potential to contribute to a better
understanding and monitoring of SDG 13.1.2 (number of countries that adopt and implement
national disaster risk reduction strategies in line with the Sendai Framework for Disaster Risk
Reduction 2015–2030), 13.1.3 (proportion of local governments that adopt and implement local
disaster risk reduction strategies in line with national disaster risk reduction strategies), 13.2.1
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(number of countries with nationally determined contributions, long-term strategies, national
adaptation plans, and adaptation communications, as reported to the secretariat of the United
Nations Framework Convention on Climate Change), and 13.b.1 (number of least developed
countries and small island developing states with nationally determined contributions, long-
term strategies, national adaptation plans, and adaptation communications, as reported to the
secretariat of the United Nations Framework Convention on Climate Change) focused on the
availability of disaster risk strategies and plans, little evidence is provided in the literature, and
these impacts remain uncertain.

With regard to SDG 9 and SDG 11, AI systems, in combination with Big Data, IoT,
and Digital Twins, could contribute to support both a resilient, sustainable, and circular
industry and smart manufacturing [185] by monitoring pollution and resource efficiency,
enhancing transport and communication infrastructures and boosting research and
innovation across all the domains [162,165]. In the urban sphere, the great potential of
AI in combination with the Internet of People (IoP) for smart and low-carbon cities is
widely recognized [12,66,186]. Therefore, a positive contribution to SDG 9 and SDG 11
is evinced with benefits to SDG 12 by a more sustainable production supply chain.

In our analysis, a synergic impact is observed in relation to SDG 9.1.1 (rural population
near an all-season road) and SDG 9.1.2 (passenger and freight volumes, by mode of transport)
since AI for land management might support the mapping and monitoring of population close
to road facilities [55,187,188] as well as the volume of passengers and freight from Big Data
coming from transportation systems [189–191], and their evolution patterns over time. An
ambivalent impact regarding the contribution to indicator 9.4.1 is observed since AI for land
could be useful for calculating the carbon footprint based on LCAs from different activities,
forest extension, and soil features acting as carbon sinks [192,193]. At the same time, however,
large GHG emissions are associated with AI systems, as aforementioned. AI could support
the optimization of supply chains and energy systems, improve quality, and reduce defects,
leading to resource efficiency but rebound effects could increase the net emissions and material
footprint [165,194,195]. Nonetheless, cybersecurity and privacy represent critical risks that
should be wisely considered in critical facilities. In addition, its impact is unclear with regard
to indicator 9.5.2 since AI could foster scientific discovery, benefiting many researchers in
the realm of SD [196], but no clear evidence has been provided in the literature so far. A bi-
directional impact is proved regarding SDG 9.c.1, since AI for land can help monitor the mobile
network and population coverage while better mobile connectivity could also be an enabler for
enhancing AI capabilities and better access to mobile Big Data [197,198]. AI systems are already
contributing to SDG 11 in numerous cities around the world, but their use for smart cities has
been criticized for lacking genuine sustainability and a citizen-centric approach, as well as for
being focused on highly developed economies [186]. Moreover, several targets (11.1 (by 2030,
ensure access for all to adequate, safe, and affordable housing and basic services and upgrade
slums), 11.4 (strengthen efforts to protect and safeguard the world’s cultural and natural
heritage), 11.a (support positive economic, social, and environmental links between urban,
peri-urban, and rural areas by strengthening national and regional development planning),
11.c (support least developed countries, including through financial and technical assistance, in
building sustainable and resilient buildings utilizing local materials)) have been overlooked
in the literature on AI for cities, which has been mainly focused on mobility, environmental
management and monitoring (water, air, waste, and energy), and disaster responsiveness.
Therefore, significant gaps remain in ensuring the social good of AI toward sustainable smart
cities for all. Despite the potential benefits, SDG9 and SDG 11 metrics represent a fragmented
and incomplete perspective of infrastructures, industry, and cities, hindering the outstanding
potential of AI and digital paradigms in these domains and lacking evidence for a relevant
number of indicators.

