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Abstract: This study aims to select fungi isolates to reduce olive mill wastewater (OMWW) chemical
oxygen demand (COD) and phenolic compounds (PC), as well as their genotoxicity effect. Treatment
with mold, isolated by an innovative technique using phenolic compound-selective media, showed a
reduction rate of about 4% for COD and 2% for PC during one month of incubation without optimization
of the treatment conditions. Whereas this percentage reached 98% and 96% for COD and PC, respectively,
after only 12 days of treatment, when the C:N ratio was adjusted to 30 by adding urea as a nitrogen
source at 150 rpm agitation speed. Genetic sequence homology of the most efficient mold isolate
showed 100% similarity to Penicillium chrysogenum. High-performance liquid chromatography analysis
of phenolic extracts of untreated OMWW showed the presence of five compounds—hydroxytyrosol at
1.22 g.L−1, tyrosol at 0.05 g.L−1, caffeic acid at 0.16 g.L−1, p-coumaric acid at 0.05 g.L−1 and oleuropein
at 0.04 g.L−1—that were eliminated during the degradation process at 88.82%. Genotoxicity, assessed
by the Vicia-faba root cell, showed a significant decrease in micronucleus frequency of about 96% after
fungal treatment. These results confirm the positive role of fungal treatment of OMWW to eliminate
genotoxicity and their ability to improve the agronomic potential.

Keywords: olive mill wastewater; biological treatment; Penicillium chrysogenum; phenolic compounds;
genotoxicity test; Vicia faba

1. Introduction

Olive oil extraction from olive fruits is a growing industry in many Mediterranean
countries, and over 30 million tons by-products are generated annually from olive mill
wastewater, the liquid by-product generated during olive oil production process [1]. In
Morocco, a discharge of about 250,000 tons of olive mill wastewater containing high
contents of toxic organic chemical substances material, mainly the phenolic compounds,
are produced by olive oil production units [2]. The olive mill wastewaters are discharged
into the sewerage network and/or stored in evaporation ponds to reduce their volume
and/or are spread directly on the soil and result in adverse environmental impacts [3–5].
Their high pollution load is due to their high organic matter content such as sugars, tannins,
phenolic compounds, polyalcohols, pectins and lipids compounds [3].

Soils in arid and semi-arid regions are relatively poor in organic matter, and this
impoverishment is accelerated by the cultivation intensification, the light texture of the
soils and the non-recovery of crop residues in the soil [6,7]. The organic matter depletion of
these soils accentuates the degradation and the decrease of their fertility, thus favouring
the processes of erosion and desertification [8,9]. To preserve these soils and maintain their
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productivity, the contribution of organic amendments becomes essential [10]. However,
these amendments are not always available, and their quality often leaves something to
be desired. Among these amendments, OMWW are sources of organic matter, available
phosphorus (P) and potassium (K), and bioactive molecules for plant growth and confer
protection against pathogen attacks [11–14]. OMWW can constitute a possible amendment
for soils in arid regions poor in this element. Furthermore, untreated olive mill wastewater
spread in soils increases the soil electrical conductivity, impairs salinity and balances the
equilibrium of useful soil microorganisms [12,13,15]. However, less costly detoxification
and treatment of OMWW is needed to enable farmers to take full advantage of their use
on agricultural land, which leads to the development of a circular economy, which should
lead to the future development of more sustainable agriculture [16].

Treatment techniques have been developed at the international and/or national level,
including physicochemical technologies, oxidation processes and biological treatment [17].
Nevertheless, the viability of these technologies is questionable as they are costly (i.e., large
quantities of chemicals are required), generate large volumes of sludge and/or do not
produce high-quality effluents [18]. Therefore, a search for alternative treatment methods,
such as a biological method that integrate the use of microorganisms, is emerging as new
technology becomes affordable and rapidly adoptable by small producers [19].

Previous studies have demonstrated the benefits of fungi to degrade phenolic com-
pounds from the olive mill wastewater [20–22]. These fungi produce highly oxidative
enzymes, such as ligninase and laccase, to degrade recalcitrant organic molecules, in partic-
ular the phenolic bound molecules [23]. Eventually, various toxic molecules present in olive
mill wastewater may not completely be degraded by the microorganisms, but transform
into secondary end products or metabolic intermediates and become highly toxic compared
to the initial compounds [24,25]. Hence, the treatment efficiency of olive mill wastewater
products must also focus on the reduction of toxic effects [26]. This has led to conducting
genotoxicity bioassays to assess the potential hazard and risk of olive mill wastewater
products prior to use as agricultural inputs products [26,27]. The genotoxicity approach
consisting of elimination the toxic effect using a biological agents could be more useful
and cost-effective for estimating the risks of several organic and inorganic compounds
in addition to physicochemical analyses [25,28,29]. Evidence from biotesting with plant
roots has provided reliable, cost effective and valuable alternative methods for determin-
ing the negative effects of environmental contaminants compared to other biological test
systems [25,30,31].

