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Abstract: Sustainable management of groundwater resources highly relies on the accurate estimation
of recharge. However, accurate recharge estimation is a challenge, especially in data-scarce regions, as
the existing models are data-intensive and require extensive parameterization. This study developed a
process-based hydrologic model combining local and remotely sensed data for characterizing recharge
in data-limited regions using a Basin Characterization Model (BCM). This study was conducted in
Raya and Kobo Valleys, a semi-arid region in Northern Ethiopia, considering both the structural
basin and the surrounding mountainous recharge areas. Climatic Research Unit monthly datasets
for 1991 to 2020 and WaPOR actual evapotranspiration data were used. The model results show
that the average annual recharge and surface runoff from 1991 to 2020 were 73 mm and 167 mm,
respectively, with a substantial portion contributed along the front of the mountainous parts of the
study area. The mountainous recharge occurred along and above the valleys as mountain-block and
mountain-front recharge. The long-term estimates of the monthly recharge time series indicated
that the water balance components follow the temporal pattern of rainfall amount. However, the
relation of recharge to precipitation was nonlinearly related, showing the episodic nature of recharge
in semi-arid regions. This study informed the spatial and temporal distribution of recharge and
runoff hydrologic variables at fine spatial scales for each grid cell, allowing results to be summarized
for various planning units, including farmlands. One third of the precipitation in the drainage basin
becomes recharge and runoff, while the remaining is lost through evapotranspiration. The current
study’s findings are vital for developing plans for sustainable management of water resources in
semi-arid regions. Also, monthly groundwater withdrawals for agriculture should be regulated in
relation to spatial and temporal recharge patterns. We conclude that combining scarce local data
with global datasets and tools is a useful approach for estimating recharge to manage groundwater
resources in data-scarce regions.

Keywords: water balance; groundwater; recharge; runoff; fine scale

1. Introduction

Water scarcity is increasingly becoming a monumental challenge, particularly in arid
and semi-arid regions, where the water supply primarily comes from groundwater sources,
as surface water sources are inadequate and unreliable [1–4]. In these areas, especially
in rapidly expanding urban and agricultural regions, sustainable groundwater resource
development and management rely on reliable estimates of recharge and its variability
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in time and space [5–10]. Accurately estimating recharge is one of the most challenging
water-balance components as it is highly spatially and temporally variable and is affected
by many factors (e.g., climate, topography, vegetation, soil, and geology) [11–16].

Many studies have developed approaches for recharge estimations at different scales [17].
However, the reliability of the methods depends on many factors such as catchment
characteristics, availability, and accuracy of field data [18]. While most methods fail to
accurately estimate the recharge, they do not account for spatial and temporal variabil-
ity [14]. Recharge rates and distributions are difficult to directly quantify and costly to
measure over larger spatial scales [15,16]. Hydrologic models are becoming more popular
and widely used for estimating recharge; however, they are data-intensive and require
extensive parameterization and detailed hydroclimate and hydrogeological data [14,18–20].
Additionally, most of the hydrologic models rely on water balance in some capacity, fail to
account for bedrock properties, and overlook the influence of spatially varying bedrock
conductivity on recharge estimates [21]. Other approaches that explicitly account for the
influence of bedrock conductivity are two- and three-dimensional finite-element (FE) nu-
merical models, although the computational requirements in the models covering small
areas limit their applicability [22–24].