For SDG 10, one of the well-known menaces of AI systems is its potential to exacerbate
inequalities, bias, and discrimination. Vinuesa et al. [6] argue that in SDG 10, most impacts
of AI systems are considered negative, causing trade-offs in 55% of the targets. Admittedly,
uncertain impacts are identified in most targets, and a potential trade-off in terms of po-
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tential discrimination is caused by extant algorithms. Again, limitations are observed in
relation to narrow targets and metrics. AI systems could support better and more efficient
monitoring of metrics about people below median income (indicators 10.1.1 and 10.2.1),
migration and refugee tracking (SDG 10.7.2 (number of countries with migration policies
that facilitate orderly, safe, regular and responsible migration and mobility of people),
10.7.3 (number of people who died or disappeared in the process of migration toward an
international destination), 10.7.4 (proportion of the population who are refugees, by country
of origin)), fiscal control of markets, financial and economic indicators (SDG 10.4.2 (redis-
tributive impact of fiscal policy), 10.5.1 (financial soundness indicators), 10.a.1 (proportion
of tariff lines applied to imports from least developed countries and developing countries
with zero tariffs, ODA flows, remittances) but a clear, direct impact is not evidenced in the
literature due to a lack of empirical evidence. The most relevant impact of AI systems on
SDG 10 is a trade-off related to discrimination (SDG 10.3.1 (proportion of population report-
ing having personally felt discriminated against or harassed in the previous 12 months on
the basis of a ground of discrimination prohibited under international human rights law))
and potential bias [191,199–204]. Indeed, AI has been widely criticized for augmenting
inequality, bias, discrimination, and reproducing hierarchies [203]. Even when AI could
contribute to fighting discrimination by analyzing massive amounts of data (e.g., social
networks, PNL, and sentiment analysis), the negative impact outweighs any benefit. In
addition, access to AI systems and digital skills is uneven across geographies [205], and
AI-based automated work could also amplify inequalities against vulnerable people.

According to Vinuesa et al. [6], AI systems can be expected to have a positive impact
on 59% of SDG 12 targets and a negative impact on 16% of them. They could support
tracking consumption toward sustainable patterns and better ESG monitoring, facilitating
a circular economy. However, severe uncertainties emerge regarding the well-known
negative trade-offs of digitalization in terms of material footprint and e-waste. Sætra [48]
argues that the positive effects seem negligible with a lack of evidence and empirical data,
and the negative impacts outweigh the benefits. Di Vaio et al. [206] claim that AI could
drive a cultural drift in SDG 12 by enabling sustainable business models, but relevant gaps
remain, and ethical considerations should be integrated to ensure the proper use of this
paradigm for the 2030 Agenda.

Indeed, we observe three ambivalent impacts regarding the contribution of AI systems
to indicator 12.2.1 (material footprint, material footprint per capita, and material footprint
per GDP), indicator 12.4.2 (number of parties to international multilateral environmental
agreements on hazardous waste, and other chemicals that meet their commitments and
obligations in transmitting information as required by each relevant agreement), and indi-
cator 12.5.1. AI could increase the need for data centers and related digital infrastructures
leading to an increase in material footprint, land use, and e-waste, while at the same time,
ML and DL systems could support an optimized production system, resource efficiency,
and environmental awareness [207,208]. AI for land management could improve the
monitoring of waste treatment facilities and the detection of illegal landfills [189,209–214].
However, it might also lead to increased waste due to the required digital infrastructures
and digital-induced overconsumption [48].

In contrast, synergic impacts are found in relation to the application of AI systems to
indicators 12.3.1, 12.6.1 (corporate sustainability reporting), and SDG 12.b.1 (accounting tools for
sustainable tourism). Indeed, AI for land management can help to monitor agricultural fields
and crops, influencing the availability of food on the market. Yet, the relationship between
food supply chains and related losses is not clearly established [137,215–217]. AI for land
management could be useful to support the ESG reporting [218,219], particularly regarding
land and soil [220,221], as well as to bring information about the potential impacts of tourism
on land and the environment [222]. Bi-directional impacts are observed regarding indicator
12.a.1, the same as SDG 7.b.1. AI for land management could help map and monitor renewable
energy facilities by using geospatial Big Data and distilling it into knowledge [223]. In addition,
more renewable energy could help AI to be more sustainable by reducing its carbon footprint.
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Again, SDG 12 metrics are considered narrow and unable to represent the complexity of the
sustainable consumption and production paradigm, hindering the potential of AI to contribute
to the 2030 Agenda.

