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Abstract: Despite the measures put in place in different countries, road traffic fatalities are still
considered one of the leading causes of death worldwide. Thus, the reduction of traffic fatalities
or accidents is one of the contributing factors to attaining sustainability goals. Different factors
such as the geometric structure of the road, a non-signalized road network, the mechanical failure
of vehicles, inexperienced drivers, a lack of communication skills, distraction and the visual or
cognitive impairment of road users have led to this increase in traffic accidents. These factors can
be categorized under four headings that are: human, road, vehicle factors and environmental road
conditions. The advent of machine learning algorithms is of great importance in analysing the
data, extracting hidden patterns, predicting the severity level of accidents and summarizing the
information in a useful format. In this study, three machine learning algorithms for classification,
such as Decision Tree, LightGBM and XGBoost, were used to model the accuracy of road traffic
accidents in the UK for the year 2020 using their default and hyper-tuning parameters. The results
show that the high performance of the Decision Tree algorithm with default parameters can predict
traffic accident severity and provide reference to the critical variables that need to be monitored to
reduce accidents on the roads. This study suggests that preventative strategies such as regular vehicle
technical inspection, traffic policy strengthening and the redesign of vehicle protective equipment be
implemented to reduce the severity of road accidents caused by vehicle characteristics.

Keywords: road traffic; accident severity; accident prediction; machine learning algorithms

1. Introduction

Traffic accident severity results from the complex interaction between one or more
of the following factors: human, vehicle, road and environment, with the human factor
found to be the most important but also the hardest to change [1–3]. Annually, it is reported
globally that around 1.3 million people die in road traffic accidents, with children and young
adults mostly affected [4]. Also, road traffic accidents contribute to huge financial losses
in term of infrastructure damage, loss of productivity, road accident fund payouts for any
country and the individual involved [4–6]. With so many losses, the reduction/prevention
of traffic fatalities or accidents is one of the factors in attaining global sustainability goals
and becoming a priority in transportation management [7–9]. At any road accident, an
accident report is collected; this report covers different accident attributes that can be used
to further investigate the possible cause of the accident at that particular road section.
However, most of the developing countries and under-developed ones are lagging behind
the rest of the world in the availability of reliable accident data [10].

Additionally, from the accident reports, road sections with frequent accidents can
be determined and are subjected to an accident study that could involve the professional
reconstruction of accident scenes. In the reconstruction of an accident scene, it can be
quite expensive and challenging to recreate the actual behaviour of road users and the
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mechanical performance of the vehicle that contributed to the accident. Thus, the use of
existing accident traffic data and using analytical solutions could be of help in predicting
and averting a future traffic accident for an existing road or a new road network. Overall,
the investigation of the nature of traffic accidents and what causes their severity is crucial
to building better and safer transportation systems [11]. Using data on road accidents that
occurred in the UK in 2020, this study aims to investigate and pinpoint the primary causes
of traffic accidents.

1.1. Current Trends: Road Accident Predictions

Accident predictions have become a necessity in order to identify the main contributing
factors to road traffic accidents and in turn help with providing an appropriate solution
to minimize their adverse effects [8,11,12]. Building a better and safer transportation
system requires a proper understanding of the complex interactions that exist between the
different accident attributes. The accident database forms an enormous database that covers
different accident attributes under the following categories: road users, vehicles, roadway
and environment [1,2]. Methods such as statistical models and artificial intelligence models
have been used to determine and understand the interactions between these attributes in
relation to the severity of the accident [1,2,8,13,14].

However, artificial intelligence models are currently gaining momentum as these
can determine the interactions between variables that would be impossible to establish
directly using statistical models and with the capability of handling and processing large
datasets [11,13–16]. Machine learning (ML) is a branch of artificial intelligence that makes
provision for data analysis, decision making and data preparation for the real-time problem
and allows self-learning for computers with limited complex coding [8,11,13]. Machine
learning identifies data patterns and makes decisions with minimal human intervention.

1.2. Machine Learning and Road Accidents

Machine learning is a data-driven method and it has found application in many real-
world application domains and academic fields [16–19]. In recent years, ML has been
applied in the field of transportation engineering [15,16]. Machine learning has been
explored in the following traffic engineering areas: the identification of road locations
prone to accidents, the determination of the severity of damage/injury from an accident,
the role of road users in traffic accidents, the impact of drinking and driving on injury
severity and the impact of environmental factors, to mention just a few [13,14,16,17,20–22].
Furthermore, researchers have explored the various models available in ML, which are
categorized as supervised, unsupervised and semi-supervised [8,23]. The supervised model
is further categorized as regression and classification. Overall, the proper prediction of
traffic accident severity will help with adequate provision in terms of timely traffic safety
management and strategies [2,6].

Annually, road accidents constitute a significant proportion of the number of serious
injuries reported [4,7,9]. However, it is challenging to identify the specific conditions that
lead to such an event and, hence, it is difficult for the road authority to properly address
the number and severity of road accidents [24,25]. Furthermore, research has shown that
human, vehicle, road and environmental factors play vital roles [1–3,5,6,8,10,12,13,16,26].
Human factors include age [14,16,26–29], gender [12,29], driving experience [30,31], the
influence of alcohol and psychoactive substances [26], et cetera. On the other hand, ve-
hicle factors include vehicle age, engine capacity, type and model, vehicle towing and
articulation [2,12,13,16]. Road factors include road type, the condition of the road, road
class, road geometry and speed limit [3,12,13,16]. Also, environmental factors include the
day of the week, weather and light conditions [1–3]. Overall, of the aforementioned factors,
human factors have been extensively explored and various measures have been put in
place to mitigate them [14,16,26–31]; however, other factors need to be explored. Thus, it is
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difficult to concentrate on one factor and, hence, these questions remain regarding traffic
accidents: (i) which factors contribute directly and indirectly to traffic accident fatality and
(ii) what are the strategies to avert such incidents in the future? In order to answer these
questions and specifically provide impact in the areas of the risk score on the probability of
a driver having a fatal/serious accident solely based on inputs gathered from individual
and vehicle data, this study incorporated the strength of machine learning and the United
Kingdom’s road accidents database. Situational information was analysed to estimate the
severity of an accident [25].