Another method that balances the numerical computational burden with the accuracy
of the simulation by refining water balance components while accounting for bedrock
permeability is the Basin Characterization Model (BCM). The BCM was developed by Flint
and Flint [13] at the U.S. Geological Survey (USGS). The BCM is a physically-based gridded
regional water-balance model that considers aquifer bedrock properties and vegetation-
specific actual evapotranspiration to estimate recharge and runoff [13,21,24,25]. The model
is superior to other watershed models as it spatially characterizes the amount of water
that infiltrates below the root zone at a rate corresponding to bedrock conductivity that
can become groundwater recharge [26,27]. To this end, the BCM has been successfully
applied to reliably estimate recharge and runoff in many parts of the world, for example, in
California and Western United States [12,26,28–30]. The recharge and runoff components
have also been used as boundary conditions for numerous groundwater flow models and
software [31–36]. In addition, the model is used for a variety of applications, including
the evaluation of the effects of urbanization, wildfire, and forest management on hydrol-
ogy [37,38]; the evaluation of the effects of soil management on recharge, climatic water
deficit, and forage production [39,40]; and the modeling of future climate projections to
evaluate water availability [27,41].

Recent advancements in fine-scale modeling enable the creation of models for
landscape-scale planning for decision making in agriculture and ecosystems [21,42,43]. The
BCM has the capacity to execute hydrologic variables at fine spatial grid resolution to quan-
tify hydrologic dynamics at scales computationally prohibitive to capture the dynamics
of the water balance components. This enabled the BCM to reliably estimate recharge by
using fine-scale data that reflect landscape heterogeneity and complexity. Fine-scale data
allow for the consideration of the greater spatial and temporal distribution of recharge
estimates [44,45], which increases the accuracy of contaminant transport and groundwater
flow models [46]. For example, a study by Ackerly and Loarie [47] used PRISM data at 4 km
to plan conservation, examine the difference compared to the fine-scale spatial heterogene-
ity using a model of climatic impacts at 30 m, and find that a fine-scale process captures
topographic variability and corresponding variations in air temperature, providing infor-
mation and better interpretation for conservation planning. Similar studies by [26] and
Thorne and Boynton [29,30,48] used the BCM with a spatial resolution of 270 m × 270 m to
estimate recharge and assess the magnitude and spatial patterns of historical and future
hydrologic changes in California watersheds, and they found that a finer spatial resolution
is important to quantify hydrologic dynamics at scales applicable to hydrologic modeling
for regional landscape applications.

The current study developed a reliable approach for estimating recharge by refin-
ing water balance components and using finer-resolution input data (10 m by 10 m) by
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combining local data with global datasets in a data-scarce semi-arid region. The BCM is
capable of executing hydrologic variables at a finer spatial grid resolution to reliably quan-
tify recharge as it captures spatial heterogeneity and complexity. A two-step calibration
approach was applied to improve the recharge estimate: first, to vegetation-specific actual
evapotranspiration and the underlying bedrock properties, and second, to the observed
streamflow gauge. The results of this study can be used as input boundary conditions
to a three-dimensional groundwater flow model to support groundwater management
decisions for future sustainable groundwater development and use. This study’s findings
will also help guide recharge estimation by combining local data with global datasets and
tools to manage groundwater resources in data-limited regions.

2. Materials and Methods
2.1. Study Area
2.1.1. Location, Topography, and Slope

The Raya and Kobo Valleys are located in the Afar Depression, the western edge
of Ethiopia’s main rift valley, the Great Rift Valley in East Africa. The study area lies
between 11.92◦ and 12.90◦ N and 39.30◦ and 39.90◦ E and consists of two valleys, Raya
Valley in Tigray Region and Kobo Valley in Amhara Region (Figure 1). It covers an area of
3506 km2 with elevation ranging from 1018 m above mean sea level in the valley plain to
3948 m above mean sea level on the top of the mountain. The study area is characterized
by a hilly topography and has slopes ranging from 2% in the valley plain to 75% in the
mountainous areas.
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The valley’s residents have access to surface water and groundwater to meet the water
needs of the valley. The increasing population and agricultural growth have increased
water demand in the valley. The surface water system is ephemeral and prone to water
shortages during drought. To ensure a stable water supply, the Raya and Kobo Valleys’
community relies on groundwater as the primary water source for domestic water supply
and agricultural irrigation. Increasing water demand in the Raya and Kobo Valleys has
led to an expansion of groundwater use without proper management of groundwater
resources [49].

