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Abstract: There is always a desire for defect-free software in order to maintain software quality for
customer satisfaction and to save testing expenses. As a result, we examined various known ML
techniques and optimized ML techniques on a freely available data set. The purpose of the research
was to improve the model performance in terms of accuracy and precision of the dataset compared
to previous research. As previous investigations show, the accuracy can be further improved.
For this purpose, we employed K-means clustering for the categorization of class labels. Further,
we applied classification models to selected features. Particle Swarm Optimization is utilized to
optimize ML models. We evaluated the performance of models through precision, accuracy, recall,
f-measure, performance error metrics, and a confusion matrix. The results indicate that all the ML and
optimized ML models achieve the maximum results; however, the SVM and optimized SVM models
outperformed with the highest achieved accuracy, 99% and 99.80%, respectively. The accuracy of
NB, Optimized NB, RF, Optimized RF and ensemble approaches are 93.90%, 93.80%, 98.70%, 99.50%,
98.80% and 97.60, respectively. In this way, we achieve maximum accuracy compared to previous
studies, which was our goal.

Keywords: software defect prediction; machine learning; k-means clustering; support vector machine;
naïve Bayes; random forest; ensemble approach; particle swarm optimization

1. Introduction

Software defect prediction (SDP) is a technique for improving software quality and
reducing software testing costs through the creation of multiple categorization or clas-
sification models utilizing various machine learning approaches. Many companies that
develop various types of software want to foresee problems to maintain software quality
for customer satisfaction and save testing costs. SDP is part of the software development
life cycle in which we predict the fault using a Machine Learning (ML) approach with
historical data [1]. It is a structured methodology that enables the creation of high-quality,
low-cost software in the short possible time to meet customer expectations.

SDP’s mission is to provide high-quality software and dependability while making
efficient use of limited resources. As a result of this, software developers will be able to
prioritize the utilization of computer resources at each level of the software development
process [2,3]. Many organizations which are producing various types of software wish
to predict the defects in software to maintain software quality for customer satisfaction
and to save the testing cost. SDP is used to increase the software’s quality and testing
can be conducted efficiently by constructing various classification models using different
machine learning methods. A wide range of ML approaches has been investigated so far
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to anticipate errors in software modules to enhance software quality and reduce software
testing costs. There are several ML techniques, which are implemented in the SDP Decision
tree, Naïve Bayes (NB), Radial basis function, Support Vector Machine (SVM), K-nearest
neighbor, Multi-layer perceptron and Random Forest (RF) [4].

New advances in ML are ensembling techniques and various ML techniques with
feature selection methods such as PCA, etc. [5,6]. In the extant literature, there are several
types of software metrics that have been found and utilized for SDP. It would be more
practical to deal with the most important software metrics and focus on them to predict
defect in software [7]. SDP analyses data from the past acquired from software repositories
to find out the quality and reliability of software modules [8]. There are numerous types
of software metrics that have been found and utilized for SDP in existing literature. SDP
models are generated with the help of software metrics from data acquired from previously
established systems or similar software initiatives [9].

It would be more practical to look at and focus on the most important software
metrics to predict bugs in the software. Therefore, the dataset used in the paper has been
publicly available on the Promise Repository since 2005, providing information on various
applications that NASA (National Aeronautics and Space Administration) has investigated.
In the research context, after dataset pre-processing and feature selection (FS), K-means
clustering is used to perform the output categorization. Then, ML approaches such as SVM,
NB and RF with and without particle swarm optimization (PSO) are used. An ensemble
approach is then used to integrate the results. Finally, all ML models are analysed and
compared to the previous studies. The models’ performance is evaluated using precision,
accuracy, recall, F-measure, performance error metrics, and confusion matrix.

2. Motivation

Software businesses are working hard to create error-free software modules. The soft-
ware’s quality has been lowered as a result of faults, and it is unable to perform tasks with
accuracy and efficiency. The most critical stage of any software, which necessitates compre-
hensive testing, is software defect identification, which is the most significant aspect of the
SDLC [10]. Managing defects not only improves the quality of solutions but also encourages
all software development teams to consider quality across the whole project life cycle, resulting
in continuous improvement of deliverables. To increase the dependability and utility of the
software, software flaws must be immediately identified and fixed.

3. Contribution

The goal of our research is to improve or achieve high accuracy and precision of
the CM1 dataset by using ML approaches related to literature techniques. Additionally,
we validate the results against a large amount of data compared to other researchers.
Therefore, with our proposed analysis method, we achieve maximum accuracy compared
with previous studies, which was our goal.

