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Abstract: Groundwater is regarded as the primary source of agricultural and drinking water in
semi-arid and arid regions. However, toxic substances released from sources such as landfills, in-
dustries, insecticides, and fertilizers from the previous year exhibited extreme levels of groundwater
contamination. As a result, it is crucial to assess the quality of the groundwater for agricultural and
drinking activities, both its current use and its potential to become a reliable water supply for individ-
uals. The quality of the groundwater is critical in Egypt’s Sohag region because it serves as a major
alternative source of agricultural activities and residential supplies, in addition to providing drinking
water, and residents there frequently have issues with the water’s suitability for human consumption.
This research assesses groundwater quality and future forecasting using Deep Learning Time Series
Techniques (DLTS) and long short-term memory (LSTM) in Sohag, Egypt. Ten groundwater quality
parameters (pH, Sulfate, Nitrates, Magnesium, Chlorides, Iron, Total Coliform, TDS, Total Hardness,
and Turbidity) at the seven pumping wells were used in the analysis to create the water quality index
(WQI). The model was tested and trained using actual data over nine years from seven wells in
Sohag, Egypt. The high quantities of iron and magnesium in the groundwater samples produced a
high WQI. The proposed forecasting model provided good performances in terms of average mean-
square error (MSE) and average root-mean-square error (RMSE) with values of 1.6091 × 10−7 and
4.0114 × 10−4, respectively. The WQI model’s findings demonstrated that it could assist managers
and policymakers in better managing groundwater resources in arid areas.

Keywords: water quality index (WQI); deep learning; time series forecasting; Sohag; Egypt

1. Introduction

Egypt is regarded as a country with a scarcity of water [1]. The Nile River regulates
Egypt’s water supplies, with a fixed portion of 55.5 BCM/year [2]. Groundwater in Egypt
is regarded as a secondary water resource for domestic use as well as irrigation in various
parts of the country. The amount of water withdrawn from the aquifer is estimated to be
around 7–8 BCM/year [2,3]. The sources of groundwater in Egypt’s Nile Valley aquifers
are canal seepage and deep percolation from irrigated agriculture [4]. The demand for
groundwater has considerably increased because of an increase in population, human activ-
ities, industrialization, and urbanization that is occurring at an accelerated rate [5,6]. Due
to man-made activities such as overuse and improper disposal of waste (industrial, agricul-
tural, and household) into groundwater reservoirs, the quality, quantity, and availability of
groundwater are being severely impacted at an alarming rate [7]. Therefore, the current
agricultural activities, especially in connection to the excessive use of fertilizers, improper
ways of releasing wastewater to groundwater, and filthy circumstances in groundwater
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recharge, pose a major threat to human health [8]. The underlying environment, seasonal
fluctuations, dissolved salts that have been leached, and water depth all affect the quality
of groundwater [9]. About 80% of human illness is water-related, as reported by the World
Health Organization (WHO) [10]. When groundwater gets contaminated, it is challenging
to restore and maintain its appropriateness quality by removing the pollutants from the
sources. Therefore, it is essential to check the quality of groundwater and devise strategies
for keeping it free of contaminants. Different biological, physical, and chemical aspects of
water are used to determine groundwater quality [11]. These could be considered assess-
ment tools for the groundwater’s cleanliness and quality concerning the demand for and
use in human consumption [12].

The assessment of groundwater quality is critical for agriculture and drinking, as
well as industrial activities. Many researchers have assessed groundwater quality for
irrigation and drinking using geographic information systems (GISs), water quality indi-
cators [13–16], multivariate statistical analysis [17], and machine learning models [18–21].
El Bilali et al. [18] used different machine learning methods for forecasting the irriga-
tion water quality indexes using Adaboost, Support Vector Regression (SVR), Random
Forest (RF), and ANN models. In addition, Hanoon et al. [19] used various machine
learning (ML) models, such as Gaussian process regression (GPR), tree regression (TR),
SVM, linear regression (LR), and ensembles of regression trees (ER). Kouadri et al. [20]
applied different machine learning models for irrigation parameters such as long short-
term memory (LSTM), multi-linear regression (MLR), and artificial neural network (ANN).
El Yousfi et al. [21] developed a model based on PCA and ANN that can predict WQI. All of
the literature is focused on developing a machine-learning model, and no research focuses
on deep learning.