Considering SDG 17 (strengthen the means of implementation and revitalize the Global
Partnership for Sustainable Development), Sætra [48] underlines the relevance of the partner-
ships’ support for monitoring systems and compliance but claims that despite its outstanding
relevance for governance, the role of AI in SDG 17 has been overlooked. Vinuesa et al. [6] argue
that AI could positively contribute to just 15% of the subgoals while causing a negative contri-
bution to 5% of them. We observed that most impacts are uncertain due to a lack of evidence
and empirical data, along with strong limitations and shortcomings featuring SDG 17 targets
and metrics. AI systems could support SDG 17.6.1 (fixed Internet broadband subscriptions)
and SDG 17.8.1 (individuals using the Internet) by enhancing the monitoring and operating
of digital infrastructures [224–226]. On the other side, proper Internet broadband coverage
supports cloud-based AI systems. However, the literature in this area is sparse. Synergies
can be observed regarding SDG 17.16.1 (monitoring frameworks) and SDG 17.18.1 (statistical
capacity for SDG monitoring), since AI systems in combination with Big Data (e.g., earth
observation, sensors, and IoP) can be a relevant tool for enhancing statistical capacity and
monitoring all the SDGs [74,227–229] and particularly SDG 15 targets.

Overall, AI offers exceptional potential for enhancing land-related metrics (SDG 15) in
combination with remote sensing and satellite earth observation data. However, several
limitations, barriers, and risks remain to leverage and make mainstream the full potential
of AI systems for social good, particularly in the least developed countries constrained
by a lack of resources and capacities and unsuitable logistics and regulations. AI requires
synergic integration with other digital paradigms (e.g., IoT, Digital Twins, Big Data, 5G,
blockchain), trustworthy regulation, transparent accountability, and cross-fertilization with
multidisciplinary domains such as climate change agriculture, water, ocean ecosystems,
and urban planning. The impacts of AI on land management are mainly positive synergies,
but several trade-offs and ambivalent impacts are also evidenced. This is particularly the
case with regard to the net carbon footprint, material footprint, as well as unsolved social
dilemmas and ethical implications [72,230].

In relation to the potential impacts that AI for land management brings across the
SDG indicators, most observed interactions can be considered synergies and ambivalent
impacts, including trade-offs with unclear net impact. These ambivalent impacts are mainly
related to the “Janus faced” nature of AI in terms of the carbon footprint from energy-
eager algorithms (e.g., DL), material footprint, and e-waste from supporting data-driven
infrastructures subjected to early obsolescence, rebound effects causing overconsumption,
cyber-security vulnerabilities, but also social and ethical threats such as capacity constraints,
asymmetry of power, malicious use [231], misinformation, discrimination, inequalities,
bias, security, safety, privacy, and greenwashing. A few interesting bi-directional impacts
are also observed due to the enabling nature of both digitalization (broadband and mobile
connectivity) and renewable energy, which deserve further exploitation.

In addition, a significant number of uncertain impacts have been identified due to
the intrinsic limitations of the SDG targets and indicators and the lack of literature and
empirical data for many of them. One of the main barriers to the application of AI to SD and
the 2030 Agenda stems from the drawbacks of the SDG targets and indicators themselves.
It is widely accepted that SDG indicators are narrow and reductionist and do not reflect the
complexity of the domains they are expected to cover [24].