The objectives of the present study were (a) to screen and investigate of the ability of
several strains of fungi to decrease COD and phenolic compounds from OMWW under
controlled laboratory conditions, (b) to optimize the treatment conditions using Penicillium
chrysogenum cultures and (c) to investigate the effect of bioremediation on the genotoxicity
removal of olive mill wastewater.

2. Materials and Methods
2.1. Characterization of OMWW

OMWW used in this work was obtained from an olive oil production plant located in
Chichaoua, Marrakech, which uses a 3 phases process for the extraction of olive oil. The
samples were stored at −20 ◦C until required for analysis.

OMWW samples were analyzed for the following parameters: pH was measured by a
pH-meter (HANNA instruments, HI 2210-02, Portugal). Electrical conductivity (EC) was
measured by a conductometer (HANNA instruments, HI 9033, Portugal). Total suspended
solids (TSS) were determined after filtering a sample through a filter (Whatman membrane
filters nylon pore, size 0.45 µm, diameter 47 mm) and drying the retained residue at 105 ◦C
until constant weight. Total solids (TS) were determined by oven-drying of 10 mL of the
sample at 105 ◦C for 24 h, according to the APHA standard method. Total ash content was
determined by the incineration of TS at 600 ◦C for 6 h. Total Kjeldahl nitrogen (TKN) was
determined after mineralization and distillation. During the TKN analysis, 5 mL of OMWW
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were mixed with a Kjeldahl catalyst tablet (0.5 g) and 10 mL of H2SO4 (96%). Digestion
was carried out at 400 ◦C during 2 h. After cooling, 100 mL of distilled water and 50 mL of
NaOH solution (40 g/L) were added before distillation according to the AOAC analytical
methods [32]. Chemical oxygen demand (COD) was determined by the Standard Methods
for the Examination of Water and Wastewater [33]. The appropriate amount of wastewater
samples was diluted up to 1000 times, and two milliliters of diluted OMWW was introduced
into a lab-prepared digestion solution containing sulfuric acid, potassium dichromate and
mercuric sulphate. The mixture was then incubated for 120 min at 150 ◦C in a COD reactor,
and the COD concentration was measured calorimetrically at 600 nm. Total organic carbon
(TOC) was determined after oxidation using dichromate of potassium according to the
Anne’s method as described by Aubert [34]. The total lipid concentration was determined
using the method of Folch et al. [35]. This involved the OMWW being macerated with
60 mL of a 2/1 v/v chloroform/methanol mixture for 24 h at 4 ◦C. The supernatant was
then recovered and filtered through a Durieux filter. This was repeated twice more to
ensure maximum recovery of the lipid. The pooled supernatants were then shaken with
60 mL of 1% NaCl to separate the methanol from the chloroform phase containing the lipid.
The chloroform phase was then dried over anhydrous sodium sulphate (Na2SO4), and the
total lipid content was determined after evaporation of the chloroform phase at 40 ◦C. The
amount of total sugars was determined spectrophotometrically according to the method
described by Dubois et al. [36]. Three replicates were used, and the mean values of the
parameters recorded. The main features of OMWW are presented in Table 1 [37].

Table 1. Physicochemical characteristics of raw olive mill wastewater.

Parameters Unit OMWW

pH 4.80 ± 0.04

EC (mS/cm) 13.9 ± 0.1

TSS (g.L−1) 10.0 ± 0.3

TS (g.L−1) 122.90 ± 2.62

AshC (g.L−1) 40.7 ± 1.0

COD (g.L−1) 187.6 ± 19.1

BOD (g.L−1) 60.1 ± 1.42

TOC (g.L−1) 73.26 ± 1.80

TKN (g.L−1) 0.160 ± 0.001

Proteins (g.L−1) 1.00 ± 0.02

Lipids (g.L−1) 4.51 ± 0.40

Sugars (g.L−1) 21.45 ± 0.40

PC (g.L−1) 4.3 ± 0.1
Values are the average of three measurements ± standard error. EC: electrical conductivity; TSS: total suspended
solids; TS: total solids; AshC: ash contents; COD: Chemical oxygen demand; BOD: biological oxygen demand,
TOC: total organic carbon; TKN: total Kjeldahl nitrogen; PC: phenolic compounds; OMWW: olive mill wastewater.