This research paper includes the following sections. Section 4 discuss previous research
on the subject as well as methods that have been proposed in the past. Section 5 contains
information about the dataset and the techniques used to obtain better results. The results
of all analyzed techniques are included in Section 6, along with a comparison of evaluation
measures and analyzed methods to earlier approaches. The research is concluded in the
conclusion section using strong arguments and maximum accuracy is achieved by the
analyzed approaches, which outperform others.

4. Related Work

In SDP, the most commonly used ML approaches are clustering, classification and
deep learning. Using ML-based classifiers and statistical approaches, researchers have
suggested a variety of SDP models. In their study, Iqbal et al. [4] used multiple classification
algorithms to forecast software errors using twelve NASA datasets. Classifiers include NB,
Redial basis function, K-nearest neighbor, Multi-layer perceptron, K-star, SVM, Decision
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tree, One rule, and RF. Precision, accuracy, recall, f-measure, and AUC were used to assess
performance. Root cause analysis attempts to find the root causes of the issue in order
to remedy the problem. The root cause analysis method helps us to find defects at an
early stage. Different types of clustering techniques are implemented in the model [10].
Clustering is a form of unsupervised learning which works on data similarities. Researchers
applied the various types of clustering techniques to find out the defect. WEKA was used to
implement clustering techniques. K-means clustering presents better performance on this.

ML-based classification is also used for Software bug prediction [11]. The different
classifier is applied with Machine Learning for this. Artificial Neural Networks (ANNs)
classifier, NB classifier and Decision tree classifier are used in this ML-based classification,
which achieved good results. Five classes are the output of this approach with small dataset
measurements. The experimentation is implemented on three public datasets. WEKA 3.6.9
is used as a ML tool. ML techniques have good performance in this task. Perreault et al.
used five distinct types of classifiers to discover software defects in their investigation [12].
To measure performance, five distinct datasets from NASA’s metrics data program were
employed for classification: Neural networks, logistic regression, NB, SVM and k-nearest
neighbor. For some datasets, NB and SVM perform best amongst others. Poor software
quality is caused by software faults. As a result, it is critical to eliminate software faults in
order to improve software quality.

Rawat and Dubey et al. [13] provide numerous models for improving software quality
by studying factors that affect software quality and improving product and quality in terms
of software in their research. They looked at a variety of size and complexity measurements,
as well as models such as Bayesian belief networks, genetic algorithms and neural network,
among others. Surndha Naidu et al. [14] presented another good paper. The major purpose
of the article was to identify how many problems there were overall in order to save money
and time. Volume, difficulty, commitment, and time estimator, as well as program length,
have all been used to categorize the defect. They employed a decision tree classifier for
this. To classify defects, they used the classification algorithm ID3. They then used a
pattern mining approach to classify faulty patterns. They used JAVA to implement the
proposed paradigm.

The literature on model prediction focuses on extracting characteristics and utilizing various
ML algorithms. Control Flow Graphs (CFG) with a neural network approach is introduced [15].
This model’s first step is about CFG, in which they present a program of software into graphs.
After compiling the source code, a program’s CFG is built from the assembly code. A Strong
neural network on label graphs is used, which is also known as a multilayer convolution neural
network. This model’s performance is evaluated using four datasets.

For prediction, this research in [16] presents a standard ADBBO (Adaptive Dimen-
sional Biogeography-Based Optimization) model combined with RBFNN (Redial Basis
Function Neural Network) model. Five datasets that are publicly available and part of the
NASA data program are used in the experiments. The authors conduct a comparison with
predictions from earlier studies for similar datasets. The class imbalance issue reduces the
accuracy of defect prediction. Kernel-based learning was introduced by Ren et al. [17]. This
problem is solved using an AKPLSC (Asymmetric Kernel Partial Least Square Classifier)
and an AKPCAC (Asymmetric Kernel Principal Component Analysis Classifier). After
that, both classifiers are subjected to the kernel function. As a kernel, a Gaussian function
is utilized. Experimentation is carried out using SOFTLAB and NASA databases.