One of the assessment tools for evaluating groundwater quality is the Water Quality
Index (WQI). The WQI is therefore an essential instrument for evaluating the quality of
groundwater, including chemical, biological, and physical characterizations, and how it is
managed in a particular area. It also aids in the selection of an economically viable treatment,
desalination, or purification method to address the water quality issues at hand [22,23].
Furthermore, it communicates water quality information to legislative decision-makers and
the public, demonstrating the aggregate influence of several water quality metrics. The WQI
could also assist the decision-makers in developing sound legislation and implementing
the government’s water quality programs [24,25].

According to the above, all prior models offered to provide improved prediction
of groundwater quality. They concentrated on predicting groundwater quality using
previously measured data over a specified period. In addition, just a few parameters were
considered in each inquiry. Based on the preceding discussion, it should address some
concerns, such as the evaluation of long-term field data, the creation of enhanced machine
learning technology systems to give reliable models, and the examination of more factors
in groundwater quality.

More trustworthy and effective forecasting algorithms for all forms of comparable and
challenging data are required in the literature due to a shortage of groundwater quality
time series forecasting models. This research was conducted in an attempt to address some
of the difficulties raised above. The WQI was developed using ten groundwater quality
parameters, including Turbidity, pH, Magnesium, Iron, Nitrates, Sulfate, Chloride, Total
Dissolved Solids (TDSs), Total Coliform, and Total Hardness (TH). A deep neural network
model was used to forecast nine groundwater quality metrics (Turbidity, Magnesium, Iron,
Nitrates, Sulfate, Chloride, TDS, TH, and water quality indexing (WQI)) connected with
seven wells in the Sohag district of Egypt. The new Deep Learning Time Series Techniques
(DLTS) network structure has been enhanced to produce better outcomes. To produce more
precise results, the model was built on data from nine years. For groundwater quality
forecasting, the method uses DLTS with the long short-term memory (LSTM) network.

The purpose of this research was to analyze and forecast groundwater quality for
drinking intentions using principal factor analysis [13,26] to identify the key factors that
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influence the water quality and DLTSF, along with water quality indexing (WQI) related
to significant biological, chemical, and physical constraints of the groundwater from the
district of Sohag, Egypt. This work will assist officials in drinking water and wastewater
companies in making decisions to improve the efficiency and quality of used water, which
will be reflected in the health of people who use this water.

2. Study Area Description

The study area is situated in a small city, Sohag Governorate, on the west bank of
the Nile River in Egypt. Sohag is located at 26◦33′26.8′′ N and 31◦41′39.0′′ E. It is located
nearly 471 km south of Cairo. Sohag is located on a productive agricultural plain along the
western bank of the Nile. It has a population of 600,000. The samples were collected from
the wells pump station (26◦32′38.5′′ N 31◦41′59.7′′ E) at Sohag First, Sohag Governorate.
These wells supply 175 L/sec of water, mainly for drinking water uses; see Figure 1.
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The research region is part of Egypt’s Nile Valley geological system. A diverse range
of sediments dating from the Lower Eocene to more recent deposits [27] distinguishes
the exposed sedimentary successions in the area. The Lower Eocene Thebes Formation is
mostly composed of limestone, with flint nodules visible on the western plateau’s surface.
The Muneiha Formation (Early Pliocene) is constituted of fluvial sediments of clays with
quartz grains that serve as the Quaternary aquifer’s foundation [28]. The Qena Formation of
the Early Pleistocene consisted of coarse and medium-grained sand and gravel sediments
and served as the area’s primary aquifer unit [13]. The Kom Ombo, Ghawanim, and
Dandara Formations are Pleistocene-aged cross-bedded fluvial sediments that get smaller
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with depth. It is constituted of cross-bedded sand with gravel intercalation, gradually
going down to medium and fine to very fine sands [29].

The groundwater in the study area comes from the Quaternary and Plio–Pliestocene
aquifer, which is composed of successive layers of fluvial sands and gravels with clay lenses.
The Quaternary aquifer is semi-confined in the Nile Valley due to the silt–clay top layer
over all of the aquifer, whereas it is phreatic in the western fringes of the Sohag district. This
aquifer is mostly sand, with clay lenses intercalated at different depths. Plio–Pleistocene
sediments dominate the foot slopes of the limestone plateau along the desert fringes. The
aquifer’s surface is composed of coarse sand, clay, and limestone, while the subsurface
is dominated by silty sand beds. The Pliocene clay, which represents the aquifer’s base,
generally supports the Quaternary aquifer. The aquifer thickness ranges from 20 m west of
the plateau to 80 m in the west of the Nile Valley area [29]. The only source of recharge for
the Quaternary aquifer is surface water, specifically irrigation canals [2,4].