2.2. Extraction and Quantification of Phenolic Compounds

The extraction technique of phenolic compounds was described by Macheix et al. [38].
To 5 mL of OMWW previously filtered on filter paper (Watman N◦1), we added a 40% (v/v)
ammonium sulfate (ACS reagent, ≥99.0%, Sigma-Aldrich, St. Louis, MO, USA) solution
to increase the medium’s ionic strength and a 20% (1/10 v/v) metaphosphoric acid (ACS
reagent, ≥33.5%, Sigma-Aldrich) solution to prevent the oxidation of phenolic compounds.
Afterward, we proceeded with delipidation and depigmentation by petroleum ether (ACS
reagent, ≥ 90%, Sigma-Aldrich) (1/2 v/v) 3 times. The extraction was continued with ethyl
acetate (ACS reagent, ≥99.5% Sigma-Aldrich) (v/v) 3 times, the extract was evaporated
to dryness at 35 ◦C and the residue was recovered in 5 mL of methanol (ACS reagent,
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≥99.8%, Sigma-Aldrich). The determination of total phenolic compounds was performed
by the Folin-Cioccalteu reagent [39]. Then, 50 µL of the phenolic extract was placed in a
test tube, to which we added 1.35 mL of distilled water and 200 µL of Folin-Cioccalteu
reagent. After 3 min, 400 µL of a 20 % sodium carbonate (Sigma-Aldrich) solution was
added, and the tubes were shaken and incubated at 40 ◦C for 30 min. The absorbance of
the blue solution was then measured with a spectrophotometer at 760 nm. The phenolic
compounds contents are expressed in g.L−1 by reference to a standard range based on
caffeic acid (Sigma-Aldrich) prepared at 60 mg/100 mL in 36% methanol (Sigma-Aldrich).

The analysis of extracted phenolic compounds was carried out by high-performance
liquid chromatography (HPLC). The system consisted of a Knauer-type device with a
Knauer diode array PDA detector for the detection of compounds at wavelengths and
software for data processing. The C18 reversed-phase column (Eurospher II 100–5 C18,
250 × 4.6 mm) and precolumn was used. The column temperature was set at 25 ◦C.
The mobile phase consisted of a gradient of acetonitrile and bi-distilled water acidified
to pH 2.6 with o-phosphoric acid and then filtered on Millipore (0.45 µm). The mobile
phase composition was acetonitrile/water 5:95 (v/v). The flow rate was 1 mL/min, and
the injection volume was 10 µL. The separation was performed on a gradient of 5% to
95% acetonitrile for 60 min. PC were simultaneously detected at a wavelength of 280 nm
and identified by comparison with controls for their retention time and UV spectrum.
Co-injections with commercial standards (hydroxytyrosol, tyrosol, catechol, caffeic acid,
acid p-coumaric, oleuropein, gallic acid and syringic acid) were carried out to confirm
the identity of the compounds. Calibration curves of the analyzed compounds were
constructed by injecting 10 µL of standard solutions at five different concentrations [19,37].

2.3. Fungal Isolates and Culture Conditions

The fungal isolates used in this study were selected after screening from several
extreme mediums which are known by their high load of pollutants, such as sludge from
OMWW evaporating ponds and soil irrigated with OMWW. The samples were collected
from an 8 to 10 cm depth using a sterile spatula and transferred to pre-autoclaved sterile
glass bottles with rubber stoppers. The samples were brought to the laboratory and stored
under refrigeration temperature. Then, 1 g of each sample was suspended in 9 mL sterilized
physiological water. The suspension was incubated at 28 ◦C, 150 rpm for 2 h, and a serial
dilution (1:10) was prepared in sterilized physiological water. From each dilution, 0.1 mL
was spread on potato dextrose agar (PDA) containing 50 µg/mL of chloramphenicol to
inhibit bacterial growth. The Petri dishes were incubated for 72 h at 28 ◦C. Fungal isolates
were isolated and purified based on their morphological characteristics, including texture,
color, shape, size and mycelial type.

To examine the ability of fungal isolates to grow in OMWW, the isolated fungi were
cultivated using an OMWW-based medium. In fact, to prepare this culture medium, the
OMWW was diluted to 25%, 50%, 75% and 100% v/v in distilled water. Next, 15 g.L−1

of agar-agar was added to each dilution before being sterilized at 120 ◦C for 30 min and
then dispensed into 90 mm diameter Petri dishes. After solidification of the culture media,
they were inoculated in the center with agar plugs (6 mm) of pure fungal cultures obtained
from the edges of the 7-day-old culture of fungal isolates grown on potato dextrose agar
(PDA), then incubated at 30 ◦C until growth (15 d). The ability of fungal isolates to grow
using only phenolic compounds as a sole source of carbon and energy was tested on a
minimal medium (composition: 2 g.L−1 sodium nitrate, 1 g.L−1 potassium phosphate and
0.5 g.L−1 magnesium sulphate) with different concentrations of phenolic compounds
(4000 mg.L−1, 2000 mg.L−1, 1000 mg.L−1 and 500 mg.L−1) extracts from the OMWW.

The Petri dishes were kept in an incubator at 30 ◦C for 15 days. The mycelium of fungi
exhibited a radial growth, so its growth rate could be estimated by measuring the radius of
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the mycelium throughout the growth period. The radial growth was calculated using the
formula growth (Gr) according to Dubey and Maheshwari [40]:

Gr =
(R1 − R0)

(t1 − t0)

where R0 and R1 are the colony radii at time t0 and t1, respectively.