In [18], Pooja Paramshetti et al. use K-means clustering and the a priori technique.
Clustering is used to achieve discretization, and then a priori is used to extract rules or
patterns from data. Experimentation is carried out using NASA defect data. Finally, a
comparison with existing techniques is given. The CART technique, which is an optimized
regression and classification tree, is proposed in paper [19]. Along with this method, princi-
ple component analysis is utilized to minimize dimensions. They claim that optimization
run time is an overhead in this case. As a result, further improvements can be realized by
shortening the run time.
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A genetic algorithm with an upgraded deep neural network is proposed in [20].
For feature optimization, a genetic algorithm is applied. As a result, a hybrid technique
is employed to anticipate defects utilizing four datasets. The promise data repository
provided the dataset. For implementation, a MATLAB tool is used. The accuracy of this
hybrid method is excellent.

The ensemble method based on feature selection was utilized in this study [21]. The
proposed framework has been implemented both with and without Feature Selection (FS).
NASA provided twelve cleaned public datasets. The proposed findings are compared to those
of different classifiers. Although the results are improved, the problem of class imbalance
persists in this situation. Different ML algorithms are examined in this work [22]. Artificial
neural network, decision tree, NB, PSO and linear classifier are among the algorithms used. The
KEEL tool is used to perform the experiments, and seven datasets from NASA’s data repository
are used. In four datasets, the linear classifier outperforms the rest.

The ANN approach is combined with the Artificial Bee Colony (ABC) approach in [23].
The ABC algorithm is used to train the artificial neural network. For optimization, the ABC
algorithm is applied. In the data, there is a problem with class imbalance. As a result, the
results are unbalanced. NASA Data Program provided five separate datasets for this inves-
tigation. For performance evaluation, accuracy, AUC and other metrics are used. A mixed
strategy is adopted in this study [24]. With a decision tree classifier, a genetic algorithm
is applied. The fitness function is applied to those features that have been optimized by
this. This study makes use of three promise repository datasets. Experimentation is carried
out using the MATLAB program. Alternative approaches to estimating the probability of
defects are discussed in this publication [25]. However, the bulk of these experiments rely
on predicting defects from a wide variety of device functions.

In this review [26], the authors discuss some software metrics and datasets for predict-
ing defects. They are mostly used for finding defects in the ML approach, which consists
of making information from software archives which contain messages as well as sources
code. Instances contain a method, class, sources code, packages and code change. The
instance also contains some features obtained from the software archives. Metrics values
characterize software complexity and development. Instances are considered as labeled
or non-labeled. Metrics play an important part in making any predicting model which
helps to improve the consistency of software by getting as much as possible defect from the
software. Metrics are divided into two-part code, which describes the complexity of code,
and process metrics, which describe the complexity of development. The most used code
metrics are line of code metrics. A defect dataset is important for predicting defects. Some
early studies show that researchers used a non-public dataset. Some publicly available
datasets are NASA, SOFTLAB, PROMISE, ReLink, AEEEM, ECLIPSE 1, ECLIPSE 2, etc.
For predicting software defects, many evaluation measures are used, i.e., Probability of
defect, True Positive (TP) rate, False Negative (FN), True Negative (TN) and False Positive
(FP) rate, precision, accuracy, G measure, F measure, AUC. With the new advancement in
research, the ML algorithm for SDP has also improved.

In [5], a hybrid technique is utilized to predict faults. The authors use a feature
selection approach in conjunction with various machine learning classifiers. For feature
selection, the Optimized Artificial Immune Networks (Opt-aiNet) method was utilized.
ML classifiers are used to compare the results. From the PROMISE repository, five separate
datasets are used. Accuracy and AUC are evaluation metrics. After selecting features,
performance improved. The work in [27] suggested a remedy to imbalance problem.
Principle component analysis was used to pick features. For cost-sensitive imbalance
problems, ANFIS is employed for prediction. This method improves the ROC area by 5%.

Another excellent paper was presented by Alsaeedi et al. [28]. To anticipate flaws,
they used three classifiers: Decision tree, RF, SVM and ensemble approaches including
Ada-boost and Bagging. For the imbalance data, SMOTE sampling was used. Ten NASA
datasets are used in the experiment. Among all approaches, RF and Ada-boost with RF
performed best. The use of many classifiers in a combined strategy is a hot issue these
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days. For defect prediction, the article in [29] also used a mixed or ensemble technique. Six
algorithms were used on five different datasets from the NASA MDP database. To improve
data quality, SMOTE was employed for sampling. Experimentation was performed using
the WEKA tool. The best ensemble algorithm is RF.