2. Research Objective and Methodology

This study’s main goal is to use analytical methods in ML to analyse traffic accident
data in order to identify all the direct and indirect causes that have a significant impact on
traffic accidents. To accomplish the objective of this study, a creative model was created us-
ing a variety of machine learning approaches, and the accuracy of the model was increased
by employing the most recent and carefully structured datasets. The modelling process
involves four primary stages that entail investigating and getting the datasets ready for
modelling. The process includes attempting to comprehend the tabulated data, coming up
with a better method of handling missing values, using statistical techniques to identify the
factors most likely to cause traffic accidents, training the model using a machine learning
algorithm and then assessing the model’s performance using existing classification metrics.

Traffic Crash Data: UK 2020

The tabular dataset used in this study’s model development was obtained from the
UK’s Department of Transport and covered the year 2020. It is worth noting that the
traffic accident data for year 2020 were impacted by the COVID-19 virus and the relative
social gathering restrictions [32]. However, rather than seeing this as a limitation, it is an
open window to explore other factors rather than human factors, which have been greatly
explored [26–31]. Also, the use of a year’s worth of data in this study is an attempt to
take into account the fact that most developing and undeveloped nations are only getting
started with accident databases [33,34].

At the scene of the accidents in the UK, full information was gathered for each report,
including environmental characteristics such as weather, road type and light conditions,
driver factors such as gender and age, accident descriptors such as severity and police
presence and vehicle descriptors such as age, power, type, model and the number of vehicles
involved [16,35]. Furthermore, the accident data points are unique to the place on the road
network and are used to explain certain aspects of the traffic and road conditions [16,36].

The original dataset contains a total of 135 453 data points with 60 attributes. Each
variable in the dataset was classified as categorical or numerical based on its nature. Because
training time increases exponentially with the number of features, dealing with a lot of
features may, for example, have an impact on how well the model performs. It may also
increase the risk of over-fitting. To simplify the problem and enhance the functionality
of the model, certain highly pointless or unnecessary features were removed [13,16]. The
selected feature variables consisted of the junction control, day of the week, road type, road
surface conditions, sex of driver, age of the driver, age of the vehicles, light conditions,
weather conditions, special conditions at site, speed limit, number of vehicles, vehicle type
and vehicle manoeuvre. Table 1 shows the descriptive statistics for the utilized data. The
justification of these selections is based on previous studies [2,14,16,19]; these variables
have featured as the important variables that contribute to traffic accidents. The accident
severity was the target variable, which was divided into three categories based on the
severity of the resulting personal damage, namely fatalities, serious injuries and slight
injuries. As a result, this study explores the data in order to determine how the chosen
feature variables affect the accident severity.
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Table 1. Descriptive statistics data related to traffic accident.

Variable
Fatal Serious Slight Total

N % N % N % N %

Sex of driver

Male 1394 2 17,121 20 67,028 78 85,543 63.2
Female 288 1 5099 16 27,290 84 32,677 24.1
Not traced 74 0 2211 13 14,947 87 17,219 12.7

Age of driver
<24 337 1 6603 16 34,594 83 41,534 30.7
25–34 373 1 5194 17 24,567 82 30,134 22.2
35–44 294 1 4022 18 18,298 81 22,614 16.7
45–54 274 1 3679 19 15,194 79 19,147 14.1
55–64 249 2 2787 22 9877 76 12,913 9.5
65–74 124 2 1343 24 4084 74 5551 4.1
>75 105 3 803 23 2651 74 3559 2.6

Road type

Roundabout 24 0 1175 14 7370 86 8569 6.3
One way street 5 0 418 13 2753 87 3176 2.3
Dual carriageway 343 2 3680 17 17,928 82 21,951 16.2
Single carriageway 1362 1 18,581 19 76,028 79 95,971 70.8
Slip Road 20 1 346 14 2141 85 2507 1.8
Unknown 2 0 231 7 3046 93 3279 2.4

Speed limit
20 63 0 2348 13 15,073 86 17,484 12.9
30 584 1 13,440 17 65,219 82 79,243 58.5
40 182 2 2451 20 9418 78 12,051 8.9
50 143 2 1163 20 4574 78 5880 4.3
60 574 4 3530 27 8981 69 13,085 9.7
70 210 3 1496 19 5990 78 7696 5.7
Missing 0 0 3 21 11 79 14 0.0

Junction control

Authorized person 3 1 92 17 446 82 541 0.4
Automatic traffic signal 96 1 2286 13 14,845 86 17,227 12.7
Stop sign 3 0 157 17 761 83 921 0.7
Give way or uncontrolled 508 1 10,950 18 49,536 81 60,994 45.0
Not at junction or within 20 m 1146 2 10,804 20 41,041 77 52,991 39.1
Missing 0 0 142 5 2637 95 2779 2.1