2.4. OMWW Fungal Treatments

Fungal inocula (plugs of 6 mm diameter) were obtained from the peripheral part of
7-day-old mycelia growing on solidified OMWW medium (25% v/v OMWW supplemented
with 1.5% w/v agar) and were then transferred into 500 mL bioreactor containing 400 mL
of raw OMWW. The 500 mL bioreactors were made of autoclavable borosilicate glass. Each
bioreactor was equipped with a magnetic stirrer, which was activated sequentially and
designed to ensure sufficient mixing of the media (substrate/inoculum) by counteracting
the phenomena of decantation/flotation. Cultures were incubated at 30 ◦C in batch cultures,
and 3 agitation speeds were tested: 100, 150 and 200 rpm. For the investigation of the
effect of the nitrogen supplementation, a range of different nitrogen sources at a final
concentration of 3 g.L−1 were tested, i.e., urea, ammonium nitrate and ammonium sulphate.
The COD and phenolic compounds evolutions were followed during 12 days of treatment.
Non-inoculated controls were incubated in parallel under the same conditions.

2.5. Identification of the Fungal Isolate
2.5.1. Preliminary Identification

Preliminary identification of fungal isolate was performed based on their morphologi-
cal characteristics, including colony texture, colony color, shape, size, mycelial type and
radial growth rate on Czapek and PDA medium. The mold was seeded on Czapek-agar
medium and on PDA and incubated at 25 ◦C for one week. Microscopic examination of
fungal spores by the slide culture technique was performed using lactophenol cotton blue
for staining then compared with the identification key established in the “A Manual of Soil
Fungi” [41].

2.5.2. Molecular Identification of Fungal Isolate
DNA Extraction

The DNA extraction procedure was adopted with slight modifications from the method
of Aamir et al. [42]. Genomic DNA was extracted from 7–10-day-old fungal cultures grown
in liquid medium (potato dextrose broth). The fungal mass was removed from the culture
medium by filtration through four layers of sterile cheesecloth that allow the broth to pass
through and retain the fungal mass. The resulting fungal mycelium mass was placed in
1.5 mL Eppendorf tubes containing 60–80 mg of sterile glass beads and 800 µL of lysis
buffer (100 mM Tris HCl (pH 8.0), 50 mM EDTA, 3% SDS). The tubes were closed, mixed
well to resuspend the glass beads and incubated in a water bath at 65 ◦C for 10 min. The
resulting fungal tissue was centrifuged for 10 min at 13,000 rpm twice. The supernatant
was then thoroughly transferred to a new tube and placed on ice for about 30 s to al-
low the fungal tissue to settle to the bottom of the tube. Then, 2 mL of Rnase solution
(10 mg/mL) was added to the supernatant. This was incubated at 37 ◦C for 15 min. After
incubation and Rnase treatment, an equal volume (500 µL) of phenol:chloroform:Isoamyl al-
cohol (25:24:1) was added to the reaction mixture, mixed well and centrifuged at 13,000 rpm
for 10 min. The upper aqueous phase was carefully removed into a new tube, and then
an equal volume (800 µL) of 100% ethanol was added. The tubes were gently mixed and
incubated in a refrigerator for 2 h at −20 ◦C to allow the DNA to precipitate. The contents
were centrifuged at 12,000 rpm for 10 min to pellet the DNA. The supernatant was dis-
carded, and the DNA pellet was then washed twice with 800 µL of chilled 70% ethanol
and centrifuged at 12,000 rpm for 5 min. The supernatant was removed, and the pellet
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was air-dried at room temperature overnight until no ethanol was visible. The pellet was
dissolved in 50 µL of sterile 1× TE buffer and stored at −20 ◦C for future use.

PCR Amplification

Extracted fungal genomic DNA was subjected to PCR amplification identification of the
ITS1-5.8S-ITS2 region using the universal primers ITS1 (5′-TCCGTAGGTGA ACCTGCGG-3′)
and ITS4 (5′-TCCTCCGCTTATTGATATGC-3′) [43] according to the following protocol: The
PCR reaction for the amplification of ITS1-5.8S-ITS2 rDNA was performed in a total volume of
22 µL. A volume of 0.3 µL of fungal DNA sample was added to the PCR mixture prepared in
a microtube. PCR mixture contained 2.5 µL of MgCl2 (25 mM), 5 µL of 5X PCR buffers, 1 µL
of a deoxynucleoside triphosphate mixture (2.5 mM each of dNTPs), 0.625 µL of each primer
(20 µM), 0.5 µL of BSA (10 mg/mL) and 0.3 µL of Go Taq buffer (Promega, Madison, WI, USA),
and the total volume was supplemented with distilled water. Amplification was performed
in the programmed thermal cycler with the following thermal profile: initial denaturation
at 95 ◦C for 3 min, followed by 35 cycles, each cycle consisting of 5 min of denaturation at
95 ◦C, and 1 min of hybridization at 58 ◦C. Reactions were completed with an initial 10 min
elongation at 72 ◦C, 1 min elongation at 72 ◦C, followed by a final elongation at 72 ◦C for
10 min. The PCR product was subjected to electrophoresis on a 1% agarose gel for 15 min sat
100 v. The gel was then stained with ethidium bromide (ETB) solution, rinsed in sterilized
water and observed under UV light on a Gel Doc 1000/2000 system.