The work in [30] employs tree-based ensembling. For the four free source NASA Metric
Data Program Datasets, seven ensemblers are employed. Two are bagging, while the other
five are boosting. Bagging performs well, however, Ada-boost performs poorly. Different
clustering algorithms are used in [31], and the resulting clusters are then integrated into
a single model. To increase software quality, PSO is employed. To improve the quality
of software, the NB classifier is used in conjunction with ARM, which is used to pick
features [32]. NASA datasets are used to test five different datasets. Other methods are
used to assess performance. Different ML approaches and frameworks are used with
different metrics to eradicate issues in this review [33]. They looked at 40 studies published
in various journals between 2009 and 2018. Despite all of the work that has been done in
this field, there is always room for improvement due to the imbalanced nature of datasets
and ambiguities.

The authors of [6] analyzed five public datasets from the promise repository using ML-
based predictions and ten classifiers. Measure accuracy was used in the evaluation. Deep
learning techniques were investigated for defect prediction in this survey [34]. None of the
methods consistently produced results with great accuracy, recall and precision. SLR was
employed to monitor current developments in ensemble or hybrid techniques [35]. A strategy
was unveiled to boost performance. From reputable online libraries, 46 papers were chosen
for shortlisting. According to a study, FS and data sampling enhance outcomes. Utilizing
evaluation metrics, performance is accessed. The ensemble strategy outperforms others.

The literature study shows that various ML techniques have been applied till now
but their performance varies across datasets and in terms of ML, their performance is less
accurate. Therefore, we want to improve accuracy by analysing various ML techniques
combined with FS and K-means clustering. The purpose of research is to improve accuracy
with respect to literature studies.

5. Materials and Methods
5.1. Model Design

ML is such a significant achievement in Artificial Intelligence (AI), it is evident that a
model for SDP based on ML techniques is necessary to maintain quality and save testing
cost [2,4]. We find many issues related to predict software defect from the literature utilizing ML
methodologies. On various datasets, the authors used a range of ML algorithms [4,5,21]. Some
are precise, while others vary in their performance and accuracy or precision. The objective of
this investigation is to create an SDP analysis prototype by saving testing cost while increasing
proposed system accuracy. For this purpose, we are analyze different ML techniques with
selected features and clustering to achieve good accuracy. We intend to achieve high accuracy
utilizing our analyzed methods, which employ ML algorithms, using the CM1 dataset [28,29],
which has less accuracy in most techniques [6].

Figure 1 demonstrates the architecture of the suggested model. We examined various
well-known ML techniques and optimized ML techniques on a freely available dataset in
order to improve the datasets’ accuracy in comparison with previous research. For this
purpose, we employed K-means clustering for the categorization of class labels. Further, we
applied classification models to selected features. Particle Swarm Optimization was utilized
to optimize ML models. We evaluated the performance of models through precision,
accuracy, recall, f-measure, performance error metrics and a confusion matrix. Below, we
will discuss these figure sections in detail. The aim of choosing ML techniques is to improve
accuracy on these well-established ML techniques because in the literature, the findings
of these ML techniques vary and can be improved further. Therefore, the objective is to
improve performance or accuracy on these ML techniques and analyse the results.
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Figure 1. Proposed Method.

5.2. Dataset

We utilised the PROMISE Software Engineering Repository’s CM1 dataset [36], which
is freely available and part of NASA Metrics Data Program (MDP), in our research. CM1 is a
C-based NASA spacecraft instrument. There are 498 instances or modules in the collection,
as well as 22 properties, as mentioned in Table 1.

Table 1. Dataset parameteres.

Title Language Source Code Modules Features Defective Defect-Free Defect Rate

CM1 C
NASA

Spacecraft
Instrument

498 22 49 449 9.83%

This study’s dataset properties are based on four McCabe metrics, twelve Halstead
measurements, and a few more metrics. McCabe Metrics are Method-level Metrics that
focus on programming principles and are straightforward to gather from source code [6].
Other Halstead Metrics are numerical data and they may be easily gathered with any piece
of software [36]. Table 2 lists the dataset metrics.

Table 2. Dataset attributes description.

Dataset

McCabe Metrics

Loc Line count of code
v(g) Cyclomatic complexity
ev(g) Essential complexity
iv(g) Design complexity

Halstead Metrics

N Total operators + operands
V Volume
L Program length
D Difficulty
I Intelligence
E Effort to write program
B Delivered bugs
T Time estimator
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Table 2. Cont.

