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Abstract: Queue length is an important parameter for traffic-signal priority systems for emergency
vehicles. Instead of using conventional detector data, this paper investigates the feasibility of queue-
length estimation using Google Maps color-code data via random forest (RF) and gradient-boosting
machine (GBM) methods. Alternative ways of specifying independent variables from color-code
data are also investigated. Additionally, the models are separated by peak or off-peak periods and
by the presence or absence of adjacent upstream signalized intersections. The results show that
the performance predicted by the RF and GBM methods is similar in all cases. Although the error
values of both methods are relatively high, they are considerably lower than those obtained from
estimates using historical queue-length data. The results obtained using variable-importance analysis
show that the importance of the red band near an intersection is significantly higher than that of
other variables for a direction without a prior signalized intersection. For a direction with a prior
signalized intersection, the importance varies, depending on the period (peak or off-peak). Since
Google Maps data are available and cover most of the world intersections, the proposed approach
provides a cost-effective option for cities with no detectors installed.

Keywords: queue length; Google Maps; random forest; gradient-boosting machine; variable importance;
signalized intersection; traffic signal priority

1. Introduction

Traffic signaling is an effective way of managing traffic at intersections by reducing
the conflict points and keeping the traffic through intersections in order. All vehicles must
compulsorily stop at a red traffic light; this, unavoidably, causes traffic delays. However,
for emergency vehicles, reducing the delays caused by red-light stops by just a few seconds
is essential when the lives of patients are in danger. Current traffic-signal priority systems
can detect and assign priority to emergency vehicles at signalized intersections [1–4]. An
important parameter in such a system is the length of the vehicle queue at that intersection
and at that time. This parameter is used to analyze the optimal timing interval required
to activate the green signal in advance and to clear the queue from the intersection before
emergency vehicles arrive.

In most studies, data from detectors employing the shockwave theory have been used
to estimate queue lengths at signalized intersections. Recent studies have attempted to
improve the efficiency of queue-length estimation by focusing on the aspects of real time
and high accuracy. Queue-length data can also be used to adjust traffic signals and manage
traffic congestion [5–9]. However, in almost every intersection in Thailand, no detectors
have yet been installed. Therefore, in practice, it is not possible to estimate the queue length
using this method. With this limitation in mind, Jodnok and Pueboobpaphan [10] applied
linear regression analysis and random forest (RF) analysis to estimate the queue length
at signalized intersections during peak and off-peak periods using color-code traffic data
obtained from Google Maps. The results showed that the queue-length estimation using
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these data was sufficient to some extent, and the RF method exhibited lower errors than
those exhibited by other methods.

Many researchers have used Google Maps data in their studies. Travel time and
distance data from Google Maps were used to determine the optimal location for installing
a charging station [11]. The data were also used to determine the traffic volume and
vehicle speed to investigate road congestion [12,13], air pollution [14,15], or accessibility
to hospitals [16]. Travel-route data from Google Maps were also used to route cargo and
emergency vehicles [17–19]. Color-code and travel-time data from Google Maps were used
to adjust the traffic-signal timings in response to near-real-time traffic conditions [20]. The
color-code data were also used to forecast traffic conditions for urban roads using historical
averages [21]. Traffic-speed data from Google Maps were used to determine the congestion
index [22]. However, there is a lack of research on using color-code data from Google Maps
to estimate the queue length at signalized intersections.

Google Maps display four possible colors: dark red, red, orange, and green. These
colors represent traffic conditions according to vehicle speed, ranging from very low to
high speed [23,24]. Jodnok [25] observed color codes by capturing Google Maps screen-
shots around a signalized intersection every 1 min. He found that the dark red and red
bands appeared less frequently than other bands, leading to the question of whether these
two colors should be considered, as they had the same color in the model.

Some works have reported the use of the RF technique in various areas of trans-
portation research [26–28]. However, other machine-learning techniques besides RF have
also been applied. For instance, the gradient-boosting machine (GBM) technique has
been applied when the relationship between dependent and independent variables is
nonlinear. GBM applications include travel-time prediction [29], incident-clearance-time
prediction [30], and short-term traffic-volume prediction [31]. The GBM technique was
found to provide better predictions than other methods [30,31]. Moreover, new studies
have shown that the GBM method can calculate the variable importance (VI), which helps
understand how important each independent variable is to a dependent variable. This is
an added advantage of the GBM method, which was previously considered a black-box
method, because of its ability to provide better information about the relationships between
dependent and independent variables compared with other methods [32].