Special conditions at site
None 1707 1 23,549 18 104,026 80 129,282 95.4
Roadworks 33 2 310 17 1508 81 1851 1.4
Others 12 4 325 138 1216 457 1366 1
Unknown 4 0 247 8 2703 92 2954 2.2

Number of vehicles
1 496 2 5309 27 14,194 71 19,999 14.8
2 772 1 15,156 16 78,282 83 94,210 69.6
3–5 421 2 3787 19 16,136 79 20,344 15.0
>5 67 7 179 20 654 73 900 0.7

Age of vehicle
0–10 901 1 11,296 17 54,830 82 67,027 49.5
11–20 years 465 1 5678 18 25,929 81 32,072 23.7
21–30 years 34 3 354 28 856 69 1244 0.9
31–40 years 3 3 39 35 71 63 113 0.1
Above 40 years 1 1 28 31 62 68 91 0.1
Missing 352 1 7036 20 27,517 79 34,905 25.8

Vehicle type

Pedal cycle 119 1 3227 23 10,498 76 13,844 10.2
Motorcycle < 500 cc 75 3 2079 76 6698 221 8852 6.5
Motorcycle > 500 cc 147 5 1161 41 1504 53 2812 2.1
Car 1056 2 14,921 28 78,018 170 93,995 69.4
Bus 27 3 351 33 1668 164 2046 2
Truck 275 12 1992 57 8797 231 11,064 8.2
Others 57 15 700 229 2083 556 2840 2.1
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Table 1. Cont.

Variable
Fatal Serious Slight Total

N % N % N % N %

Vehicle manoeuvre

Going ahead 1338 9 14,560 75 53,389 217 69,287 51
Turning left/right/U 127 2 3519 59 13,890 239 17,536 13
Reversing 14 1 238 15 1383 85 1635 1.2
Parked 98 2 1184 20 4581 78 5863 4.3
Slowing/stopping/waiting 65 1 1715 46 13,167 352 14,947 11
Overtaking 66 4 1056 66 3489 231 4611 3
Others 46 2 1336 46 6728 252 8110 6
Missing 2 0 823 19 12,639 181 13,464 10

Day of the week

Monday 267 2 2998 20 11,785 78 15,050 11.1
Tuesday 239 1 3333 18 15,451 81 19,023 14.0
Wednesday 222 1 3403 17 16,018 82 19,643 14.5
Thursday 242 1 3533 17 16,642 82 20,417 15.1
Friday 258 1 3843 18 16,920 80 21,021 15.5
Saturday 250 1 3900 18 17,910 81 22,060 16.3
Sunday 278 2 3421 19 14,540 80 18,239 13.5

Light condition

Daylight: streetlights present 1064 1 16,960 18 78,068 81 96,092 70.9
Darkness: streetlights present
and lit 359 1 5528 19 23,773 80 29,660 21.9

Darkness: streetlights present
but unlit 11 1 176 19 756 80 943 0.7

Darkness: no street lighting 293 5 1377 26 3679 69 5349 3.9
Darkness: street lighting
unknown 29 1 390 11 2990 88 3409 2.5

Weather conditions

Fine without high winds 1473 1 19,760 19 85,416 80 106,649 78.7
Raining without high winds 141 1 2718 17 13,531 83 16,390 12.1
Snowing without high winds 0 0 37 16 189 84 226 0.2
Fine with high winds 37 2 426 22 1470 76 1933 1.4
Raining with high winds 31 2 354 19 1497 80 1882 1.4
Snowing with high winds 0 0 20 29 48 71 68 0.1
Fog or mist—if hazard 30 4 147 20 554 76 731 0.5
Other 33 1 548 13 3536 86 4117 3.0
Unknown 11 0 421 12 3025 88 3457 2.6

Road surface conditions
Dry 1215 1 17,475 18 76,887 80 95,577 70.6
Wet/Damp 522 1 6552 18 29,596 81 36,670 27.1
Snow 0 0 25 15 141 85 166 0.1
Frost/Ice 12 1 171 20 662 78 845 0.6

A pre-processing step was performed before each model development to improve
the model’s prediction capabilities. The noise was reduced by removing the outliers [37].
The data were cleaned and pre-processed to look for missing values that could disrupt
the learning process. A machine learning feature selection method such as the Scikit-learn
Random Forest library (RRID:SCR 002577) was used to identify the most relevant and cor-
related attributes influencing the learning process. These datasets were investigated using
supervised learning to predict the class label based on driver and vehicle characteristics,
weather conditions and road properties [14,19,35].

Since there are often more serious and minor injuries in accidents than fatal ones, the
accident dataset is unbalanced. To overcome this problem, many researchers utilized the
oversampling or undersampling technique on unbalanced data. In this study, to overcome
this problem, SMOTE (Synthetic Minority Oversampling Technique) oversampling for
imbalanced multi-class classification was used to synthesize new examples of the minority
classes so that the number of examples in the minority class more closely resembled or
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matched the number of examples in the majority of classes. This is a very effective type of
data augmentation for tabular data [19].