Dataset

IOCode Line count of code
IOComment Count of lines of comments

IOBlank Count of blank lines
IOCodeAndComment Lines of code and comments

Other Metrics

uniqOp Unique operators
uniqOpnd Unique operands

totalOp Total operators
totalOpnd Total operands

branchCount Flow of graph
D Module has defects or not

5.3. Techniques
5.3.1. Data Pre-Processing

From dataset analysis, it is concluded that the dataset needs to be transformed to a
standard format before applying any ML models, as there are 498 tuples and 22 features
in the dataset. In each column of the dataset, there is a wide range of values, e.g., the
column ‘e’ (e is the effort to write program) has a maximum value of 2,153,690.63 and
minimum value of 0.0; additionally, the column ‘t’ (t is the time to write program) has a
maximum value of 119,649.48 and minimum value of 0.0. The column ‘I’ (I is intelligence)
has a maximum value of 1.30 and a minimum value of 0.0. There is a huge gap in-between
the columns and with other columns. The mean value of column ‘t’ is 1938.056124 and
the standard deviation is 7453.591519, while column ‘I’ has a mean value of 0.146325 and
a standard deviation of 0.159337. Thus, for this purpose, a standard scaling technique is
used in this study for standardizing the data set. It arranges data in a standard normal
distribution. Mathematically, the standard scalar Z can be determined as:

Z =
(x − u)

s
(1)

where x is an observation, u is training samples’ mean, while the training samples’ standard
deviation is s. In the dataset, we checked for null values, but there were no null values in
any tuple.

5.3.2. Feature Selection

The feature selection method is used to reduce the number of features utilized in
a predictive model’s training and testing. The variance inflation factor approach and
correlation method are utilized in this paper to identify the significance of values and
multi-collinearity of a feature after preparing the dataset [4]. Two features have a positive
correlation if an increase in one feature value causes an increase in another feature value
and a decrease in one feature value causes a decrease in another feature value. If the
change in one feature value does not affect another feature value, these two features do not
correlate. If an increase in one feature value causes a decrease in another feature value or
a decrease in one feature value causes an increase in a feature value, the two features are
negatively correlated [7]. Figure 2 shows the correlation between all features of the data set.
We chose the top 10 attributes that are negatively associated or have no association based
on relevance and high significance without class labels. The major reasons for reducing the
number of features are to reduce computational costs and to prevent overfitting difficulties
to enhance model performance.

In this research, we utilized unsupervised ML (clustering) for categorizing the output
class labels and supervised ML (classification) for prediction purposes.
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Figure 2. Features correlation.

5.3.3. Clustering

Next, K-means clustering is used to discover class labels, as well as inertia and the
elbow approach to select the best number of clusters (K). In K-means clustering, the number
of clusters created is denoted by the symbol K. Inertia is a metric for how effectively a data
collection is clustered and is derived by squaring the distance between each data point and
its centroid, then adding the squares throughout one cluster.The elbow approach makes
use of the Within Cluster Sum of Squares idea (WCSS). To calculate the distance between
data points and the centroid, the WCSS employs the distance formula. Here, the K value is
2, with an inertia of 5947.92, as shown in Figure 3.

WCSS =
n

∑
i=1

PiεCluster1distance(PiC1)
2 +

n

∑
i=1

PiεCluster2distance(PiC2)
2...+

n

∑
i=1

PiεClusterndistance(PiCn)
2

(2)

As can be seen from the equations above:
n
∑

i=1
PiεCluster1distance(PiC1)

2 is the sum of the square of the distances between each

data point and its centroid within cluster1 and the same for the other terms.
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Figure 3. Relationship of inertia with cluster.

5.3.4. Classification

Supervised ML is applied to data with output class labels. There are two portions to the
data set: training and testing. The training dataset makes up 67% of the total, whereas the
testing dataset makes up just 33%. First, the data are provided with output class labels for
training purposes, and then unseen data with no output class labels are provided for testing.
We used three ML classification models for analysis, i.e., SVM as Linear SVC classifier, NB as
Gaussian NB classifier, and RF as Random Forest classifier with ensemble method as Stacking
classifier to analyze and combine the results of the above three models by using NB as a base
model and SVM and RF as member models. The number of trees in the RF model is 1000 and
the random state for all classifiers is 42. The classifiers are then analysed with and without
PSO techniques. The number of particles during experimentation is kept at 20.