Besides, a relevant limitation of this analysis relies on the potential bias induced when
selecting datasets [162], applying black-box algorithms, and when evaluating interactions
and impacts based on expert opinions and pilots whose results are difficult to extrapolate
and could lead to spurious conclusions [56]. Ensuring a sustainable, responsible, and
inclusive application of AI for the 2030 Agenda will require trustworthy regulation beyond
human-centric principles [232] and ethical standards [6,233,234] to halt the “wild west”
of unregulated AI [205]. In addition, greening AI is an urgent priority and might be
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achieved by policy incentives for green algorithms [235], renewable energy and efficiency
in data infrastructures, standardized methodologies for carbon and energy accountability
embedded within the whole life cycle of AI systems [180], and environmental education.
Accountability and transparency should be encouraged using FAIR data, trustworthiness,
and XAI to fight discrimination and biased outcomes. Further research on social dilemmas
and ambivalent impacts is needed and should cover all relevant contexts and communities,
particularly the Global South, to reduce digital divides. Alliances for social good might
bring relevant stakeholders together, including civil society and vulnerable communities,
to share data [160] and overcome current capacity and accessibility constraints, such as the
non-universal access to datasets [236]. Finally, the SDG framework and metrics should be
revisited through the lenses of digitalization to accommodate the opportunities brought by
AI in combination with EO and Big Data. This evolution of the 2030 Agenda monitoring
should bear in mind the systemic nature of sustainability and digitalization; therefore,
methodologies and standardization are needed for this purpose [237].

4.4. Group 4: Big Data as DI for International Law

The results of this study demonstrate (Figure 4 & Table 4) the opportunities provided
by Big Data to achieve the SDGs. It showcases the benefits of participatory action by taking
a futuristic perspective on the potential impact of DIs. This study aims to demonstrate how
DAF can help innovate while anchoring insights in a mindful consideration of DI impacts
on SDGs.

Figure 4. DAF outcome of Big Data as DI.
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Implementing Big Data to achieve SDG 2 to create binding international treaties would
allow direct compliance with indicator 2.5 (by 2020, maintain the genetic diversity of seeds,
cultivated plants, and farmed and domesticated animals and their related wild species,
including through soundly managed and diversified seed and plant banks at the national,
regional, and international levels, and promote access to and fair and equitable sharing
of benefits arising from the utilization of genetic resources and associated traditional
knowledge, as internationally agreed), which seeks to promote access to fair and equitable
sharing of benefits arising from the utilization of genetic resources and internationally
recognized traditional knowledge. Its implementation is primarily aligned with the “means
of implementation” targets.

This would allow the increase in and facilitation of investments to improve inter-
national cooperation in rural infrastructure, agricultural research facilities, technology
and research development, research, and gene banks to increase agricultural productive
catalyzing target 2a (increase investment, including through enhanced international coop-
eration, in rural infrastructure, agricultural research and extension services, technology
development, and plant and livestock gene banks in order to enhance agricultural produc-
tive capacity in developing countries, particularly in least developed countries). Proper
management of Big Data can facilitate access to transparent, updated, and complete in-
formation for trade and global agricultural markets and fair prices aligned with target 2c
(adopt measures to ensure the proper functioning of food commodity markets and their
derivatives and facilitate timely access to market information, including on food reserves,
in order to help limit extreme food price volatility). The information and improvement
in the markets can help to eliminate export subsidies in line with the Doha Development
Round and target 2b (agricultural export subsidies).

Beyond SDG 2, Big data and international law can be adopted for other targets, espe-
cially the “means of implementation” targets, that seek to ensure significant mobilization
of resources. For SDG 1, Big Data would help to make policy and organize investment
in developing countries, achieving 1.a (ensure significant mobilization of resources from
a variety of sources, including through enhanced development cooperation, in order to
provide adequate and predictable means for developing countries, particularly in least de-
veloped countries, to implement programs and policies to end poverty in all its dimensions)
and 1.b (create sound policy frameworks at the national, regional and international levels,
based on pro-poor and gender-sensitive development strategies, to support accelerated
investment in poverty eradication actions). For SDG 3 (ensure healthy lives and promote
well-being for all at all ages), (3.d (strengthen the capacity of all countries, in particular
developing countries, for early warning, risk reduction, and management of national and
global health risks)) would help to reduce risks and health risks. Regarding SDG 7 (7.a
(by 2030, enhance international cooperation to facilitate access to clean energy research
and technology, including renewable energy, energy efficiency, and advanced and cleaner
fossil-fuel technology, and promote investment in energy infrastructure and clean energy
technology)), it would help for clean energy investments. For SDG 8 (8.a (increase Aid for
Trade support for developing countries, particularly in least developed countries, including
through the Enhanced Integrated Framework for Trade-related Technical Assistance to
Least Developed Countries)), Big Data can support aid trade for developing countries.