3. Model Development

A supervised machine learning technique that excels at analysing predictive data is
prediction. It is based on the learning of fresh feature variables recorded into particular
target variables based on relevant feature variable values through training data. It is crucial
to employ cutting-edge prediction algorithms to ensure the best accuracy because of their
capacity for handling complex related factors and their efficacy in handling connected vari-
ables. Multi-class classification algorithms with Sklearn (RRID: SCR 019053) were utilized in
this study, including Decision Tree (DT), Light Gradient Boosting Machine (LightGBM) and
Extreme Gradient Boosting (XGBoost). The justification for the selection of these algorithms
is based on obtained good classification accuracy and noting that Decision Tree requires
less effort for data preparation during pre-processing. Additionally, both LightGBM and
XGBoost enable parallel arithmetic, but LightGBM is more potent than the XGBoost model
due to a faster training speed and occupying less memory, which lowers the communication
cost of parallel learning [14,19]. However, the XGBoost classifier is one of the newest and
most effective machine learning-based prediction algorithms [19,21]. Following a thorough
examination of various machine learning multi-class classification algorithms reported
in the literature, the scalable, flexible, accurate and relatively fast XGBoost algorithm for
classification was chosen to provide more regularized model formalization and better
over-fitting control [14,19,21].

4. Model Evaluation

The goal of developing a predictive model is to create a model that is accurate on
previously unseen data. This can be accomplished by employing statistical methods in
which the training dataset is carefully selected in order to estimate the model’s perfor-
mance on new and unexplored data. The most basic technique of model validation is to
split off a portion of the labelled data and reserve them for evaluating the model’s final
performance. It is critical to preserve the statistical properties of the available data when
splitting them. This implies that in order to prevent bias in the trained model, the data in
the training and test datasets must share similar statistical characteristics with the original
data. The labelled dataset in the current study was divided into 80% training and 20%
testing. The effectiveness of each model was evaluated in turn in order to compare their
performance in terms of confusion matrix, sensitivity, specificity and area under the curve
(AUC) of the receiver operating characteristic (ROC) for the severity of the accident. The
model’s performance was evaluated using a variety of criteria provided by the confusion
matrix. From this particular matrix, it can infer a set of evaluation metrics. One of these
is the accuracy, which is basically the proportion of correct prediction, and it is calculated
as follows [19,37]:

Accuracy =
TP + TN

TP + FP + FN + TN

where TP stands for True Positives, TN stands for True Negatives, FP stands for False Posi-
tives and FN stands for False Negatives, followed by the precision, which is the proportion
of the positive cases that were correctly identified, and it is computed as follows [19,37]:

Precision =
TP

TP + FP

and the recall/sensitivity, which is the proportion of the actual positive cases that were
correctly identified and calculated as follows [19,37]:

Recall =
TP

TP + FN
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and the specificity, which is the proportion of the actual negative cases that were correctly
identified and calculated as follows [19,37]:

Specificity =
TN

TN + FP

and lastly, the F1 score, which is measuring the balance between precision and sensitivity
and can be computed as follows [37]:

F1 score = 2 × Recall × Precision
Recall + Precision

The sensitivity and specificity can indicate whether the algorithm with default or
tuning parameters is best for our data. If correctly identifying positives is more important
in relation to the data, then the algorithm with the higher sensitivity is the best. If correctly
identifying negatives is more important in relation to the data, then the algorithm with
higher specificity is the best.

Using charts is also an easy way to gain a quick level of understanding when eval-
uating a classification model. The receiver operating characteristic (ROC) chart (RRID:
SCR 008551), which is simply a graph of the true positive rate against the false positive
rate, was also carried out in order to provide further evidence. Both macro-average and
micro-average ROC curves were produced. As opposed to a micro-average ROC curve,
which aggregates class participation to determine the average metric, a macro-average
ROC curve measures the metric freely for each class before taking the average. Another
metric derived from this is the area under the curve (AUC), which is the area of the applied
surface under the ROC curve.

5. Results and Discussion

In this work, a total of 135,453 records of UK traffic accidents in the year 2020 were
examined. Fifteen attributes selected using feature selection with ranking were used
with the class variable of the severity of injury to predict the degree of injury severity
in traffic accidents. The statistical analysis results show that male (63.2%) and young
drivers (<24 years old) (30.7%) contribute the most to accidents. Also, the result shows that
cars (67.70%) contributed the most under vehicle type, followed by the pedal cycle (10%).
Additionally, under vehicle manoeuvres, going ahead of others (46%), turning left (18.32%)
and slowing or stopping (5.24%), contributed the most to traffic accident severity. The
number of vehicles at the scene of the accident further contributes to accident severity, with
two vehicles (70%) on the scene taking the lead. The aspect of vehicle age highlighted that
vehicles between 0 and 10 years old contribute more to traffic accidents. Furthermore, it was
observed that accident numbers could depend on the amount of traffic on a particular day,
and most of the accidents occurred on roads where the speed limit was 30 mph (48 km/h).
Thus, more accidents could be expected on highways or major roadways. It was also noted
that most of the accidents occurred during weekends and during daylight hours with
streetlights present, with weather conditions that did not have an adverse effect on driving
(dry road conditions) [2,16,19]. In order to build the prediction models, three different
classification algorithms, such as Decision Tree, LightGBM and XGBoost, were applied to
the dataset. Additionally, 10-fold cross-validation techniques were used to evaluate the
prediction performance, a number of hyper-parameter settings were evaluated for each
model, and the setting yielding the best performing model was chosen [6].

To rank the attributes in this study, Random Forest classification feature importance
was used to highlight the most relevant feature at predicting the target variable, result-
ing in improved model performance. The feature selection method revealed that the
vehicle characteristics, such as the vehicle type [16], vehicle manoeuvre “actions imme-
diately before the accident” [16], the number of vehicles and age of the vehicle [16], had
the greatest impact on accident severity out of the 15 features as depicted in Figure 1.
Also, the age of drivers [12,16] under human characteristics, and speed limit under road
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characteristics [16,19], top the chart. The results show that vehicle characteristics play a
major role in the accidents reported in the UK for the year 2020.
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Figure 1. The Random Forest Classifier’s bar chart for feature importance scores, displayed in
ascending order.