3. Materials and Methods
3.1. Analysis of Collected Samples

Between 2013 and 2021, the groundwater quality in the Sohag Governorate, Egypt,
was examined. A total of 117 groundwater samples were collected from seven different
well pump stations. Polyethylene vessels that were acid-cleaned and primed were used
for sampling. The distances between the wells were 50 m apart. At each location, the
seven wells’ GPS coordinates were recorded; see Figure 1. The gathered water samples
were evaluated for pH, Turbidity, Total Hardness (TH), Magnesium, Chloride, Iron, Total
Dissolved Solids (TDSs), Nitrates, Sulfate, and Total Coliform by using these common
strategies, which are presented by the “American Public Health Association” [30–33]. The
results were assessed using drinking water quality standards set forth by Egyptian Health
Ministry Law (EHML) no. 458 for 2007 and the World Health Organization (WHO).

3.2. Water Quality Index (WQI) Calculation

In 1965, the WQI was created using weighted arithmetic calculations [34]. Based on
weighing and grading numerous parameters for water quality that are produced using the
weighted arithmetic method, several researchers developed several WQI models. The WQI
is a number without dimensions, with scores ranging from 0 to 300 [35]. Based on several
water quality metrics, the WQI is a distinctive expression that indicates the overall quality
condition of the water, such as excellent, good, or bad, at a certain location and time. Three
steps of WQI were estimated by weighing the index of arithmetic methodologies [35]. To
assess the drinking water quality, wi (weight) of 10 selected water quality parameters was
assigned [36–39], as indicated in Table 1. Because of their large contributions to WQI, the
parameters Turbidity and Nitrate each received a maximum weight of five. The minimal
weight for total hardness was two because it cannot be damaging to human health. The
formula below was utilized to calculate RWi (relative weight):

RWi =
wi

∑n
i=1 wi

(1)

where the number of water quality parameters shown is n, Wi defines the weight of each
selected water quality parameter, and the relative weight is represented by RWi. The
computed RWi (relative weight) values for each water quality indicator are shown in
Table 1.
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Table 1. Assigned weight and RWi calculated for selected parameters considering EHML and WHO [36–39].

Parameters EHML 2007 WHO 2017 wi RWi

pH 6.5–8.5 7–8 3 0.078947

Total Hardness mg/L as CaCO3 500 200 2 0.052632

TDS mg/L 1000 600–1000 4 0.105263
Turbidity (NTU) 1 - 5 0.131579
Sulfate mg/L 250 250 4 0.105263
Nitrates mg/L 45 50 5 0.131579
Magnesium mg/L 0.4 0.4 4 0.105263
Chlorides mg/L 250 250 3 0.078947
Iron mg/L 0.3 0.3 4 0.105263
Total Coliform MPN/100 ml 0 0 4 0.105263

Then, using the Egyptian drinking water standards from 2007 (EHML), the quality
rating scale (qi) was determined for each water quality indicator separately, where the
measured value was divided in the relevant water sample by the associated standard. The
outcome was then multiplied by one hundred using the formula below:

qi =
Ci
Si
× 100 (2)

where qi stands for quality rating, Ci is the individual parameter concentration in mg/I for
each sample of water, and Si is the Egyptian drinking water standard for the individual
parameter concentration in mg/I as per the EHML no. 458 for 2007 (EHML).

After that, for calculating the WQI of each study parameter, SI was estimated by
multiplying quality rating (qi) by relative weight (wi). In the end, the WQI was equal to the
total sum of the sub-index (SIi), as shown in the following equations:

SI = Wi × qi (3)

WQI = ∑ SIi (4)

Five classifications of water were created based on the WQI values: unsuitable for
drinking, very poor, poor, good, and excellent [38].