DNA Sequencing

Direct sequence determinations of PCR-amplified DNAs were performed with an ABI
PRISM dye terminator, cycle sequencing ready-reaction kit (Perkin-Elmer, Waltham, MA,
USA) and an ABI PRISM 377 sequencer (Perkin-Elmer, Waltham, MA, USA) according to
the manufacturer’s instructions, and the resultant nucleotide sequences were compared
to reference sequences available in the GenBank databases from the National Centre of
Biotechnology Information database using the BLAST search. Phylogenetic analyses were
performed using MEGA X after multiple alignments of the data by Clustal W. Distances
and clustering were determined using the neighbor-joining, maximum likelihood principle
and maximum parsimony algorithms. The stability of the clusters was ascertained by
performing a bootstrap analysis (1000 replications).

2.6. OMWW Toxicity Analysis
2.6.1. Vicia faba Micronucleus (MN) Test

OMWW innocuity to plant health has been evaluated. We used the Vicia faba micronu-
cleus test to reveal genotoxic and cytotoxic effects of untreated and treated OMWW. The MN
frequency assay was carried out according to El Hajjouji et al. [26,27], El Fels et al. [28] and
Zegzouti et al. [25]. The seeds of Vicia faba were prepared according to the normalized method
AFNOR standard (NF T90-327) [44]. V. faba seeds were soaked in demineralized water for
24 h, then removed from the seed coat, disinfected with calcium hypochlorite Ca(ClO)2 1%
for 10 min and germinated between two layers of moist absorbent cotton in a germination
incubator at 25 ± 1 ◦C to avoid the degradation of some photosensitive molecules.

After 72 h, the primary roots of V. faba seeds, having reached 3–5 cm in length, were
selected for the MN assay. Before transplanting the V. faba seedlings to soil conditions, the
primary root tip was cut off (2 mm) to stimulate the emergence of secondary roots.

The LUFA soil wetted with distilled water represents the negative control (NC), and
the maleic hydrazide (MH) at a concentration of 10−5 M was used as positive control.
Five different dilutions of untreated raw OMWW (1, 2.5, 5, 10 and 20% (v/v)) and eight
dilutions of treated OMWW (1, 2.5, 5, 10, 25, 50%, 75 and 100% (v/v)) were tested. For
each experiment, 3 seeds were used per dilution. The moisture content of each test was
maintained at 2/3 of the field capacity. After 72h of exposure, the secondary roots of the
three replicates were collected separately.
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2.6.2. Observation and Quantification of Micronuclei

The secondary root tips were harvested, rinsed with distilled water and fixed in Carnoy
solution (glacial acetic acid/ethanol 1:3, v/v) at 4 ◦C overnight, rinsed again with deionized
water for 10 min and then transferred to 70% ethanol before storage. Subsequently, the
root tips were hydrolyzed with 1N HCl for 7 min at 58 ◦C. After staining the root tips
with 1% aceto-orcein for 3 min, the roots were crushed to evenly distribute dividing cells.
Interphase cells, as described by Ma et al. [45], El Fels et al. [28] and Cotelle et al. [46],
were counted on a slide with a cover plate at 400× magnification. The MN frequencies
were expressed in per 1000 cells (‰), while the mitotic index (MI) was expressed in per
100 cells %. The micronucleus test was only carried out on root tips with MI more than 2%
to prevent underestimated micronucleus frequency due to altered cell proliferation rates.

2.7. Statistical Analyses

The statistical analysis was performed with repeated measures analysis of variance
(ANOVA) to evaluate the significant differences between treatments. In the first approach,
one-way ANOVA was conducted to test the significant difference in the radial growth
rate, COD, PC removal rate of P. chrysogenom and genotoxicity effect at 0.05 of significant
level (p < 0.05). Furthermore, the study also used Tukey’s Honest Significance Test to
evaluate whether there were any statistically significant differences from the means of the
parameters under consideration. Principal Component Analysis (PCA) was performed
using XLStat software V. 2021. To obtain an effective data analysis with PCA, only the
dependent variables that showed significant differences between the treatments were
selected for these analyses.