Generally, vehicle characteristics include vehicle dimensions, weight, power, mini-
mum turning radius, speed, acceleration and braking characteristics; however, the vehicle
dimensions in vehicle type stood out. This implies that the width, length and height of
vehicles significantly affects safe overtaking distance. Picking up also on the number of
vehicles, after the understanding of the vehicle type, it is critical to know the number of
vehicles involved in the accident (for example, a head-on collision will be two vehicles
involved), as this will determine the extent of the accident severity. Although various
studies [12,16,38,39] have highlighted human characteristics as the most critical, the results
placed the spotlight on vehicle characteristics as a major factor contributing to traffic ac-
cident severity [16]. This is worth noting as the data used in the study were during the
period with COVID-19 travel restrictions with a limited number of people travelling and
the majority of vehicles not serviced as a result of the restrictions. Nevertheless, it is critical
to point out that human characteristics such as drivers’ years of experience and the details
on drivers’ licences (eligibility to drive) were not documented and this might have changed
the dynamics.

5.1. Decision Tree Classification Algorithm Analysis Result

The outcome of the Decision Tree classification algorithm, which aids in looking at
all possible predictions for each class, is presented and discussed in this paragraph. The
result of the Decision Tree algorithm using its default parameters (DT-D) will be compared
with the one using hyper-parameter settings (DT-H). As seen in Table 2, the Decision Tree
classifier with default parameters was able to predict three classes of accident severity out
of three with an overall accuracy of 84.61%. With hyper parameter tuning, the algorithm
was able to predict the three classes of accident severity with 84.35% overall accuracy, as
shown in Table 3. The slight difference in accuracy score shows that some algorithms
perform better with default parameters. Precision, recall, specificity, F1 score and a false
positive rate with default and hyper tuning parameters were also measured for each class
of accident severity as shown in Tables 2 and 3.
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Table 2. The Decision Tree algorithm analysis result with default parameters includes a summary of
precision, recall, per-class F1-Score, specificity and the false positive rate (FPR) measurements for the
three classes. The overall accuracy of the model was also measured.

Accuracy 84.61%

Predicted Values

Value Precision Recall F1-Score Specificity FPR

Fatal 0.932518 0.957956 0.945066 0.962942 0.037058

Serious 0.779072 0.785760 0.782402 0.889107 0.110893

Slight 0.824731 0.795534 0.809869 0.859503 0.140497

Table 3. The Decision Tree algorithm analysis result with hyper-tuning parameters includes a sum-
mary of precision, recall, per-class F1-Score, specificity and the false positive rate (FPR) measurements
of the three classes. The overall accuracy of the model was also measured.

Accuracy 84.35%

Predicted Values

Value Precision Recall F1-Score specificity FPR

Fatal 0.932267 0.954782 0.943390 0.965584 0.034416

Serious 0.776561 0.778094 0.777327 0.888581 0.111418

Slight 0.819520 0.798393 0.808819 0.853590 0.146409

Additionally, for further analysis the confusion matrix with three rows and three
columns was created to summarize the classification with three classes such as Fatal, Serious
and Slight injury as shown in Tables 4 and 5. As shown, the diagonal with values (20,825,
17,117, 17,528) represents the correct predictions and the other values on the table indicate
incorrect predictions. The algorithm with default parameters correctly predicted more fatal
and serious accident severity than the one with tuned parameters (20,756, 16,950, 17,591),
which correctly predicted more slight injuries as depicted in Table 5. Looking carefully
at the 3 × 3 confusion matrices displayed in Tables 4 and 5, it is worth noting that the
Decision Tree algorithm with default parameters performed significantly better. It predicted
more fatal and serious injuries as true positives. After filling out the confusion matrix
table, two useful metrics, such as sensitivity and specificity, were evaluated. Referring
to Table 2, sensitivity for fatal injury indicates that 95.80% of fatal injuries were correctly
identified positives and specificity for fatal injury indicates that 96.30% of fatal injuries were
correctly identified negatives. On the other hand, sensitivity for serious injury indicates
that 78.60% of serious injuries were correctly identified positives and specificity for serious
injuries indicates that 88.91% of serious injuries were correctly identified negatives. Finally,
sensitivity for slight injury indicates that 79.55% of slight injuries were correctly identified
positives and specificity for slight injuries indicates that 85.95% of slight injuries were
correctly identified negatives.

Table 4. Confusion matrix for multi-class classification of Decision Tree algorithm analysis results
with default parameters.

Confusion Matrix

Fatal Serious Slight

Fatal 20,825 690 224

Serious 1166 17,117 3501

Slight 341 4164 17,528



Sustainability 2023, 15, 2014 10 of 19

Table 5. Confusion matrix for multi-class classification of Decision Tree algorithm analysis result
with hyper-tuning parameters.

Confusion Matrix

Fatal Serious Slight

Fatal 20,756 749 234

Serious 1194 16,950 3640

Slight 314 4128 17,591

With the help of the ROC curve shown in Figure 2, it further examines how well
the Decision Tree with default settings will predict the three classes of accident severity
considering different thresholds. Additionally, the AUC gives a single value metric that
makes it easy to comprehend how well the classification model performs in predicting each
class. For the perfect unrealistic curve (a point at the upper left corner of the chart), the area
under the curve will be 100%, while for the completely random class (the diagonal line on
the chart) the area under the curve will be 50%. A class that performs worse than a random
class will have an area below 50%. Here, class-1(fatal) is more accurate in this case than
class-2(serious) and class-3(slight), as class-1 has a larger area under the curve than classes
2 and 3.
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Figure 2. Receiver Operating Characteristic (ROC) curves for each accident severity class of Decision
Tree algorithm analysis result with default parameters. The area under the ROC curve is reported in
the legend.