2.1.2. Geology or Geomorphology

The East African Great Rift System is a place where the final stages of a continental
breakup are observed and actively deforming [50]. Because of its location, the valley is
geologically complex in structure, stratigraphy, and lithology. The formation of the geologic
structure is controlled by tectonic events that led to the development of the rift system and
is characterized by normal faults and a series of marginal grabens that formed the valley
floor [51]. These marginal grabens are narrow and elongated depressions bounded on either
side by opposing normal faults. Tectonic evolution has formed mountain ranges that bound
the marginal grabens on the western and eastern sides. The framework runs north–south,
through the valley on the west and the ridge on the east. The valley is predominantly
alluvial, composed of deposits of sand, gravel, boulders, clay, and volcanic rocks underlain
by Mesozoic limestone (Figure 2). The study area typically consists of two principal
geomorphic features: mountain terrain and lower valley floors of the alluvial plains.
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2.1.3. Water Resources

The groundwater basin, the lower elevation zones, are characterized by a semi-arid
climate. The topography affects both precipitation and temperature. Precipitation is
generally higher in the mountains and lower on valley floors, whereas temperature is
warmer on valley floors and cooler in the mountains. The study area’s rainfall pattern is
bimodal, with the main rain occurring in the summer from June to September and with
the highest rainfall recorded in July and August. In this study, June, July, August, and
September—the main rainy months—are considered as wet seasons, and the remaining
months are considered as dry seasons. The mean annual rainfall of the study area based on
two met stations in the valley is 668 mm, whereas it is 927 mm based on three stations in
the highlands. The average monthly temperature of the study area ranges from 17 ◦C to
26 ◦C in the valley and 12 ◦C to 17.5 ◦C in the highland areas.

2.2. Datasets
2.2.1. Observed Data

Soil data from two sources were used. The Ethiopian Construction Design & Super-
vision Works Corporation office (WCDSWC) contains 1-to-50,000-scale soil data for the
Kobo and Raya Valleys. We combined the WCDSWC map with the national soil database
developed by the Ethiopian Ministry of Agriculture (MoA). Using the combined soil maps,
we identified six main soil types in the drainage basin (Figure 3a). The valley area is
primarily covered by silty clay and black clay soil types. The western, mountainous parts
of the drainage basin are primarily loam, sandy loam, and loamy sand soil types. We also
developed a land use map from the MoA national digital soil map. This map identified six
major land use types: crops, shrubland, trees, water area, bare land, and developed-built
areas. The land use of the study area is dominated by crops and shrubland (Figure 3b).
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Maximum and minimum temperatures, precipitation, wind speed, relative humidity,
and sunshine duration data were collected from Ethiopia’s National Meteorological Agency
(NMA) (http://www.ethiomet.gov.et/). The datasets (2000–2015) were obtained from
five meteorology stations distributed across the study area. Historical stream gauge data

http://www.ethiomet.gov.et/
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were obtained from two gauging stations from 1985 to 2005. Following the data quality
assessment, one stream gauging station was found reliable and used for model calibration
and validation.

2.2.2. Climate Datasets

Precipitation and maximum and minimum air temperature from the Climatic Research
Unit (CRU 4.05; [52]) transient monthly dataset (1991–2020) of 40 km native resolution were
downscaled to 10 m for our model consumption. CRU datasets are known for their higher
temporal resolution, and since the first release in 2000, they have been widely utilized by
many users in diverse research areas and applications [42,52,53].

The spatial downscaling was performed on the 40 km data grids to 1 km grids by the
USGS team, and then the methods described in Flint and Flint [26] were used to produce
finer-resolution grids of 10 m by 10 m. This approach uses gradient-plus-inverse-distance
squared interpolation (GIDS) [54]. GIDS combines the location and elevation of the new
finer-resolution grid relative to the existing coarse-resolution grid cells for parameter
weighting; it is shown to not introduce additional uncertainty in the downscaling process
and, instead, improves the estimate of the climate parameter by taking into consideration
the deterministic influence of location and elevation on climate [26]. The downscaled grid
data are then bias-corrected using regression coefficients generated from meteorological
data of the study area using the Bouwer and Aerts [55] method, applied and described in
detail [26,56].