This paper extends the study by Jodnok and Pueboobpaphan [10]. In addition to
peak/off-peak periods, we consider modeling, which is based on directions with or without
an upstream signalized intersection in the vicinity. Furthermore, we consider alternative
ways of modeling independent variables using color-code traffic data. Specifically, we
consider dark red and red as being the same color and green as a reference color. The
predicted results obtained using the RF and GBM methods are compared with those
estimated by the historical averages, and VI analysis is performed to understand the
factors affecting the prediction of queue length using color codes from Google Maps. The
objective is to assess the feasibility and limitations of developing a method for estimating
the queue length from the color-code traffic data obtained from Google Maps. This method
will provide an alternative for those areas where no detectors are installed at signalized
intersections on a road network.

In the next section, the data collection and survey are briefly explained. Details
of how color-code data from Google Maps and actual queue-length data from the field
were collected and processed as independent and dependent variables, respectively, are
described. Details on modeling scenarios are then provided, followed by modeling results
and the variable importance (VI) analysis. The conclusions and recommendations complete
the paper.

2. Materials and Methods

This paper uses the same data as those used by Jodnok and Pueboobpaphan [10], who
surveyed and collected data of colors and lengths of each consecutive color band from
Google Maps. They also simultaneously recorded the actual queue lengths. The area of
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study was a T-signalized intersection on the main arterial road in the Nakhon Ratchasima
province, Thailand. The intersection is located in an area with heavy traffic and frequent
traffic jams. There are four lanes in each direction. Figure 1 shows the area of study,
where a prior traffic signal is absent in the inbound direction, but present in the outbound
direction at a distance of 930 m upstream from the studied intersection. The survey and
data collection was started at 7:00 a.m. and completed at 7:00 p.m. to cover the peak and
off-peak periods. The survey was conducted for three days during weekdays and for two
days during weekends.
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Figure 1. Area of study. The background map was captured from maps.google.com, accessed on
10 January 2023.

2.1. Collection of Color-Code Data from Google Maps

A screenshot of Google Maps, which covers the entire area of investigation, was
captured every 1 min. The Google Maps website was continually refreshed using the
Auto-Refresh program to illustrate the change in the color-code data continuously. It was
observed that in the direction without a prior signalized intersection, the last band shown
on the edge of the screen was always a green-color band. Figure 2 shows an example of the
color-code data obtained from Google Maps, where four color bands are displayed; the 1st
band from the stop line is dark red with a length of 120 m, followed by a 120 m red band,
a 220 m orange band, and finally, a green band, which extends beyond the screen. The
length of the last band was specified as 9999 m. An example of the data extraction from the
Google Maps screenshot (shown in Figure 2) is presented in Table 1.

Table 1. Sample data obtained from Google Maps.

Items Color Length (m)

1st color from stop line Dark red 120
2nd color from stop line Red 120
3rd color from stop line Orange 220
4th color from stop line Green 9999
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Figure 2. Example of length measurement using the Google Maps color-code data. The background
map was captured from maps.google.com, accessed on 10 January 2023.