3. Results and Discussion
3.1. Screening and Selection of Fungi

Radial growth rates of all fungal isolates showed different peak growth rates depend-
ing on the dilution of the OMWW (Figure 1). Two-way analysis of variance (ANOVA)
showed significant difference in the radial growth rates of fungi and diluted OMWW.
Indeed, the radial growth rates were higher for fungal isolates for the OMWW diluted
to 25%, with values of 11.42, 10, 10.57, 8 and 8.57 mm.d−1 for isolates M1, M2, M3, M4
and M5, respectively (Figure 1). Conversely, the results were shown for OMWW diluted
to 50, 75, and 100% (raw OMWW). The effects of OMWW dilutions on fungal growth
rates have a significant impact on the selection of potential fungal isolates for the biolog-
ical treatment of OMWW. It can be seen that the M1 isolate was able to grow better on
all OMWW dilutions tested during day 15, with growth rates of 11.42, 10.71, 7.17 and
6.57 mm.d−1 for OMWW diluted to 25%, 50%, 75% and raw OMWW (100%), respectively.
These differences are related to the concentrations of phenolic compounds in the OMWW.
Indeed, dilution is considered a mechanism by which the concentration of toxic compounds
can be reduced [47]. The similar effect of dilution on the growth of fungal strains was
observed by [48]; according to these authors, the highest growth rate of Lentinula edodes
was recorded for OMWW diluted to 10% with a value of 10.72 mm.d−1, while this value
was 4.97 mm.d−1 for OMWW diluted to 20% for the same strain.

The Isolate M1 strain has the ability to grow best on the media with phenolic concen-
tration up to 4000 mg.L−1. The results suggest that M1 could be used for bioremediation of
OMWW. Fungi, due to their tolerance to high loads of phenolic compounds and acidic pH,
are designated as the most microorganisms used to treat OMWW [49,50].
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Figure 1. Radial growth of fungal isolates on different OMWW dilutions and raw OMWW. Data in
the same bar graph followed by the same letter(s) were not significantly different according to Tukey
HSD test (p ≤ 0.05). (M1–M5 = fungal isolates).

3.2. Identification of Fungal Isolate

The fungal isolate M1 showed different characteristics in terms of colony morphology
on both culture media (Czapek and PDA mediums) after incubation for 7 days. The colonies
of the isolate had a compact yellow suede-like surface with radical streaks and transparent
exudate on Czapek medium; a dense green felt-like surface with a prominent white margin
on PDA medium; and flat, loose colonies with mostly white cottony mycelia and a light green
spot on the medium. A similar description of the colony morphology of P. chrysogenum has
been reported by Bandh et al. [51] and Xia et al. [52]. Microscopic morphology was observed
and showed that isolate M1 had branched conidiophores and branched metules, giving brush-
like clusters, which is the typical characteristic of Penicillium species and well-developed
hyphae, as well as a large amount of spherical dispersing spores.

Genetic sequence homology of fungal isolate M1 showed 100% similarity with
P. chrysogenum (Figure 2). Based on morphological and molecular identification, the strain
was identified as Penicillum chrysogenum.
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3.3. Bioremediation of OMWW by Penicillium Chrysogenum
3.3.1. Chemical Oxygen Demand Removal

The effect of agitation and nitrogen sources on the biodegradation of OMWW was
investigated for raw OMWW by P. chrysogenum (Figure 3). Without agitation, the initial
COD (187.6 g.L−1) was removed by only ~4%. However, with agitation, the COD reduction
increased significantly, reaching 48% and 76% at 100 rpm and 150 rpm, respectively. Never-
theless, COD abatement was decreased when increasing the agitation to 200 rpm, where
the maximum reduction observed was 46%. The percentage of COD removed was signifi-
cantly different depending on the agitation speeds. This can be attributed to more effective
aeration of the medium to supply more dissolved oxygen for P. chrysogenum cultivation at
agitation rates (150 rpm), but excessive agitation (200 rpm) could lead to mycelium shearing
and, consequently, the biomass yield would decrease [53]. The most promising results of
COD removal were reported by García García et al. [54] when cultivating P. chrysosporium
aerobically and with agitation. Aissam et al. [55] evaluated several fungi to reduce OMWW
COD, and the fungal strains reduced about 42 and 77% in the diluted OMWW at 25%,
and 25–65% removal was observed for the media containing 50% of OMWW and 10–20%
for OMWW diluted to 75%. In the study of Salgado et al. [56] in undiluted OMWW, the
percentage of COD reduction was 1.4%, 7% and 10.9% using A. uvarum, A. niger and A.
ibericus, respectively.
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Figure 3. Effect of different agitation speeds and nitrogen source on the undiluted olive mill wastew-
ater COD removal by P. chrysogenum. Data in the same bar graph followed by the same letter(s)
were not significantly different according to Tukey HSD test (p ≤ 0.05). (AN: ammonium nitrate; AS:
ammonium sulphate).