Regarding the Decision Tree algorithm with hyper-tuning parameters as shown in
Table 3, sensitivity for fatal injury show that only 95.47% of fatal injuries were correctly
identified positives and specificity for fatal injury shows that 96.55% of fatal injuries were
correctly identified negatives. Additionally, sensitivity for serious injuries shows that
77.80% of serious injuries were correctly identified positives and specificity for serious
injuries indicates that 88.85% of serious injuries were correctly identified negatives. Finally,
sensitivity for slight injuries shows that 79.83% of slight injuries were correctly identified
positives and specificity for slight injuries shows that 85.35% of slight injuries were correctly
identified negatives.

Figure 3 shows the resulting ROC chart of Decision Tree with hyper-tuning settings.
The blue curve of the Fatal class is closer to the y-axis than the Serious and Slight classes
and has a more moderate AUC of 0.96 than other classes. Overall, tuning the parameters
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slightly improves the AUC of the Decision Tree results in predicting the Slight class of
accident severity. Both macro-average and micro-average ROC curves were also produced.
Macro-averaged ROC curve, AUC: to be calculated.
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Figure 3. Receiver Operating Characteristic (ROC) curves for each accident severity class of Decision
Tree algorithm analysis result with hyper-tuning parameters. The area under the ROC curve is
reported in the legend.

Calculate the AUC for each class separately, then average them out. For the AUC,
micro-averaged ROC curve: calculate true positive and false positive rates for each class
and then use that to calculate the overall AUC. The micro- and macro-average ROC curve
values obtained with hyper-tuning parameters are lower than those obtained with default
parameters, i.e., AUC (dec.tree tuning) micro, macro = 0.88, 0.88, while AUC (dec.tree
default) micro, macro = 0.89, 0.89 as shown in Figures 2 and 3.

5.2. LightGBM Classification Algorithm Analysis Result

Tables 6 and 7 provide an overview of the metrics defined for a multi-class confusion
matrix and, in particular, the overall accuracy of the model, recall, precision and F1-
score, specificity and false positive rate (FPR) in order to compare the performance of the
LightGBM algorithm with the default (LGBM-D) and hyper-tuning parameters (LGBM-
H). The algorithm with default parameters was able to predict three classes of accident
severity out of three with an overall accuracy of 81.00%. With the hyper-tuning parameters
there was a significant improvement in the model accuracy of the accident severity. It
jumped from 81.00% for default parameters to 84.72% for tuned parameters as depicted in
Tables 6 and 7.

Furthermore, the confusion matrix with three rows and three columns was created to
summarize the classification with three classes such as Fatal, Serious and Slight injury as
shown in Tables 8 and 9. As shown, the diagonal with default values (18,882, 12,492, 21,729)
and tuning values (19,875, 13,920, 21,747) represent correct predictions and the other values
on the tables indicate incorrect predictions. The algorithm with hyper-tuning parameters
correctly predicted more fatal, serious and slight accident severity than the one with default
parameters as depicted in Tables 8 and 9. Looking carefully at the 3 × 3 confusion matrices
displayed in Tables 8 and 9, it is worth noting that the LightGBM classification algorithm
with hyper-tuning parameters did much better. It predicted more fatal, serious and slight
injuries as true positive. After filling out the confusion matrix table, two useful metrics such
as sensitivity and specificity were evaluated. Referring to Table 6, sensitivity for fatal injury
indicates that 86.85% of fatal injuries were correctly identified positives and specificity for
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fatal injury indicates that 90.80% of fatal injuries were correctly identified negatives. On
the other hand, sensitivity for serious injuries indicates that 57.34% of serious injuries were
correctly identified positives and specificity for serious injuries indicates that 94.35% of
serious injuries were correctly identified negatives. Finally, sensitivity for slight injuries
shows that 98.62% of slight injuries were correctly identified positives and specificity for
slight injuries shows that 73.76% of slight injuries were correctly identified negatives.

Table 6. The LightGBM algorithm analysis with default parameters includes a summary of precision,
recall, per-class F1-Score, specificity and the false positive rate (FPR) measurements of the three
classes. The overall accuracy of the model was also measured.

Accuracy 81.00%

Predicted Values

Value Precision Recall F1-Score Specificity FPR

Fatal 0.824038 0.868577 0.845721 0.907980 0.092019

Serious 0.834748 0.573448 0.679855 0.943503 0.056497

Slight 0.785092 0.986203 0.874231 0.737649 0.262350

Table 7. The LightGBM algorithm analysis with hyper-tuning parameters includes a summary of
precision, recall, per-class F1-Score, specificity and the false positive rate (FPR) measurements of the
three classes. The overall accuracy of the model was also measured.

Accuracy 84.72%

Predicted Values

Value Precision Recall F1-Score Specificity FPR

Fatal 0.869423 0.914255 0.891276 0.981875 0.068124

Serious 0.890026 0.639001 0.743908 0.960705 0.039294

Slight 0.803777 0.987019 0.886023 0.763637 0.236362

Table 8. Confusion matrix for multi-class classification of LightGBM algorithm analysis result with
default parameters.

Confusion Matrix

Fatal Serious Slight

Fatal 18,882 2273 584

Serious 3928 12,492 5364

Slight 104 200 21,729

Table 9. Confusion matrix for multi-class classification of LightGBM algorithm analysis result with
hyper-tuning parameters.