2.2. Survey of the Actual Queue-Length Data

The actual queue lengths were surveyed by observers in the field. The curb was
temporarily marked with a reflective tape every 20 m from the stop line. These marks were
viewed against the tails of the queuing vehicles for measuring the queue length. In addition,
a detailed map indicating the distance to various landmarks, such as buildings, light poles,
billboards, and other structures that can be easily seen from a distance, was prepared
to assist the observers in measuring the queue lengths. Generally, the queue lengths of
the lanes may not be the same, but in our case, they are not much different. Therefore,
the average of the queue lengths obtained from all four lanes was used to represent the
queue length that was used as a dependent variable in the model. Seven fourth-year
undergraduate students and one graduate student from the School of Transportation
Engineering, Suranaree University of Technology, were recruited for field observation.
Every two students had to cover a 200 m segment for two different lanes. Six students, thus,
covered a total distance of 600 m of a four-lane road segment, which was sufficient in our
case study. The remaining two students had to stand-by at the site for replacing their friends
while also monitoring video cameras used to record traffic volume and traffic signals. The
observers used radio communication to communicate about the current position of the
queue tail. They were asked to follow the queue tail, if it is in the segment for which
they were responsible, to record the actual queue length every 1 min (the same interval
of capturing as the Google Maps screen). A speed threshold of less than 10 km/h was
used to identify approaching vehicles as being in the queue. The direction and time were
also recorded to identify whether the queue length was observed during peak or off-peak
periods and whether there was a prior signalized intersection. When all vehicles were
moving during the green signal and no queue occurred, the queue length was recorded as
zero. Figure 3 illustrates the distribution of the observers and video cameras in the study
area. Note that the inbound and outbound directions were observed independently on
different days.
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2.3. Data Processing

Jodnok and Pueboobpaphan [10] found that the highest number of bands counting
from the stop line was six on the surveyed road section. The color bands were defined
so that the band closest to the intersection was assigned as the first band, and the band
furthest from the intersection was assigned as the last band. They also found that using data
from the first three bands adjacent to the stop line was sufficient and produced equivalent
performance to that of using data from all six bands. Therefore, in this paper, data from
only the first three bands adjacent to the stop line were used to create independent variables.
In addition, the following alternative ways of processing color-code data as independent
variables were attempted:

Independent variable set 1 (IV1): consider all four original colors of Google Maps as
in [10].

Independent variable set 2 (IV2): consider dark red and red as if they were the
same color.

Independent variable set 3 (IV3): similar to IV2, but the green variable is also consid-
ered as a reference color and is dropped.

The name of the independent variables used in the model is shown in Table 2. The
recorded value of each independent variable depends on whether the actual color from
Google Maps matches the color of the variable as indicated by Equation (1). If the actual
color of band i is the same color as the variable j_i, then the length of band i in meters is
recorded. Otherwise, variable j_i will be zero.

j_i =
{

length o f band i, i f actual color o f band i is j
0, otherwise

(1)

Table 2. New modified color-code variables.

Set of Independent
Variables (IV) Color

Name of Independent Variable

1st Band 2nd Band 3rd Band

IV1

Dark red DARKRED_1 DARKRED_2 DARKRED_3
Red RED_1 RED_2 RED_3

Orange ORANGE_1 ORANGE_2 ORANGE_3
Green GREEN_1 GREEN_2 GREEN_3

IV2
Combined red C_RED_1 C_RED_2 C_RED_3

Orange ORANGE_1 ORANGE_2 ORANGE_3
Green GREEN_1 GREEN_2 GREEN_3

IV3
Combined red C_RED_1 C_RED_2 C_RED_3

Orange ORANGE_1 ORANGE_2 ORANGE_3
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2.4. Modeling

In this paper, two machine-learning techniques, namely, the RF and GBM, are applied.
The RF is an ensemble decision-tree method. The principle of RF is to create multiple
decision trees, where each employs the same algorithm, but has different features. The data
used to construct each tree are randomly selected from the same database. When a decision
tree is completed, the data are returned to the original database, and a new set of data is
randomly selected to create a new decision tree [33]. The GBM technique is an improved
technique based on the RF technique. GBM is considered an ensemble learning technique.
Initially, GBM creates a weak classifier and then calculates the error values. GBM learns the
pattern of error values, improves to reduce the error, and builds a new model. Thus, the
error in the new model is less than that of the previous one. GBM continues the modeling
sequentially, until the error cannot be learned. Then, model building is stopped [34].

In addition to the RF and GBM techniques, a simple estimation method is considered
in this paper. This method uses the average of historical queue lengths, which are separated
by the direction and by the period, as the estimate of the queue length in each case. This
is later called the Average method. It represents the simplest possible estimation, which
does not require any other input, except for the historical queue-length data. The results
obtained using the Average method were used as a benchmark for comparison with the
results obtained from the RF and GBM methods.