5.3.5. SVM

SVM is a supervised ML model mostly applied to data with two classes as output [10].
SVM models perform better with high speed if the dataset has limited data. The SVM model
draws a decision boundary between the data to classify each class. The best hyperplane in
an SVM model is when there are maximum margins from both classes. The SVM model is
employed in this work to predict the output class label and it obtains the best results. The
Random State is 42. As a classifier, linear SVC is utilized.

5.3.6. NB

The NB algorithm is a Bayes algorithm-based categorization method. It works by
calculating probabilities against likelihoods. When there is no association between the
characteristics of a data set, the NB method works well. The state of randomness is 42. The
classifier is a Gaussian NB.

5.3.7. RF

The RF is a classification model that employs the notion of ensemble learning, which
entails combining numerous classifiers to improve the outcome. The RF model comprises
a number of DTs that are applied to subsets of the data set and then averaged to determine
performance measures. The number of trees used has a significant impact on accuracy and
other measures. The model improvement, however, becomes constant after a certain number
of trees. Knowing the right amount of trees is crucial for training purposes. In this case,
1000 trees are employed, and the random state is 42. As a classifier, Random Forest is utilised.

5.3.8. Ensemble

In ML, the ensemble technique mixes numerous prediction models to provide superior
results. In the ensemble method, one model serves as the basis, while the others serve as
members. Ensembling can be performed in a variety of ways. The stacking classification
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approach is employed. The NB model serves as the base model, and the SVM and RF
models serve as member models. In the ensemble model, the random state is 42.

Finally, we analysed all models, both without and with optimization. Precision,
accuracy, recall, f-measure, performance error measures and a confusion matrix were used
to assess model performance.

6. Results and Discussion
6.1. Experimental Setup

The ML classification experiments in this document were performed on a Windows
laptop with an Intel(R) Core(TM) i5-2410 M processor, 6 GB of primary storage and 1 TB
of secondary storage. The ML model was implemented using the Python programming
language. Python is commonly used in predictive analytics and data science projects
involving both qualitative and quantitative data. The Python packages pandas, numpy,
seaborn, matplotlib, sklearn and pyswarm were used to build the ML predictor.

6.2. Experimental Results

The results of the experiments on the CM1 dataset using various ML techniques are
reported in the form of graphs and tables. These graphs offer a comparison of several
techniques. We will assess all findings by comparing all strategies with and without opti-
mization to make the notion obvious and understood. Tables 3 and 4 show the evaluation
metrics for all ML approaches studied without and with optimization, respectively. All
analysed models have the best results but SVM and optimized SVM have better perfor-
mance in both cases than others. Here, the SVM model accurately predicted output class 1
as 1 so precision is 100%, while one output class 0 is predicted as 1, which is why recall is
lesser. Moreover, NB does not work well as it works well on the high-dimensional dataset.
RF and ensemble have almost the same result because Rf is also an ensemble approach that
combines the large collection of trees. The RF model achieves a precision of 100% and an
accuracy of 98.7%. This model also predicts 100% accurately the output class 1 and misses
two values in the 0 class.

Table 3. Evaluationmetrics of classifiers without optimization.

Dataset Evaluation
Measures SVM NB RF Ensemble

CM1

Accuracy 99 93.90 98.70 98.80
Precision 100 100 100 100

Recall 90.90 50 82.20 82.30
F-measure 95.20 66.70 90.90 90.90

Table 4. Evaluation metric of classifiers with optimization.

Dataset Evaluation
Measures SVM NB RF Ensemble

CM1

Accuracy 99.80 93.80 99.50 97.60
Precision 99.70 100 100 99

Recall 100 92.90 99.50 97.50
F-measure 96 67.30 91.10 84.80

The outcomes of all ML models, as well as the ensemble approach, without optimization,
are shown in Figure 4. The precision of all algorithms is the greatest among the measures, as
seen in the graph. This is because all models have predicted the one class as 1. The NB model
does not perform well in the case of recall and f-measure because it works on a large quantity
of data or a high-dimensional dataset. The RF model and ensemble model have almost the
same results. However, the SVM model outclasses in all evaluating metrics.

Figure 5 is the combined result of all the predicting models with PSO. Overall, all the
models along with the ensemble technique achieve good evaluating metrics; however, each
model has been outperformed without optimization. The optimization solutions are best
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when the size of the data set is increased. However, the recall and f-measure values improve
in this case. Yet here, the Recall and F-measure are improved compared with the rest.