When urea was added as a nitrogen source at a concentration of 3 g.L−1 to adjust
the C/N ratio to 30, the COD removal rate at 150 rpm (76%) was significantly increased
to 98% in only 12 days of incubation, with a significant difference (p < 0.05) compared
to other treatment conditions. The addition of a nutrient supplement is performed to
prevent a lack of essential nutrients such as nitrogen, which should be in agreement with
high C/N ratios for an efficient microbial growth [57,58]. One strain of A. flavus was
able to achieve 46% removal of the organic load of OMWW without dilution, while it
significantly improved its degradation capabilities when the OMWW was diluted to 10%
and supplemented with adequate levels of N and P and was able to remove 93% of the
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initial COD values. [59]. Aissam et al. [55] confirmed the importance of adding nutrients to
correct OMWW deficiencies; in fact, when raw supplemented OMWW were treated with
Candida boidinii and A. niger, the COD removal values were about 45% for C. boidinii and
78% for A. niger after 15 days of incubation. Whereas when they were cultivated directly
on an undiluted OMWW medium containing 82 g.L−1 of COD, these strains eliminated
only 4% of the COD.

3.3.2. Phenolic Compounds Removal

The PC removal rate by Penicillium chrysogenum differed with different agitation
speeds, with rates of 41%, 73% and 42% for 100, 150 and 200 rpm, respectively (Figure 4).
These removal rates are much higher than those recorded in the control (2%) without
agitation. This suggests that agitation at 150 rpm has a positive effect on PC degradation by
P. chrysogenum. This can be explained by the fact that the lower agitation speed could lead
to insufficient oxygen concentration, while the higher agitation speed develops shear forces
among the suspended fungal cells in the culture medium, and the production drops due to
cell damages which results from cell collision [60]. Shear forces also can have several effects
on the fungal cell. It can cause morphological changes in the fungus by damaging external
and internal cell structures, variation in fungal growth and yield formation [61]; therefore;
the synthesis of target product is affected [62], particularly ligninolytic enzymes [53].
Similar results to the present work were reported by Yesilada et al. [63], where reduction
rates of 88% and 72% were recorded for Coriolus versicolor and Funalia trogii, respectively, at
a 150 rpm agitation rate. Ergül et al. [64] also reported the positive effect of agitation on
the removal rate of PCs by comparing the degradation of PCs in two culture experiments,
static and 200 rpm shaking flask, and showed that there was a different removal rate of PCs
from raw OMWW of about 39% and 78% under static and 200 rpm conditions, respectively,
during treatment by T. versicolor for 20 days.
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Figure 4. Effect of different agitation speeds and nitrogen source on the undiluted olive mill wastew-
ater PC removal by P. chrysogenum. Data in the same bar graph followed by the same letter(s) were
not significantly different according to Tukey HSD test (p ≤ 0.05). (AN: ammonium nitrate; AS:
ammonium sulphate).
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OMWW supplemented with urea at 3 g.L−1 showed a degradation rate by P. chryso-
genum that exceeded 96% at 150 rpm, higher than the previous screening study of Zerva
et al. [53], where 86.4% and 86.1% was achieved after nitrogen supplementation for P.
citrinopileatus when yeast extract and corn steep liquor were used, respectively. On the
other hand, limited research results reported a high degree of PC removal when undiluted
OMWW without additional nutrients was used.

3.4. HPLC Tool to Characterize the Phenolic Compound Profile in OMWW Extracts

The identification of phenolic compounds was carried out by comparing their
retention times with those of standards (Figure 5). HPLC analysis of the phenolic
extract of untreated OMW showed the presence of five compounds: hydroxytyrosol at
1.22 g.L−1, tyrosol at 0.05 g.L−1, caffeic acid at 0.16 g.L−1, p-coumaric acid at 0.05 g.L−1

and oleuropein at 0.04 g.L−1. The identified phenolic compounds have been previously
reported in OMWW from the Marrakech region (Morocco) by Fakharedine et al. [65],
Boutafda et al. [37] and El Fels et al. [66].
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Previous work has indicated that the OMWW phenolic fraction is characterized by great
complexity [67,68]. All compounds identified in the raw OMWW phenolic extracts without
treatment disappeared after only 12 days of treatment by P. chrysogenum (Figure 6a,b) with
urea at 150 rpm, except the compounds hydroxytyrosol, caffeic acid and p-coumaric acid,
which persisted with a low concentration of 0.06 g.L−1 for hydroxytyrosol, 0.07 g.L−1 for
caffeic acid and 0.04 g.L−1 for p-coumaric acid (Figure 6b). This can be explained by the
biodegradation of the phenolic compounds by P. chrysogenum as well as by the bioconversion
of the oleuropein to hydroxytyrosol as reported by Santos et al. [69].