In general, traffic and queue patterns may differ between directions with and without
a prior signalized intersection as well as between peak and off-peak periods. In this paper,
seven different models based on these factors are considered. These models are described
below and illustrated in Figure 4.
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Model 1 (M1): Model with no separation of the direction and period
Model 2 (M2): Model for a direction without a prior signalized intersection and no

separation of the period
Model 3 (M3): Model for a direction with a prior signalized intersection and no

separation of the period
Model 4 (M4): Model for a direction without a prior signalized intersection and a

peak period
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Model 5 (M5): Model for a direction without a prior signalized intersection and an
off-peak period

Model 6 (M6): Model for a direction with a prior signalized intersection and a peak period
Model 7 (M7): Model for a direction with a prior signalized intersection and an

off-peak period
Based on the models described above, the following three equivalent scenarios were

considered in the queue-length estimation:
Scenario 1: Model 1 was used to predict queue lengths in all cases with no separation

of the direction and period.
Scenario 2: Model 2 was used to predict the queue length in a direction without a prior

signalized intersection, and Model 3 was used to predict the queue length in a direction
with a prior signalized intersection.

Scenario 3: Models 4 and 5 were used to predict queue lengths in a direction without
a prior signalized intersection during peak and off-peak periods, respectively. Models 6
and 7 were used to predict queue lengths in a direction with a prior signalized intersection
during peak and off-peak periods, respectively.

In this paper, the queue-length estimation models were constructed using RF and GBM
from the packages in R [35], namely, caret [36] and gbm [37], respectively. To perform RF
modeling using the caret package, the cforest method was used, and the tuning parameter
of this method, mtry, which is the number of randomly selected predictors, was tuned in
the 3–12 range. In GBM, caret was also used for parameter tuning. The GBM parameters
were n.trees, interaction.depth, shrinkage, and n.minobsinnode. The entire dataset was
divided into two subsets. The first 90% of data were used for training and modeling using
a five-fold cross-validation method. The remaining 10% of data were used to test the
prediction performance based on the root mean square error (RMSE) and the mean absolute
percentage error (MAPE).

Figure 5 shows the overall modeling and analysis procedures. The procedures are
summarized as follows:
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1. Import actual queue length and color-code length data into the R program.
2. Create a separate dataset for each of the seven models.
3. Divide each dataset into 90% for training and 10% for testing.
4. For each of the independent variable sets, the training dataset is used for tuning

the hyperparameters of the models. The GBM method uses package caret to tune the
parameters. There are four parameters to tune: n.trees, interaction.depth, shrinkage, and
n.minobsinnode. At first, a wide range of the parameter values were used for tuning.
Subsequently, it is adjusted to a narrower range to fine-tune and seek the best value.

5. Once the optimum parameters are obtained, the GBM model is developed using the
gbm package so that VI analysis can be performed. For the RF method, parameter tuning
and modeling are performed simultaneously by the caret package.

6. The developed models are applied to the test dataset to predict the queue length,
compare it with the actual queue length, and determine the error indices (RMSE and MAPE).

7. Repeat step 4–6 for other sets of independent variables.

3. Results and Discussion
3.1. Performance of the Queue-Length Estimation Models

The prediction performances of the queue-length estimation models obtained from
color-code data using the RF, GBM, and Average methods are presented and compared.
Table 3 shows the RMSE and MAPE from all three scenarios and three sets of independent
variables, whereas Figures 6 and 7 show only the values from IV3 of each scenario and
method. The results show that the lowest values of RMSE and MAPE are obtained in
Scenario 3 with IV3 (combined red; green is used as a reference) using the RF and GBM
methods, respectively. However, when comparing the RMSE and MAPE values in Scenario
3 vs. those in Scenarios 1 and 2, or IV3 vs. IV1 and IV2, no significant difference is observed.
The error values are quite similar in all scenarios and all sets of the independent variables.
Therefore, it is not possible to clearly discuss the differences between the RF and GBM
methods. Nevertheless, the RMSE and MAPE values in both methods are significantly
lower than those obtained using the Average method in all cases.

Table 3. RMSE and MAPE values of all models.