Figure 4. Evaluation metrics of all models without optimization.

Figure 5. Evaluation metrics of all models with optimization.

The major goal and objective of analyzing various ML models are to improve the
accuracy of classifiers so that outcomes can be predicted as precisely as feasible. The
expected model analysis is compared and distinguished to recognized benchmark metrics
such as Mean Absolute Percentage Error (MAPE), Root Mean Square Error (RMSE) and
Mean Absolute Error (MAE) to ensure and confirm that the models are adaptive. The
following Tables 5 and 6 show the Performance error values of models. In terms of
performance error evaluation, as the values in the table demonstrate, all of the analyzed
models have a lower error rate.

Table 5. Performance error metrics of classifiers without optimization.

Dataset Performance
Error Metrics SVM NB RF Ensemble

CM1
MAE 0.006 0.061 0.012 0.012
RMSE 0.078 0.25 0.11 0.11
MAPE 0.65 6.45 1.29 1.29

Table 6. Performance error metrics of classifiers with optimization.

Dataset Performance
Error Metrics SVM NB RF Ensemble

CM1
MAE 0.157 0.072 0.008 0.079
RMSE 0.398 0.269 0.089 0.252
MAPE 9.26 6.02 0.602 7.36
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Figures 6 and 7 show the error measures of all models without and with optimization.
The error measures such as MAE, RMSE, MAPE, etc. show how many errors were there
while training and testing the ML model. The smaller the error values, the lesser the error
in the model, and the maximum the error values, the more the error in the ML model. All
models have lower error rates, but SVM and optimized RF have lower error values in both
scenarios without any optimization and optimization from other techniques.

Figure 6. Error Evaluation Metrics of all Models without Optimization

Figure 7. Error Evaluation Metrics of all Models with Optimization

6.3. Statistical Analysis

Statistical analysis is the process of utilizing quantitative tools to look for patterns,
trends and relationships in data. The use of statistical analysis may aid in the prediction
of future research aspects. One can gather data using the most appropriate approaches,
conduct adequate analysis and successfully communicate the results if one has statistical
understanding. Statistical analysis, as shown in Tables 7 and 8, is also used in the research
to gain a better understanding of the findings and to forecast future demands. Chi-squared
and Anova are performed in this work. The result shows that our analyzed models
functioned well in all cases. A p-value is a metric to evaluate test significance in statistics.
As a result, a low p-value indicates that the null hypothesis should be rejected, and the
alternate hypothesis should be adopted instead, in short, the p-value should be as small as
possible to reject the null hypothesis. The significance value in this study is 0.10. p-value
of less than 0.10 shows that the null hypothesis is rejected and shows test significance. A
smaller p-value than the significance value shows the test significance.
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Table 7. Statistical analysis of classifiers without optimization.

Chi-Squared SVM NB RF Ensemble

F-Stat 0.02964 32.736 3.549 3.45
p-Value 5.29 × 10−6 0.0856 0.0041 0.0329

Anova SVM NB RF Ensemble

F-Stat 18.849 2.786 0.2987 0.2503
p-Value 1.41 × 10−5 1.51 × 10−8 0.0085 1.61 × 10−9

Table 8. Statisticalanalysis of classifiers with optimization.

Chi-Squared SVM NB RF Ensemble

F-Stat 0.2299 31.437 5.721 12.408
p-Value 6.78 × 10−5 2.06E-8 1.51 × 10−5 0.000245

Anova SVM NB RF Ensemble

F-Stat 12.5958 5.503 3.432 0.87212
p-Value 0.00041 0.0121 0.005112 6.88 × 10−17

6.4. Discussion
Comparison with Previous Techniques in Terms of Accuracy

Table 9 shows the comparison of numerous ML approaches used in previous studies.
We compared numerous ML approaches that were used as state-of-the-art techniques in pre-
vious studies, e.g., B. SVM, NB, Boost-RF, Bag-RF, SVM-FS, NB-FS, RF-FS, SVM-AdaBoost,
RF-AdaBoost, SVM-PCA, etc. on our selected data set CM1, which is the ML technique
with the lowest accuracy and which we wanted to improve by comparing different ML
strategies using FS and clustering. As a result of the comparison, our evaluated methods
perform well and show improvement in accuracy over prior state-of-the-art methods.

Table 9. Comparison with previous studies in terms of accuracy.