3.3. Deep Learning Time Series Techniques

The data were separated into three groups before running the recommended networks:
training, validation, and verification test (40%, 20%, and 40% of the dataset, respectively). A
DLTSF was suggested for simulating the groundwater quality parameters using an LSTM-
based design. LSTM is used in a variety of Hochreiter and Schmidhuber applications [5].
The layers of the network are an input layer followed by three LSTM layers linked with three
fully connected (FC) layers and ending with a regression layer (see Figure 2). RNN is an
LSTM-based architecture whose evolution state is determined by the entries for the current
and previous time steps. The LSTMs learn from previous encounters by using strategies
that correlate to the computer’s memory stored data. A network cell has the ability to
read, write, and store data. Furthermore, this design aids in limiting the propagation of
faults over several layers over time. Because of this technology, the network may extend
its learning process over a variety of periods [11]. Figure 3 depicts the gate’s ignoring,
updating, and yielding of the cell and hidden states. The cell state equation is as follows:

ct = ft � ct+1 + it � gt (5)
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where � denotes the element-wise multiplication of vectors. i denotes the input gate. f
denotes the forget gate. g denotes the cell candidate. o denotes the output gate. The hidden
state at time step t is given as follows:

ht = ot � σc(ct), (6)

where σc denotes the state activation function.
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4. Results and Discussion

The water quality index determination is important to evaluate water quality for
drinking and irrigation uses. The majority of unabsorbed fertilizers, pesticides, and other
toxins in sewer systems, landfills, hazardous waste disposal sites, and agricultural areas
are the principal contributors to groundwater pollution.

4.1. Statistical Analysis and Water Quality Index

The outcomes of a statistical evaluation of the physical, chemical, and biological
characteristics of groundwater samples from the Sohag region, including the parameters of
the standard deviation, mean, minimum, and maximum, are shown in Table 2. The physical,
chemical, and biological aspects of the groundwater analysis result have been evaluated in
comparison to WHO recommendations and Egyptian drinking water regulations.

Table 2. Statistical analysis of water quality parameters.

Parameter Min. Max. Mean Median Std. Err. Mode Std.
Dev. (EHML) WHO

pH 7.2 7.8 7.97 7.3 0.6 7.3 0.187 6.5–8.5 7–8
Turbidity (NTU) 0.16 1.3 0.66 0.69 0.02 0.8 0.18 1 -
Total Hardness 210 420.1 357.5 357 3.94 330 42.02 500 200

TDS 400 774 653.95 661 8.91 705 95.93 1000 1000
Iron 0.06 0.46 0.32 0.33 0.01 0.33 0.07 0.3 0.3

Magnesium 0.05 0.86 0.6 0.6 0.01 0.75 0.14 0.4 0.4
Nitrates 0 1.82 0.52 0.48 0.04 0 0.44 45 50
Sulfate 7.49 105.26 74.79 75.9 1.21 75.2 12.75 250 250

Chlorides 33.9 156 63.6 62.5 1.62 56.4 17.44 250 250
Total Coliform

(MPN/100 mL) 0 3 0.07 0 0.04 0 0.4 0 0

Interconnected chemical processes that either consume hydrogen ions or release them
regulate pH in water [40]. Although pH value normally has no direct impact on human
health, it is one of the most crucial limitations on the quality of water [38]. The pH
determines the acidity and alkalinity of freshwater. The amount and chemical makeup are
primarily monitored for both organic and inorganic compounds in groundwater [41]. In
this research, all pH samples were between 7.20 and 7.80, within the permissible limits
of EHML.

Turbidity, which prevents light from passing through water, is brought on by sus-
pended particles, such as plankton, organic and inorganic substances, clay, silt, colloidal
matter, or other tiny organisms [42]. Turbidity can only be measured below 4 NTU with
measuring devices; however, over 4 NTU, a murky suspension, which is white, brown,
or black, may be visible. Another important aesthetic aspect of water quality is turbidity,
which affects the appearance and appropriateness of drinking water for end users [43,44].
The turbidity of studied groundwater samples ranged between 0.16 and 1.3 NTU. The
allowed limit of turbidity is 1 NTU, as stated in EHML [36]. The turbidity of most collected
samples was within a permissible limit, and all samples had a turbidity of less than 1.3,
which is considered acceptable. Since turbidity exceeding 5 NTU is undesirable, it should
be avoided. To maintain ideal drinking water quality, turbidity levels should be kept
between 1 and 5 NTU [45].