Confusion Matrix

Fatal Serious Slight

Fatal 19,875 1476 388

Serious 2943 13,920 4921

Slight 42 244 21,747

According to Table 7, sensitivity for fatal injury indicates that 91.42% of fatal injuries
were correctly identified positives and specificity for fatal injury indicates that 98.20%
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of fatal injuries were correctly identified negatives. On the other hand, sensitivity for
serious injuries indicates that 63.90% of serious injuries were correctly identified positives
and specificity for serious injuries indicates that 96.07% of serious injuries were correctly
identified negatives. Finally, sensitivity for slight injuries indicates that 98.70% of slight
injuries were correctly identified positives and specificity for slight injuries indicates that
76.36% of slight injuries were correctly identified negatives.

Figure 4 shows the resulting ROC chart of the LightGBM model with default settings
of every type of injury. The AUC of fatal injury was 0.96, for serious injury it was 0.86
and for slight injury it was 0.96, all of which show that the model has a decent ability to
predict outcomes/different classes. Figure 5 shows that the LightGBM model with hyper-
tuning settings performed marginally better in predicting the AUC of the three classes.
Both macro-average and micro-average ROC curves were also produced. The micro- and
macro-average ROC curves values obtained with hyper-tuning parameters are slightly
different to those obtained with default parameters, i.e., AUC (LightGBM tuning) micro,
macro = 0.96, 0.95 while AUC (LightGBM default) micro, macro = 0.94, 0.92 as shown in
Figures 4 and 5.
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5.3. XGboost Classification Algorithm Analysis Result

The performance of the hyper-tuned XGboost classification algorithm (XGB-H) was
compared to that of the algorithm with default parameters (XGB-D). The performance of
several predictions of each class of accident severity was the foundation for the compari-
son. Tables 10 and 11 show the results of different multi-class metrics based on different
measurements such as the overall accuracy of the model, recall, precision and F1-score,
specificity and false positive rate (FPR), which helped to analyse the behaviour of the
same model by tuning different parameters. The algorithm with both default and hyper
tuning parameters has a similar performance in terms of predicting three classes of accident
severity out of three with a significant increase in overall accuracy.

Table 10. The XGboost algorithm analysis with default parameters includes a summary of precision,
recall, per-class F1-Score, specificity and the false positive rate (FPR) measurements for the three
classes. The overall accuracy of the model was also measured.

Accuracy 74.50%

Predicted Values

Value Precision Recall F1-Score Specificity FPR

Fatal 0.732652 0.804269 0.766792 0.854394 0.145605

Serious 0.736050 0.471722 0.574962 0.915814 0.084186

Slight 0.760052 0.956611 0.847078 0.717572 0.282428

Table 11. The XGboost algorithm analysis result with hyper-tuning parameters includes a summary
of precision, recall, per-class F1-Score, specificity and the false positive rate (FPR) measurements of
the three classes. The overall accuracy of the model was also measured.

Accuracy 81.55%

Predicted Values

Value Precision Recall F1-Score Specificity FPR

Fatal 0.824642 0.872211 0.847760 0.907980 0.092019

Serious 0.835927 0.584466 0.687937 0.942908 0.057091

Slight 0.796466 0.988018 0.881961 0.753249 0.246751

Furthermore, the confusion matrix with three rows and three columns was created
to summarize the classification with three classes such as Fatal, Serious and Slight injury
as shown in Tables 12 and 13. As shown in the tables, the diagonal with default values of
(17,484, 10,276, 21,077) and hyper- tuning values of (18,961, 12,732, 21,769) represents correct
predictions and the other values on the tables indicate incorrect predictions. The algorithm
with hyper-tuning parameters correctly predicted more fatal, serious and slight accident
severity classes than the one with default parameters, which correctly predicted more slight
injuries as depicted in Tables 12 and 13. Looking carefully at the two confusion matrix
tables, it is worthy of note that the XGboost classification algorithm with hyper-tuning
parameters outperformed the one with default parameters. It predicted more fatal, serious
and slight injuries as true positives. After filling out the confusion matrix table, two useful
metrics such as sensitivity and specificity were evaluated. Referring to Table 10, sensitivity
for fatal injury indicates that 80.43% of fatal injuries were correctly identified positives and
specificity for fatal injury indicates that 85.44% of fatal injuries were correctly identified
negatives. On the other hand, sensitivity for serious injuries indicates that 47.17% of serious
injuries were correctly identified positives and specificity for serious injuries indicates that
91.58% of serious injuries were correctly identified negatives. Finally, sensitivity for slight
injury shows that 95.66% of slight injuries were correctly identified positives and specificity
for slight injuries shows that 71.75% of slight injuries were correctly identified negatives.



Sustainability 2023, 15, 2014 15 of 19

Table 12. Confusion matrix for multi-class classification of XGboost algorithm analysis result with
default parameters.

Confusion Matrix

Fatal Serious Slight

Fatal 17,484 3435 820

Serious 5674 10,276 5834

Slight 706 250 21,077

Table 13. Confusion matrix for multi-class classification of XGboost algorithm analysis result with
hyper-tuning parameters.