For SDG 9 (9.b (support domestic technology development, research, and innovation
in developing countries, including by ensuring a conducive policy environment for, inter
alia, industrial diversification and value addition to commodities)) can support technology
development. SDG 11 (11.c (support least developed countries, including through financial
and technical assistance, in building sustainable and resilient buildings utilizing local
materials)) can benefit from sustainable and resilient buildings. For SDG 13 (13.a (imple-
ment the commitment undertaken by developed-country parties to the United Nations
Framework Convention on Climate Change to a goal of mobilizing jointly $100 billion
annually by 2020 from all sources to address the needs of developing countries in the
context of meaningful mitigation actions and transparency on implementation and fully
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operationalize the Green Climate Fund through its capitalization as soon as possible)), it can
help to implement committees under the UNFCCC. SDG 15 (15.1 (by 2020, ensure the con-
servation, restoration, and sustainable use of terrestrial and inland freshwater ecosystems
and their services, in particular forests, wetlands, mountains, and drylands, in line with
obligations under international agreements)) can benefit from conservation and restoration
of ecosystems inland.

Regarding SDG 16 (promote peaceful and inclusive societies for sustainable devel-
opment, provide access to justice for all, and build effective, accountable, and inclusive
institutions at all levels) (16.3 (promote the rule of law at the national and international
levels and ensure equal access to justice for all), 16.8 (broaden and strengthen the participa-
tion of developing countries in the institutions of global governance), 16.10 (ensure public
access to information and protect fundamental freedoms, in accordance with national
legislation and international agreements)), participation in global institutions and gover-
nance, particularly for developing countries, ensures access to justice and fundamental
freedom. For SDG 17 (strengthen the means of implementation and revitalize the Global
Partnership for Sustainable Development) (17.2 (developed countries to implement fully
their official development assistance commitments, including the commitment by many
developed countries to achieve the target of 0.7 percent of gross national income for official
development assistance (ODA/GNI) to developing countries and 0.15 to 0.20 percent of
ODA/GNI to least developed countries; ODA providers are encouraged to consider set-
ting a target to provide at least 0.20 percent of ODA/GNI to least developed countries),
17.4 (assist developing countries in attaining long-term debt sustainability through coor-
dinated policies aimed at fostering debt financing, debt relief and debt restructuring, as
appropriate, and address the external debt of highly indebted poor countries to reduce
debt distress), 17.6 (enhance North–South, South–South and triangular regional and in-
ternational cooperation on and access to science, technology and innovation and enhance
knowledge-sharing on mutually agreed terms, including through improved coordination
among existing mechanisms, in particular at the United Nations level, and through a global
technology facilitation mechanism), 17.9 (enhance international support for implementing
effective and targeted capacity-building in developing countries to support national plans
to implement all the Sustainable Development Goals, including through North–South,
South–South and triangular cooperation), 17.10 (promote a universal, rules-based, open,
non-discriminatory and equitable multilateral trading system under the World Trade Orga-
nization, including through the conclusion of negotiations under its Doha Development
Agenda), 17.13 (enhance global macroeconomic stability, including through policy coor-
dination and policy coherence), 17.16 (enhance the Global Partnership for Sustainable
Development, complemented by multi-stakeholder partnerships that mobilize and share
knowledge, expertise, technology and financial resources, to support the achievement of
the Sustainable Development Goals in all countries, in particular developing countries)), to
aid countries in implementing the assistance commitments, coordinate coherent policies for
long-term sustainability, enhance international cooperation and capacity building, imple-
ment the non-discriminatory multilateral trading system, improve global macroeconomic
stability, and enhance the Global Partnership for Sustainable Development.