Type of Variable
Random Forest Gradient Boosting Average

RMSE
(Meters)

MAPE
(%)

RMSE
(Meters)

MAPE
(%)

RMSE
(Meters)

MAPE
(%)

Scenario 1
- IV1 71.8337 63.6274 72.7679 63.4070 83.9077 71.8533
- IV2 72.6153 64.5514 72.0657 64.0463 83.9077 71.8533
- IV3 72.5919 64.5336 72.6746 64.3501 83.9077 71.8533

Scenario 2
- IV1 72.1760 63.4921 72.7062 63.7009 81.8285 70.7399
- IV2 71.8395 63.9266 72.2615 63.3056 81.8285 70.7399
- IV3 71.9597 64.5817 73.2521 64.1587 81.8285 70.7399

Scenario 3
- IV1 72.0496 63.4174 72.5952 62.8423 81.6131 70.4689
- IV2 72.2144 63.8694 71.9686 62.9886 81.6131 70.4689
- IV3 71.6170 63.8278 72.3546 62.8304 81.6131 70.4689

The above table shows that the queue-length predictions obtained using the RF and
GBM methods are significantly better than those obtained using the Average method.
Figures 8–10 show the actual queue lengths obtained from the test dataset against the
predicted queue lengths obtained using different methods in Scenario 3 with IV3. Although
the predicted lengths obtained using the Average method can vary slightly depending
on the direction and period, they cannot follow the dynamic change of the actual queue
lengths. On the other hand, the lengths obtained using the RF and GBM methods can
sufficiently follow the dynamic change of the actual queue lengths. Although the values
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obtained from both models still differ considerably from the actual values, their ability
to capture the variations of the actual queue length is significantly better than that of the
Average method.
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It is worth noting that the traffic data from Google Maps is historical data based on
previous measurements. The use of these data for traffic control, particularly with priority,
may be debatable, as control at any given time must be adapted to the current length of the
queue. Based on the prediction accuracy shown in Table 3 and Figures 8–10, the proposed
approach might not be sufficient for control operation, but it might be useful for design
purposes, such as determining the length of additional lanes to turn at an intersection.
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3.2. Variable Importance (VI) Analysis

To better understand how the importance of the color band and its length affect the
queue length and whether this importance differs between cases, the variable importance
(VI) analysis results obtained using the GBM method in Scenario 3 (Models 4–7) with
IV3 are presented. A variable with a high VI value is considered very important and
highly affects the queue-length estimation. The VI analysis results (in percentage and in
descending order) for each model are shown in Table 4 and Figures 11–14.

Table 4. Variable importance (VI) analysis of Scenario 3 with IV3.

M4 M5 M6 M7

Variable VI (%) Variable VI (%) Variable VI (%) Variable VI (%)

C_RED_2 29.616 C_RED_2 26.472 C_RED_3 27.398 ORANGE_2 20.750
C_RED_1 21.448 C_RED_1 25.219 ORANGE_2 20.467 ORANGE_1 19.297
C_RED_3 18.730 ORANGE_2 17.233 C_RED_2 14.254 C_RED_1 16.482

ORANGE_1 11.948 C_RED_3 11.453 ORANGE_3 14.222 C_RED_3 16.192
ORANGE_3 9.398 ORANGE_3 11.244 ORANGE_1 12.813 ORANGE_3 14.517
ORANGE_2 8.857 ORANGE_1 8.376 C_RED_1 10.844 C_RED_2 12.759
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The VI analysis results for Models 4 and 5, which correspond to the cases for a direction
without a prior signalized intersection, show that the importance of the red band near the
intersection is significantly higher than that of the other variables. The first two variables
with the highest VI values are C_RED_2 and C_RED_1. During peak hours (Model 4),
the importance level of the most important variable is significantly different from that of
the second most important variable (29.61% for C_RED_2 vs. 21.45% for C_RED_1). This
is different from the off-peak period, where the importance level of the most important
variable is not significantly different from that of the second most important variable
(26.47% for C_RED_2 vs. 25.22% for C_RED_1).