Total hardness (TH) is how much magnesium and calcium have been dissolved in the
water. As water flows through rock and soil, it disintegrates naturally existing minerals
and transports them into groundwater. Water is a powerful solvent for magnesium and
calcium. Total hardness ranged between 210 and 420.10 mg/L, which falls within the
acceptable Egyptian range (1000 mg/L). Human kidney stones and heart problems have
been connected to the high amounts of TH in groundwater [46].
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Total dissolved solids (TDSs), which is calculated by weighing the residue after an
evaporating water sample reaches a dry state, was then expressed. Sulfate, chloride,
magnesium, sodium, potassium, carbonate, and bicarbonate were the main components. It
varied from 400 to 774 mg/L (<1000 mg/L TDS as acceptable drinking water per EHML).

Iron poisoning of groundwater is frequently caused by weathering of iron-bearing
rocks and minerals [47]. The iron is present in the aquifer in normal conditions of decreased
Fe2+; however, its dissolution raises the quantity of iron present in groundwater. Since iron
is soluble in this condition, there is typically little health risk. When the Fe state interacts
with oxygen from the air or when iron-related bacteria produce insoluble hydroxides in
groundwater, the Fe state is changed to the Fe’t state. Iron concentrations in groundwater
are frequently higher than those in surface water as a result. The iron concentration in
this study ranged from 0.06 to 0.46 mg/L, indicating that several samples exceeded the
allowed limit of 0.3 mg/L. This could return to the nature of the minerals and rocks of the
underground layers [48,49].

In groundwater, magnesium (Mn) naturally occurs, especially in anaerobic conditions.
The chemistry of the rainfall, the lithology of the aquifer, the geochemical environment,
the flow pathways and residence times of the groundwater, etc. all affect the concentra-
tions of Mn in the groundwater, and these factors can change dramatically over time and
place. It may be released through the leaching of underlying rocks, soils, and minerals
in addition to being leached from the minerals of the aquifer itself in groundwater. In
this research, the minimum value of magnesium was 0.05 mg/L, within the Egyptian
permissible limit (0.40 mg/L). However, the highest magnesium level was 0.86, which is
higher than the Egyptian allowable limit. This level needs groundwater purification to
reduce the magnesium level to within the acceptable drinking water quality range.

Nitrate is a crucial nutrient for plants and is typically present in the terrestrial en-
vironment. Numerous agricultural and related activities, particularly the excessive use
of manures, inorganic nitrogenous fertilizers, and wastewater dumping by uncontrolled
industries, can result in high nitrate concentrations in groundwater as well as surface
water [50]. Nitrates are significantly added to the water as a result of nitrogenous waste
degradation found in human or animal excrement, for instance, the septic tank. Nitrate
concentrations in surface water can rise quickly as a result of surface washing, phytoplank-
ton absorption, and bacterial nitrate denitrification, although nitrate concentrations in
groundwater normally vary slowly. Additionally, nitrate pollution of groundwater due to
leaching from organic vegetation is possible [51]. Nearly all instances of excessive nitrate
buildup in shallow groundwater were brought on by surface water’s downward leaching
of nitrogen [52]. In the Sohag area, for this research, the concentration of nitrate samples
was between 0 and 1.82 mg/L, which is way less than the acceptable value of the Egyptian
drinking water standard (45 mg/L). This confirms the safety of the groundwater from any
nitrate contamination in the studied area.

Sulfate is a naturally occurring compound found in several minerals and is utilized
commercially, primarily in the chemical industries. Gypsum, iron sulfides, and other sulfur-
bearing compounds are found in rocks, where they are dissolved and leached to sulfate.
In the current study, it was significantly below the EHML permissible level of 250 mg/L,
ranging from 7.49 to 105.26 mg/L.

Chloride (Cl) varied in the current study from 33.90 to 156.00 mg/L, which is less than
the permitted limit (250 mg/L). Groundwater could be dangerous to human health because
of the increased concentration of chlorine in it [53]. Chlorine in groundwater is primarily
derived from windborne rainwater, saltwater, saline brines, and evaporite deposits. Fur-
thermore, the chlorine concentration in groundwater can be linked to wastewater pollution.
As a result, the existence of chlorine is regarded as a sign of contamination. Furthermore,
excessive chlorine concentrations in water may hasten the corrosion of metal parts in the
water distribution system. A large concentration of chlorine in water poses a health risk.
Epidemiological studies have found a link between water chlorination and different types
of human cancer [53].
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Total coliforms were utilized to measure bacterial contamination from feces. The total
coliform rule for the surface water treatment regulation [54] requires community water
systems to do total coliform monitoring. Testing for E. coli or fecal coliforms is required for
all samples that test positive for total coliforms, since there are maximum contamination
levels (MCLs) for total coliforms. No more than 5% of monthly samples in water systems
with at least 40 analyses per month may test positive for total coliforms. One sample at
most may test positive for all coliforms in systems that analyze less than 40 samples per
month [55]. These requirements serve as a benchmark for the public-health acceptability
of drinkable water. In this research, none of the samples were positive for total coliforms,
which indicates no sewage leakage contamination within groundwater in the study area.