Table 4. Overview of the SDG indicators impacted by Big Data as the DI. (Text color reflects the
Impact type in the DAF)

DAF Outcome for Big Data

Impact Type Indicators

Synergy to Uncertain 1.a.1, 1.a.2, 1.b.1, 2.5.1, 2.5.2, 2.a.1, 2.a.2, 2.b.1, 2.c.1, 3.d.1,
3.d.2, 7.a.1, 8.a.1, 9.b.1, 11.c.1, 13.a.1, 13.b.1, 15.1.1, 15.1.2,
16.8.2, 16.10.1, 16.10.2, 17.2.1, 17.4.1, 17.6.1, 17.9.1, 17.13.1,
17.16.1
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One of the most important characteristics of international law treaties is that they are
concluded by the will of the parties. According to Linares [238], an international treaty “is an
instrument where provisions are freely agreed between two or more subjects of international
law to create, modify or extinguish obligations and rights”. Therefore, if the developing
states do not have the will to sign treaties, the countries that need help and cooperation
will not be able to implement the proposed measure even when Big Data demonstrate
to the parties the benefits of signing the treaty. Pulido-Ortiz et al. [239] mention that
“normative language suffers from indeterminacies caused by the ambiguities, vagueness,
and inaccuracies of the words and sentences, and by the contradictions, redundancies, and
gaps in the set of legal norms”. In this order of ideas, the indeterminacy of the language
of the SDGs can mean that the creation of a binding international treaty does not achieve
its objective; even with the help of Big Data, the indeterminacy of the ODS would prevent
meeting some of the 2030 goals, and nothing ensures compliance with the goals.

Another great challenge is that the states provide the correct and adequate information
to be able to create the database of the needs that some states have in order to carry out
a treaty and obtain a benefit. Additionally, developing countries do not have sufficient
technology to collect the necessary information to identify their needs and eventually
create an international treaty. As long as the technology gap is not overcome, Big Data for
international treaties may be ineffective.

5. Discussion

DIs has the potential to accelerate sustainable development. However, implementation
actions still need to be improved in several areas for some technologies to fully utilize their
potential for achieving the SDGs. This paper brings forth the operationalization process,
how expert groups approached the digitainability assessment process, and their recom-
mendations for digitalization and sustainability practicing communities in a qualitative
manner. Participants identified the DI in the discussion from their experience and sought
to develop knowledge about digitainability aspects using participatory action. Results
from the aforementioned case studies highlight the differences between countries in the
application and maturity of the technology. Groups 1, 2, and 3 identify technology impacts
at indicator levels covering synergies, ambivalent impacts, trade-offs, bidirectional impacts,
and uncertainties, showing potential interlinkages that SDGs have at an indicator level
and the diverse impact that DI can have depending on the context where it is applied. The
results of Group 4 pointed out that beyond the application of the DI toward the achieve-
ment of the SDGs, the legal wording and language used in the 2030 Agenda may hinder
the application of the DI and collaboration at the international level. Results also showed
the scarcity of literature when it comes to evaluating and supporting the DAF analysis.
Furthermore, the interlinkages between SDGs have yet to be fully understood, which
hampers a fully comprehensive DAF analysis. For example, the interlinkages between
targets and indicators of SDG 1, 8, 9, 11, 13, and 15 are unclear but provide a sense of
having affinities in broader contexts because of the social, environmental, and economic
dependencies [240]. For instance, SDG 7 has complex linkages with SDG 12 regarding
industrial development and clean energy to sustain a green transition [241]. Achieving
SDG 6 may affect the progress of SDG 3 targets, as access to clean water and sanitation
is fundamental to delivering health services [242]. In addition, in the case of group 4,
the outcomes of Big Data for international law results showed that the potential of DI
remains unexplored. The analysis of group 4 also demonstrated two crucial aspects: first,
the methodological aspect about how lack of clarity on indicators and context leads to a
surface interpretation of DI implications, and second, the advantage of the method to help
identify the importance of Big Data to facilitate the identification of partners and pathways
to create robust policies to advance the SDGs.