Comparisons between peak and off-peak periods for the direction with a prior sig-
nalized intersection (Models 6 and 7, respectively), indicate similar and different trends
to those for the direction without a prior signalized intersection (Models 4 and 5). Re-
garding the same trends, during peak hours, the importance level of the most important
variable is significantly different from that of the second most important variable (27.39%
for C_RED_3 vs. 20.46% for ORANGE_2). During off-peak hours, the importance level
of the most important variable is not significantly different from that of the second most
important variable (20.75% for ORANGE_2 vs. 19.29% of ORANGE_1). Especially in
Model 7, the importance level of each variable is not much different. This implies that the
model can only partly capture the dynamic change of the actual queue lengths. However,
the trend that differs from the direction without a prior signalized intersection is in the
order of the variables, where C_RED_2 and C_RED_1 are no longer the top two most
important variables. C_RED_3 and ORANGE_2 or ORANGE_1 are the most important
variables in this case. This may be due to the updating and displaying of the Google Maps
traffic color-code data, which are not real-time data, causing the traffic color-code display
on Google Maps to be inconsistent with the actual queue length obtained from the survey.
In addition, there is a difference in the distribution pattern of the arriving vehicles when a
prior signalized intersection is absent or present. The arrival process for the direction with-
out a prior signalized intersection is random, where vehicles arrive regularly, as opposed to
the cluster-like pattern for the direction with a prior signalized intersection, where vehicles
arrive in a platoon during the green, alternating with gaps during the red of the prior signal.
With such characteristics, the traffic and queue for the direction with a prior signalized
intersection are expected to show a relatively higher variation than that for the direction
without a prior signalized intersection. As a result, the Google Maps color-code data in the
direction with a prior signalized intersection may not be able to reflect well the changes in
the traffic queue compared to those in the direction without a prior signalized intersection.

4. Conclusions

The objective of this paper was the estimation of traffic-queue lengths at signalized
intersections using a new data source, specifically traffic color-code data obtained from
Google Maps. The RF and GBM methods were employed and compared with a simple
estimation method that uses only historical average queue-length data (i.e., the Average
method). The original color-code data were processed to construct three different alterna-
tives of independent variable specifications: (i) considering the colors as actually displayed
on Google Maps, (ii) considering the dark red and red as if they were the same color, and
(iii) using the green as a reference color. This study showed that the RF and GBM methods
achieve similar prediction performance in all scenarios and provide independent variable
specifications. Also, they perform significantly better than the Average method.

The VI analysis for a direction without a prior signalized intersection showed that
the importance of the red band near the intersection is significantly higher than that of
other variables. For a direction with a prior signalized intersection, the importance varies,
depending on the period (peak or off-peak period), and the red band near the intersection
is no longer the most important parameter. The off-peak period model showed that the
importance of the color-code variable is not very different among all variables. The order
of color bands based on their importance also differs between the two directions. This may
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be due to the updating frequency of the Google Maps data, which are not displayed in
real time, causing the color-code data displayed on Google Maps to be inconsistent with
the actual queue length obtained from the survey. Such non-real-time updates along with
the cluster-like vehicle arrival pattern for a direction with a prior signalized intersection,
cannot capture the relatively high dynamic changes in the traffic and the actual queue
lengths. Thus, it is difficult for the model to capture information from the color-code data
to estimate the queue length.

This study is a starting point for the feasibility of estimating queue lengths using
color-code data obtained from Google Maps and provides an alternative to conventional
approaches that use detector data. The proposed approach was able to estimate the queue
length well only to a certain extent. Although the error of the proposed approach is still
relatively high, it is far better than the error obtained using only historical queue-length
data. This error can be attributed to several reasons, especially the non-real-time update of
Google Maps. In addition, the display resolution of the Google Maps color bands, where
the lengths are often displayed in a hierarchical order, may also affect the estimation of the
queue length. Future research direction will be to investigate if the prediction accuracy
of real-time queue-length estimation can be further increased by providing internet data
processing technologies with additional capabilities such as the real-time display of color-
code information and a better display resolution of color-band lengths. Other machine-
learning techniques, such as neural network, support vector machines, and deep learning,
will be adopted and compared to improve prediction accuracy. Another area of focus is to
investigate and estimate the delay time of Google Maps updates, and develop methods to
incorporate such delay time into the estimation procedure.
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