Dataset
Previous Studies ML

Techniques with Research
Reference

Accuracy

CM1

NB [4] 82.65
SVM [4] 90.81

Boost-RF [21] 89.79
Bag-RF [21] 89.79
SVM-FS [5] 81.79
NB-FS [5] 85.55
RF-FS [5] 85.20

RF-AdaBoost [28] 90
SVM-AdaBoost [28] 79

NB-PCA [6] 81
SVM-PCA [6] 83
RF-PCA [6] 83

Analyzed ML Techniques with FS and Clustering

Dataset ML Classifiers Accuracy

CM1

SVM 99
NB 93.90
RF 98.70

Stacking 98.80
SVM-PSO 99.80
NB-PSO 93.80
RF-PSO 99.50
Stacking 97.60

It can be seen from the graphs that our models with FS and clustering outperformed
the other techniques from the literature, and we have validated our model on the large
data that is 33% as accurate as other studies. Figure 8 shows the graph of the accuracy of
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literature techniques, and Figure 9 shows the graph of our analyzed techniques with FS
and clustering.

Figure 8. Literaturemodel accuracy [4–6,21,28].

Figure 9. Analyzed model accuracy with FS and clustering.

6.5. Implication

In this article, we examined various known ML techniques and optimized ML tech-
niques with and without optimization on a freely available data set to save testing costs
while increasing system accuracy. The ML model was implemented using the Python
programming language. Python is commonly used in predictive analytics and data science
projects involving both qualitative and quantitative data. The Python packages pandas,
numpy, seaborn, matplotlib, sklearn and pyswarm were used to build the ML predictor.
The purpose of the research was to improve the model performance in terms of the ac-
curacy and precision of the dataset compared to previous research. In this way, software
companies can utilize this solution for early prediction of defects during development
phases and correct them before delivering.
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The most crucial phase of any software, which necessitates intensive testing, is software
defect detection. It also occupies the most significant position in the software development
life cycle (SDLC). The software development team can correct and remove the error before
providing the finished product if they can locate the problematic component. Defect
detection and repair are expected to cost billions of dollars annually. The goal of SDP is to
produce excellent software while effectively utilizing the restricted resources available. The
main objectives of our research were:

- Analysis of ML Techniques on Software Metrics;
- Software defect prediction models with high accuracy;
- Increase performance in terms of accuracy.

Precision, accuracy, recall, f-measure, performance error measures and a confusion matrix
were used to assess the performance of the models. The findings show that all of the ML and
optimized ML models produce the best results, but the SVM and optimized SVM models
outperformed with the highest achieved accuracy, respectively, of 98% and 99.80%. The
corresponding accuracy rates for the NB, Optimized NB, RF, Optimized RF and ensemble
approaches are 93.90%, 93.80%, 98.70%, 99.50%, 98.80% and 97.60%. In this manner, we
obtained the highest degree of accuracy in comparison with earlier studies, which was our
aim. In this way, we can attain high-quality software by reducing testing costs and time.

In the future, we can expand the data set and try to analyze different types of ensemble
approaches with data balancing techniques to improve the error rate as well. Additionally,
we can utilize some other optimization techniques that can work best on limited data
as well.

7. Conclusions

In this paper, ML techniques are utilized with feature selection and K-means clustering
techniques for software defect prediction. We examined various well-known ML techniques
and optimized ML techniques on a freely available dataset to improve the accuracy of the
dataset in comparison with previous research. The results are also analyzed by utilizing
ML with the PSO method and ensemble approach. All ML models are trained and tested
through Python programming language using Jupyter notebook. The analysis aimed to
improve the accuracy performance of ML on the CM1 dataset. The results indicate that
all the ML and optimized ML models achieve the maximum results; however, the SVM
and optimized SVM models outperformed with the highest achieved accuracy, 99% and
99.80%, respectively. The accuracy of NB, Optimized NB, RF, Optimized RF and ensemble
approaches are 93.90%, 93.80%, 98.70%, 99.50%, 98.80% and 97.60, respectively.

8. Future Work and Limitations

In this article, three ML classification models with and without optimization are
performed using an ensemble approach to find bugs in software. These models are applied
to a limited dataset. In the future, we will increase the size of the dataset and try to analyze
different types of ensemble classifiers after applying data balancing techniques because
due to balancing technique we can improve error measure as well to get maximum results.
We will also apply a different optimization approach to a large dataset.
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