The participatory action process undertaken through the DAF tool, as presented in this
paper, has facilitated the in-depth identification of the complex and interrelated impacts of
DI for sustainable development. The process helped peers in each group to question, reflect
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and generate actionable learning that would guide the mindful application of DIs. The
process also helped improve the current understanding of the peers in a multidisciplinary
manner and kindled a new strategic approach for sustainable transformation. Throughout
the DSS, participants worked on their identified DI for digitainability assessment with the
support of other participants and insights from experts and advisors on various aspects
at the intersection of sustainability and digitalization. Feedback from guest specialists
during the DSS also helped participants make sense of their multidimensional experiences
through real-time reflection and relevant theories. The flexibility to incorporate information
from scientific literature, grey literature to suggest limited attention to the topic, and other
potential sources also helped map the multidisciplinary knowledge and existing gaps.
Thus, operationalizing DAF for the participatory action exercise with constant feedback
enriches participants’ practices and values to ensure that any multidimensional actions
identified in the assessment are seen not as neutral or positive stances but as positions with
specific impacts. As can be noticed from the group work and outcomes, each group used
different types of techniques for evidence-gathering and analysis based on the maturity of
the technology and topic. Despite this, the result demonstrates the versatility of DAF in
facilitating inclusive, diverse voices to be heard at different levels during the digitainability
assessment of technology, leaving no one behind for sustainable development.

The findings also demonstrate the extent to which analysis of the actual impacts of the
SDGs is limited. It is crucial to navigate between intra- and inter-administrative boundaries
at the micro, meso, and macro levels to analyze the DIs’ impacts in a specific context with
stakeholders’ intent in implementing DI [243]. It helps realize the scale and dependence
between administrative levels and the overall impact those have on the target and goal,
with hints to understanding the impacts of administrative boundaries. Results also indicate
that analysis focusing on varying levels and contexts should consider the information
in great detail to understand the short and long-term impacts of the DIs in intra- and
interdependent forms and contexts.

When considering sustainable development, it is also crucial to balance the progress
toward all the key dimensions of sustainability because substantial adverse effects in
one could lead to a chain reaction of repercussions on overall progress. DAF provides a
method for assessing impact along several dimensions. However, current data gaps pose
several limitations to a comprehensive analysis [244]. Furthermore, the crucial trade-offs
and ambiguities between the different pillars of sustainability should be noticed due to
the focus on a narrow or isolated assessment of the impact of DIs [221]. Evaluating the
impact of the DIs considering the SDGs help address potential gaps that arise between
various multi-stakeholder actions for sustainable development. However, due to the
complexity of the SDGs, there is some overlap between the different DIs applications
and indicators [245]. At the indicator level, there are few similarities among indicators of
the same goal, and the potential for synergy and trade-offs between them has not been
adequately investigated. The interdisciplinary aspect of the SDG indicators also makes their
interpretation ambiguous or even contradictory. Another aspect that needs consideration
in the assessment is formulating the indicator from a global perspective, with different and
sometimes conflicting interests, actors, and technologies. In addition, different reporting
systems sometimes limit assessment processes, while the DAF helps to overcome these
gaps and disparities to some extent, it is also valuable for identifying them and highlighting
research imperatives.

The following observation we received from the participants indicates the benefit of
using DAF as a tool in participatory action for problem identification, evidence collection,
evaluation, reflection, and prioritization of actions.

• The DAF helped to assess the impact of the SHT on the SDGs and provided a means
of examining this association more scientifically and adopting a broader, multidimen-
sional perspective of analysis. Hence, it provides the foundation for a more purposeful,
wiser, and inclusive implementation of digital interventions for sustainability;
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• International and interdisciplinary applied research from a broad spectrum of thematic
expertise is needed to fill the knowledge gaps on ecological, economic, and social
processes interacting with blockchain technology in the context of food security. We
need to critically assess the usefulness of specific indicators which lack contextual
country-level application potential or explore avenues for qualitative assessment
which could complement the picture. Thus, a more holistic impact assessment using
the SDGs as a compass or navigating framework is deemed an advisable starting point
which, however, needs to be enhanced through qualitative means of SDG assessment.
However, we believe that the SDGs and the associated focus on the indicators provide
an interesting avenue for further exploration, as the indicators offer an impact-based
assessment and contribution to the grand challenges of our time;

• There exists a burgeoning research landscape and huge opportunities but also several
caveats, data and reporting gaps, lack of accountability, and limited literature on
the contribution of AI to most SDG metrics that merit further research. In addition,
contexts are highly relevant, and further research is needed in underrepresented
countries, especially from the Global South.