Confusion Matrix

Fatal Serious Slight

Fatal 18,961 2281 497

Serious 3986 12,732 5066

Slight 46 218 21,769

According to Table 11, sensitivity for fatal injury shows that 87.22% of fatal injuries
were correctly identified positives and specificity for fatal injury indicates that 90.80%
of fatal injuries were correctly identified negatives. On the other hand, sensitivity for
serious injuries shows that 58.44% of serious injuries were correctly identified positives
and specificity for serious injuries indicates that 94.30% of serious injuries were correctly
identified negatives. Finally, sensitivity for slight injuries shows that 98.80% of slight
injuries were correctly identified positives and specificity for slight injury indicates that
75.32% of slight injuries were correctly identified negatives.

However, ROC curve analysis was also carried out for additional support. The resulting
ROC graph and the area under the curve of the XGboost model with default and hyper-tuning
parameters for each type of injury are shown in Figures 6 and 7. It has been demonstrated
that the normal setting for fatal injury AUC ROC was 0.91, for serious injury it was 0.78
and for slight injury it was 0.95, whereas the hyper-tuning setting for fatal injury was 0.96,
for serious injury it was 0.86 and for slight injury it was 0.96, indicating good predictive
power for the model with both default and hyper-tuning parameters for fatal class injury.
Both macro-average and micro-average ROC curves were also produced. The micro- and
macro-average ROC curve values obtained with hyper-tuning parameters are slightly different
to those obtained with default parameters, i.e., AUC (dec.tree tuning) micro, macro = 0.94,
0.93 while AUC (dec.tree default) micro, macro = 0.90, 0.88 as shown in Figures 6 and 7.
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the legend.

5.4. Comparative Analysis of Machine Learning Techniques

Using the radar chart, a comparative analysis for all machine learning techniques is
presented in Figure 8. The result shows that overall the Decision Tree models (default
and hyper-turning) performed better than the other developed models based on F1 score,
precision, recall, specificity and accuracy value in predicting fatal accidents. However,
the LightGBM models performed better in terms of precision and accuracy for serious
injuries but not so well on F1 score and recall. It can be observed overall that XGboost
had the weakest performance for the fatal and serious injury models. Furthermore, it can
be observed that the hyper-tuning parameter enhanced the prediction power of all three
models. Overall, the prediction accuracies in the study presented are comparable to the
results of those from previous studies on traffic crash severity [13,19].
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6. Conclusions

The direct objective of this study was to use three groups of data-driven methodologies
to account for the negative effects of traffic accidents on society. It was discovered that
Decision Tree models did quite well in terms of number. Also, considering the confusion
matrix, it is worth noting that the Decision Tree algorithm did much better. It predicted
more fatal and serious injuries as true positives. The accuracy score is lower compared
to the LightGBM hyper-tuning algorithm, and it is worth noting that the LightGBM and
XGboost algorithms predicted the majority of slight accidents, and those numbers are
high overall in the dataset. The confusion matrix helps us to understand which algorithm
worked better in terms of looking at all the different predictions of each class. Furthermore,
the results further highlight the possibility that the high performance of the Decision Tree
algorithm can predict traffic accident severity and also provide reference to the critical
variables that need to be monitored in order to reduce accidents on the roads. Overall,
it was discovered that vehicle and road user characteristics played a leading role in the
severity of accidents in the year 2020 in the UK.

Under vehicle characteristics, the vehicle type is observed to be the highest importance
score, thus implying the necessity of furnishing the first accident respondent with infor-
mation of the vehicle type, as the vehicle type will determine the number of passengers
on board and consequently the possible number of accident causalities [16]. Following the
vehicle type, the feature importance scores rank vehicle type, vehicle manoeuvre, number
of vehicles, age of the vehicle and age of drivers, respectively.

Considering the results of the study, the following can be concluded:
(i) Prediction of Future Traffic Accidents—in the study, 20% of the year 2020 data were

used to predict the annual accident data. Although the predictions via the machine learning
techniques are a little higher than those of the actual accident data, it is worth noting
that the machine learning techniques have excluded the imbalance in data and data with
errors. Thus, with the scarcity of traffic accident data for developing and underdeveloped
countries [13], the quarterly accident data of the year can be used to establish trends and
analyse and make the necessary transportation planning for the whole year in terms of
accident prevention strategies. Also, the understanding of the accident trends needs to be
carefully monitored to consider the effect of various holidays.

(ii) Machine Learning as Identifier of Significant Traffic Variables—the study also
highlighted vehicle characteristics as one of the important variables in the accident severity;
however, it is worth noting that the data used for this study were impacted by COVID-19
travel restrictions. Overall, it can be concluded that human and vehicle characteristics
play an important role in traffic accidents. The necessity of identifying the significant
variables is to assist in strategic planning and sensitizing road users to the causes of road
accidents, especially during accident peak season. As a result, this study concludes that
more emphasis be placed on vehicle characteristics during the road geometric design phase.
To reduce the severity of road accidents caused by vehicle characteristics, preventative
strategies such as regular vehicle technical inspection, traffic policy strengthening and the
redesign of vehicle protective equipment must be implemented. [40,41].

(iii) Vehicle technical inspection—more emphasis should be placed on the vehicle’s
roadworthiness, as vehicle characteristics contribute to accident severity while policy
strengthening can be ensured by continuously enforcing traffic control laws (such as
speed limits and seatbelt/helmet use enforcement) by traffic police. Vehicle protective
equipment focuses on the design of different vehicle modes other than cars and protective
equipment, which may result in fewer injuries [40,41]. Also, the study emphasizes the need
to incorporate more variables in terms of driver characteristics such as years of driving
experience and recent involvement in any other traffic accident as this might affect the
traffic accident. On a final note, this study concludes that machine learning models can be
used to determine traffic accident fatalities under three severity levels such as fatal, serious
injuries and minor injuries.
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