All units other than pH are in mg/L if not included in the table. Min (Minimum), Max
(Maximum). EHML no. 458 for 2007 and WHO [36–39].

One of the greatest tools for displaying information on the quality of groundwater or
any water body is the WQI [56]. To determine if groundwater in the Sohag area is suitable
for domestic human purposes, the WQI value was calculated. The present research showed
that 27.4% of groundwater samples were of excellent quality, and 72.6% of samples had
good water quality; see Table 3.

Table 3. Sohag groundwater quality classification based on WQI value [57].

WQI Partitions Quality of Groundwater Percentage of Sohag Groundwater Samples (%)

<50 Excellent 27.4
50–100 Good 72.6
100–200 Poor 0
200–300 Very poor 0

>300 Unsuitable for drinking water 0

The matrix of correlations for the ten major parameters of groundwater quality, in-
cluding pH, Turbidity, Total Hardness, Magnesium, Nitrates, TDS, Iron, Chloride, Sulfate,
and Total Coliform, was calculated and generated through MS Excel. Out of these, some
parameters, such as TDS, Total Hardness, and Sulfate, were strongly correlated, displaying
a correlation value of over 0.50 (Table 4). Further, TDS vs. Total Hardness, Sulfate vs. TDS,
and Total Hardness as CaCO3 demonstrate that the most pertinent correlation, more so than
any other important indicators, has a considerable influence on the overall evaluation of
groundwater quality. The vast majority of quality indicators, however, have a low positive
correlation with one another. A thorough examination of the correlation matrix for the
heavy metal parameters under study reveals that Iron is positively correlated with pH,
Turbidity, Total Hardness, and TDS. Similarly, Magnesium has a positive relationship with
pH, Total Hardness, TDS, and Iron. In addition, chemical parameters including Nitrates,
Sulfate, and Chloride are correlated positively with pH, Turbidity, Total Hardness, TDS,
and Iron. Meanwhile, Total Coliform has a negative correlation coefficient with most
studied parameters, including pH, Total Hardness, Turbidity, TDS, Iron, Nitrates, Sulfate,
and Chloride.

Principal factor analysis was used to identify the key factors that influence the water
quality at the seven pumping wells at the Sohag water station. Factor analysis is a multivari-
ate statistical technique for reducing the number of variables to examine and determining
their relationships. Using factor analysis, we can explain the correlation coefficient between
variables and factors [13,28]. The water quality factors were considered in this study in
seven different factors, as shown in Figure 4. According to Table 5, all ten parameters are
present in the four factors with the highest variability.
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Table 4. Correlation coefficients of ten hydrogeochemical parameters for Sohag groundwater water
quality characteristics.

pH Turbidity TH TDS Iron Magnesium Nitrates Sulfate Chlorides Total
Coliform

pH 1.000
Turbidity 0.031 1.000

TH −0.035 0.155 1.000
TDS 0.104 0.270 0.668 1.000
Iron 0.123 0.351 0.206 0.376 1.000

Magnesium 0.050 −0.085 0.018 0.026 0.129 1.000
Nitrates 0.027 0.264 0.260 0.420 0.196 −0.383 1.000
Sulfate 0.120 0.189 0.599 0.899 0.358 −0.028 0.370 1.000

Chlorides 0.125 0.171 0.261 0.445 0.264 −0.442 0.404 0.480 1.000
Total

Coliform −0.095 −0.098 −0.111 −0.168 −0.073 0.066 −0.169 −0.115 −0.156 1.000

The presence of bold values indicates that the variables are highly correlated.