The digital practices of the future will play a crucial role in shaping the sustainability
and well-being of communities, organizations, and society. Therefore, it is important to
ensure that these practices align with sustainable principles and support Sustainable Devel-
opment Goals. The DAF provides a methodology for assessing the impact of DIs, allowing
for a more robust evidence-based scientific approach to identifying spatial and temporal
effects from a broader multidimensional perspective. These critical and holistic assess-
ments of the DIs’ usefulness help to address significant challenges we all face in achieving
Agenda 2030. As we move toward the 2030 Agenda milestone, the evolution of new goals
needs to consider the digitainability aspect more systemically, toward sustainability in the
digital age, stressing the need for more robust methodologies, indicators, standardization
processes, and policies accordingly. In that sense, the analysis of DIs impact on SDGs
through the DAF can point to hotspots and opportunities tailored to specific contexts and
areas, promoting local adaptation and actions required for sustainable development more
inclusively and holistically.

We believe that DAF can also help perform estimations required for ex ante and ex
post consequential effects of DIs. The DAF can be considered a first step to further develop
a mathematical model to understand the numerical impact between indicators, for which a
better understanding of the theoretical connections between indicators highlighted by the
DAF is needed. For a robust mathematical model that must be calibrated and validated,
reliable historical data are needed, which is not available for all cases currently [26]. A
mathematical model also needs to work under all contexts, also addressed by the DAF;
thus, the access to technology, the energy matrix mix, the political measures in place to
achieve certain SDGs, budget, among others, must be represented in the model. Due to the
complexity of the model, and the time length to achieve practical results, a mathematical
approach to analyze the interconnection between indicators of the agenda 2030 might
not be available in the following years, for which the DAF is a valid approach to analyze
indicators’ interconnections. We strongly believe sustainability data intelligence is a critical
next step for operationalizing digitainability to drive initiatives and take coherent measures
toward sustainable development.

6. Conclusions and Outlook

This paper demonstrates the operationalization of digitainability by using the DAF
as a tool for encouraging mindfulness in utilizing the DIs for sustainable development.
Operationalizing digitainability is more than just implementing green technologies or set-
ting sustainability targets. It requires a fundamental shift in understanding how measures
with digitalization operate and their maturity in certain contexts, leveraging innovative
digital interventions and data-driven insights to redirect costs, optimize resource usage,
reduce waste, and enhance actions towards holistic sustainability. DAF provided a coherent
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structure for evaluating the impact of digital technologies and practices, and helped guide
participatory actions. The outcome of the paper demonstrates how a multidisciplinary
perspective, with experts from diverse backgrounds, can operationalize the assessment
framework to systematically gather evidence reflecting gaps and opportunities DIs can
offer for sustainable development. The paper’s outcome firstly demonstrates the practical
approach to conducting a digitainability assessment using DAF as a tool and supporting
the participatory action process. Secondly, it reflects on the digitainability assessment
of diverse DIs in specific contexts, reflecting the potential inter-dependencies between
SDG progress holistically. The paper further demonstrates how a more inclusive and
integrated assessment with practical tools such as DAF could create the mindfulness that
organizations and communities can harness to establish a forward-looking understanding
of what it means to develop and utilize digital systems, technologies, and practices that
support sustainable development. DAF can play a crucial role in transforming the digital
practices of the future, helping to promote sustainability, equity, and well-being. Future
work should focus on automating some DAF procedures, alleviating the labor-intensive
task of evidence-gathering using tools and techniques recognized by various stakeholders.
Further development of the assessment framework should consider expanding capabilities
from qualitative to quantitative evaluation with interconnected data sources and empirical
evidence to make assessment more robust and informative. Furthermore, developing
sustainability data intelligence based on DAF inputs with diverse actors and DIs can help
guide context-driven mindful decisions for sustainability in the digital age.
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