3.5. Micronucleus Test
3.5.1. Olive Mill Wastewater Genotoxicity

The micronucleus test results of the negative control, positive control and diluted
and untreated OMWW are presented in Figure 7. In fact, low micronucleus frequencies
with 0.58‰ were recorded in the root tips of control plants (negative control) and the
mitotic index of about 13.54%, whereas MH as a positive control significantly increased
the frequency of micronuclei to a value of 28.52‰ and decreased the mitotic index to
a value of 6.3%. Figure 7 shows that OMWW significantly increased the frequency of
micronuclei formation in V. faba root cells. The highest frequency of micronuclei (27.17‰)
was detected for the 10% dilution, whereas the lowest value (5.27‰) was noticed in the 1%
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dilution, which was 9-fold higher than the negative control. For dilutions above 20%, roots
appeared necrotic and blackened at the end of exposure, revealing acute toxicity. The high
percentage of induced micronuclei may indicate the mutagenic effect of the pollutants [70].
El Hajjouji et al. [27] showed that raw OMWW was toxic at 10% concentration, and the
higher concentrations (20%) were responsible for blackening of root tips and inhibition
of mitosis. Inhibition of DNA synthesis is affected by OMWW toxicity, leading to the
interruption of protein synthesis on Triticum aestivum root tips, which is probably related to
the content of phenolic compounds [71].
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Figure 7. Micronucleus frequency (a) and mitotic index (b) values in Vicia faba roots exposed to
different dilutions of treated and untreated OMWW. Data in the same bar graph followed by the
same letter(s) were not significantly different according to Tukey HSD test (p ≤ 0.05).

Regarding the mitotic index, a progressive decrease was noticed from 5.42% to 2.36%
for dilutions from 1% to 10%, respectively. The reduction in the mitotic index in our study
may have been due to the blockage of the G2 phase of the cell cycle or the inhibition of DNA
synthesis [72]. This reduction in the mitotic index may have also been caused by altered
nucleoprotein synthesis and reduced ATP levels to provide energy for spindle assembly
and chromosome movement [73].
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3.5.2. OMWW Genotoxicity Assessment after Fungal Treatment

The results of MN frequency and MI in V. faba cells roots exposed to different dilutions
of treated OMWW (1%, 2.5%, 5% 10%, 25% 50% 75% and 100% (raw OMWW)) are presented
in Figure 7a,b. Raw OMWW is highly toxic and cannot induce neither MI nor MN. However,
10% of raw OMWW induced high genotoxicity with 27.17‰ MN (no significantly different
to positive control = 28.53‰) and 50-fold higher than the negative control. After 12 days of
treatment with P. chrysogenum, the OMWW showed a noticeable decrease of the genotoxic
effect and enhancement of the mitotic index in all dilutions compared to the untreated
OMWW, even for the raw treated OMWW (p < 0.05). The biological treatment strongly
reduced the micronucleus frequency by 86.34%, 92.22%, 94.25% and 95.66% for the treated
OMWW (1, 2.5, 5, 10%), respectively, and enhanced the mitotic index by 55.64%, 66.06%,
70.59% and 82.17% for the treated OMWW (1, 2.5, 5, 10%), respectively (Figure 7a,b). This
strong decrease in MN frequencies proved the biodegradation activity of P. chrysogenom
and its ability to eliminate genotoxic compounds, such as phenolic compounds (96% of
reduction). The PCA analysis showed a high positive correlation rate between phenolic
compounds and micronucleus frequency in Vicia faba cell roots in raw OMWW. A signif-
icant decrease of MN with the abatement of PC after 12 days of aerobic treatment with
P. chysogenum was also shown (Figure 8). This could explain the efficiency of fungi biolog-
ical treatment to remove the toxicity of phenolic compounds. Indeed, fungi are capable
of producing a wide variety of enzymes that can degrade recalcitrant organic compounds
such as phenolic compounds and mineralize other substances [74]. According to Aggelis
et al. [75], the toxicity of OMWW on Lepidium sativum seeds decreased significantly after
biological treatment with P. ostreatus. These authors showed the ability of some strains
of P. ostreatus to eliminate phenolic compounds (86%) from a diluted OMWW (50%) and,
consequently, the decrease in toxicity.
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Figure 8. The principal component analysis (PCA) of the studied parameters. COD: chemical oxygen
demand; PC: phenolic compounds; MN: micronucleus frequency; MI: mitotic index; C1: OMWW 1%;
C2: OMWW 2.5%; C3: OMWW 5%; C4: OMWW 10%; R: raw OMWW; T: treated OMWW.
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4. Conclusions

Fungal strain as a biological treatment was able to remove 98% and 96% of the initial
COD and PC concentrations, respectively, under optimum conditions at an agitation
speed of 150 rpm and with urea as a nitrogen source. The most important phenolic
compounds in raw OMWW identified by HPLC were eliminated after 12 days of treatment.
Morphological and molecular identification revealed that the fungal isolate belonged to
the species Penicillium chrysogenum. The efficiency of this fungal strain to reduce the
genotoxicity of OMWW was demonstrated by a significant reduction in the micronucleus
frequency of V. faba roots during treatment up to 95.66%. Overall, these results show that
the biological treatment of OMWW, using P. chrysogenum, provided very promising results
in terms of reduction the pollutant load and elimination of genotoxicity, and therefore in
terms of the importance of testing the feasibility of this bioprocess on a larger scale and
serving as a model for a socio-economic evaluation of the establishment of a semi-industrial
plant. In this way, the effluents obtained after treatment can be used as a liquid biofertilizer
for certain plants such as maize, wheat and tomato.
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