Sustainability 2023, 15, x FOR PEER REVIEW 10 of 17 
 

and Total Hardness as CaCO3 demonstrate that the most pertinent correlation, more so 
than any other important indicators, has a considerable influence on the overall evaluation 
of groundwater quality. The vast majority of quality indicators, however, have a low posi-
tive correlation with one another. A thorough examination of the correlation matrix for the 
heavy metal parameters under study reveals that Iron is positively correlated with pH, 
Turbidity, Total Hardness, and TDS. Similarly, Magnesium has a positive relationship with 
pH, Total Hardness, TDS, and Iron. In addition, chemical parameters including Nitrates, 
Sulfate, and Chloride are correlated positively with pH, Turbidity, Total Hardness, TDS, 
and Iron. Meanwhile, Total Coliform has a negative correlation coefficient with most 
studied parameters, including pH, Total Hardness, Turbidity, TDS, Iron, Nitrates, Sulfate, 
and Chloride. 

Table 4. Correlation coefficients of ten hydrogeochemical parameters for Sohag groundwater water 
quality characteristics. 

 pH Turbidity TH TDS Iron Magnesium Nitrates Sulfate Chlorides Total  
Coliform 

pH 1.000          

Turbidity 0.031 1.000         

TH −0.035 0.155 1.000        

TDS 0.104 0.270 0.668 1.000       

Iron 0.123 0.351 0.206 0.376 1.000      

Magnesium 0.050 −0.085 0.018 0.026 0.129 1.000     

Nitrates 0.027 0.264 0.260 0.420 0.196 −0.383 1.000    

Sulfate 0.120 0.189 0.599 0.899 0.358 −0.028 0.370 1.000   

Chlorides 0.125 0.171 0.261 0.445 0.264 −0.442 0.404 0.480 1.000  

Total 
Coliform −0.095 −0.098 −0.111 −0.168 −0.073 0.066 −0.169 −0.115 −0.156 1.000 

The presence of bold values indicates that the variables are highly correlated. 

Principal factor analysis was used to identify the key factors that influence the water 
quality at the seven pumping wells at the Sohag water station. Factor analysis is a mul-
tivariate statistical technique for reducing the number of variables to examine and de-
termining their relationships. Using factor analysis, we can explain the correlation co-
efficient between variables and factors [13,28]. The water quality factors were considered 
in this study in seven different factors, as shown in Figure 4. According to Table 5, all ten 
parameters are present in the four factors with the highest variability. 

 
Figure 4. Scree plot with the eigenvalues and cumulative variability (%) of seven factors that affect 
water quality. 

Figure 4. Scree plot with the eigenvalues and cumulative variability (%) of seven factors that affect
water quality.

Table 5. Factor analysis of the seven water quality variables at the seven pumping wells in the study area.

Parameter F1 F2 F3 F4

pH 0.008 0.581 −0.811 0.071
Turbidity 0.372 −0.224 −0.017 −0.398

Total Hardness 0.570 0.178 0.484 0.144
TDS 0.935 0.247 0.072 0.139
Iron 0.486 0.090 −0.110 −0.620

Magnesium −0.116 0.653 0.327 −0.218
Nitrates as

(NO3)2
0.520 −0.403 −0.258 0.108

Sulfate 0.881 0.235 0.016 0.184
Chlorides 0.589 −0.368 −0.156 −0.020

Total Coliform −0.183 0.017 0.148 −0.025

Eigenvalue 3.016 1.272 1.141 0.682
Variability (%) 30.158 12.723 11.409 6.817
Cumulative % 30.158 42.881 54.291 61.108

Bold values denote variables with high correlation.

Total Hardness, TDS, Nitrates, Sulfate, Chlorides, and Total Coliform, with loading
values of 0.570, 0.935, 0.520, 0.881, 0.589, and −0.183, respectively, explain approximately
30.16% of the total variance. As a result of agricultural practices such as the extensive
use of fertilizers and the application of lime, these ions are becoming more abundant.
Factor 2 accounts for approximately 12.723% of total variance and contains only pH with a
loading value of 0.653. Factor 3 accounts for approximately 11.41% of the total variance
and contains only Magnesium with a loading value of −0.811. Finally, Factor 4 accounts
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for approximately 6.82 % of the total variance and includes Turbidity and Iron, which have
loading values of −0.398 and −0.620, respectively. According to the result in Table 5, the
ions in solution mainly deal with carbonates (Total Hardness), Sulfate, and Chlorides.

4.2. Forecasting Model Results

The major purpose of this part is to understand the DLTSF efficiency for projecting
the future condition of groundwater quality. Data from 117 samples collected from seven
wells in Egypt’s Sohag area were used. The data were split into two parts: 70 samples were
for training and validation, while the remaining 47 samples were for testing. The DLTSF
training for Turbidity, Magnesium, Iron, Nitrates, Sulfate, Chloride, TDS, Total Hardness,
and WQI demonstrated that the proposed model fits and uses the training and validation
data successfully (see Figure 5).
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Figure 6 depicts the observed and DLTSF-predicted findings for Turbidity, Magnesium,
Iron, Nitrates, Sulfate, Chloride, TDS, Total Hardness, and water quality indexing (WQI).
According to the statistics, the forecasting of Turbidity, Magnesium, Iron, Nitrates, Sulfate,
Chloride, TDS, Total Hardness, and WQI in groundwater quality exhibits sufficient com-
petence and accuracy. Notably, the DLTSF-predicted output data matched the measured
dataset from the seven wells in the Sohag district of Egypt for all the groundwater quality
parameters. The model’s capacity to estimate future groundwater quality parameters is
proven. The RMSE evaluates the DLTSF model for each parameter, as shown in Table 5.
The average MSE value for all groundwater quality parameters (Turbidity, Magnesium,
Iron, Nitrates, Sulfate, Chloride, TDS Total Hardness, and WQI) is 4.0114 × 10−4. Further-
more, the average MSE for all groundwater quality parameters (Turbidity, Magnesium,
Iron, Nitrates, Sulfate, Chloride, TDS, TH, and WQI) is 1.6091 × 10−7. Table 6 shows a
comparison of the presented model to previous similar studies in the literature. The table
clearly shows that the performance of the current proposed models performs better than
similar previous research studies (Table 6).
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Table 6. Comparison between the presented model and previous similar studies in the literature.

Ref. Parameters Models
Performance Indices

MSE RMSE

[18]
TDS, PS, SAR,

ESP, MAR, RSC,
and pH

Adaboost 8.41 2.9
RF 79.7449 8.93

ANN 204.2041 14.29
SVR 217.2676 14.74

[19] Fe, Cl, SO4, pH,
and TDSs

LR 0.30987 0.55666
TR 0.092821 0.30466

GPR 0.18049 0.42484
SVM 0.18201 0.42663
ER 0.053896 0.23215
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Table 6. Cont.

Ref. Parameters Models
Performance Indices

MSE RMSE

[20] SAR, %Na, RSC,
MH, PI, and KR

LSTM 191.0601 13.82245
MLR 1.370898 1.170854
ANN 0.1323 0.363731

[21]

TDS, pH, EC,
Na, K, Ca, Mg,

HCO3, NO3, Br,
SO4, and Cl

ANN 22.2887 4.7211

This study

pH, Sulfate,
Nitrates,

Magnesium,
Chlorides, Iron,
Total Coliform,

TDS, Total
Hardness, and
Turbidity, WQI

DLTS and LSTM 1.6091 × 10−7 4.0114 × 10−4

5. Conclusions

The evaluation of groundwater quality is important for agricultural, drinking, and
development activities. Groundwater quality is critical in Egypt’s Sohag region since it
serves as a key alternative source of residential supplies in addition to supplying drinking
water, and inhabitants regularly complain about the water’s fitness for human use. In
the Sohag area, Egypt, the groundwater quality and whether it is fit for human water
consumption have been assessed.

Ten groundwater quality parameters (pH, Turbidity, Total Hardness, TDS, Iron, Mag-
nesium, Nitrates, Sulfate, Chlorides, and Total Coliform) from seven pumping wells in
Sohag, Egypt were used in the current study to assess water quality. Principal factor
analysis was used to identify the key factors that influence the water quality at the seven
pumping wells in the study area. The WQI was computed and analyzed. According to
the WQI results, approximately 27.4% of the water samples have excellent water qual-
ity, while 72.6% have good water for drinking. It is recommended that a suitable water
purification system could be used to enhance the water quality for drinking uses. The
groundwater quality parameters and the WQI were forecasted using Deep Learning Time
Series Techniques (DLTS) and LSTM. The proposed model predicts the WQI as well as
the top eight groundwater quality metrics. The model was trained and evaluated over
a nine-year period using real-world data from seven wells. Because of the high levels
of iron and magnesium in the groundwater samples, the WQI was high. The developed
forecasting model demonstrated good agreement between model and measurement results,
with an average RMSE of 4.0114 × 10−4. Finally, the current study has shown that Deep
Learning Time Series Techniques can be used to evaluate and forecast groundwater qual-
ity effectively. Furthermore, the findings can help managers and policymakers manage
groundwater resources more effectively.
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