Potential evapotranspiration (PET) was calculated using the modified Priestley–Taylor
equation [57], which considers topographic shading, cloud cover, and vegetation density.
The method helps to look at where the sun is relative to the slope and consider the effects of
ridges that would block the sun during any part of the day. This is the step at which detailed
information about the geospatial layers is considered to improve the characterization of
landscape processes.

There were no field observations of actual evapotranspiration (AET) data for the
study area. As a surrogate for AET, remotely sensed data were used. Remote-sensing-
based AET estimates from the Moderate-Resolution Imaging Spectrometer (MOD16 AET)
and the Food and Agricultural Organization of the United Nations (FAO) portal (water
productivity open access portal, WaPOR) have been widely used as options to calibrate and
validate hydrologic models in Ethiopia [58–61] and other countries [62,63]. For this study,
we used WaPOR as it offers continuous actual evapotranspiration data across Africa and
the Middle East at three spatial resolutions (250 m, 100 m, and 30 m). The quality of the
WaPOR dataset was evaluated across Africa and resulted in enough quality to contribute
to the understanding and monitoring of local and continental water processes and water
management [58]. WaPOR would suit many users’ needs due to the low biases and good
spatial variability across Africa. Due to the limited AET data availability across Africa,
the reliability of nine remote-sensing-derived evapotranspiration products was evaluated
by [64] at the basin scale using the water balance approach, and WaPOR was among the
three recommended to users due to the low biases and good spatial variability across Africa.
Chukalla and Mul [65], in their work on irrigation performance assessment for sugarcane
estates in Mozambique, tested WaPOR data and recommended it because the datasets can
be presented as a substitute choice that offers a significant benefit, particularly in regions
where there are limited in situ data. As a result of the elevation variation from 1018 m in the
valley plain to 3948 m above mean sea level on the top of the mountain, distinct variations
in AET were observed in the study area (Figure 4). The average AET was used to develop
monthly vegetation parameters (Kv) for model calibration to match the modeled AET to
estimates that have been developed using remotely sensed observations.
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2.3. Methodology
2.3.1. General

The current study used BCM, a monthly, gridded, regional water-balance model,
to estimate recharge and runoff using soils, geology, topography, and transient monthly
maps of precipitation, air temperature, and potential evapotranspiration datasets. The
model is locally calibrated and simulated for 1991 to 2020 water years. Generally, the
methodology consists of three processing steps (Figure 5): pre-processing, model run, and
post-processing. Fortran codes and QGIS 3.2 software [66] were used to pre-process the
input files, run the model, and summarize and perform analysis of BCM outputs.

Climate data (precipitation and air temperature), potential evapotranspiration, geospa-
tial layers (geology, soils, and vegetation), and the DEM of the study area were assem-
bled. All input climate grids and maps of the property layers were prepared at the same
10 m × 10 m grid scale for the operation of the model. The model simulation, including
water balance calculation, was performed in the second step. The model combined spatially
distributed climate data and monthly PET data along with the DEM, bedrock conductivity
(Ks), soil properties (water content at field capacity and wilting point, soil depth, porosity,
and soil hydraulic conductivity), and simulated recharge and runoff maps along with time
series of monthly and yearly outputs. The BCM only simulated vertical flows, and the
lateral flow simulations were separately performed using an Excel spreadsheet in step three,
the post-processing step. In this step, runoff, baseflow, and recharge calculations were
performed from BCM recharge and runoff simulation output maps using equations that
combine recharge and runoff using scaling parameters and exponential functions to match
measured hydrographs. A detailed description of the BCM post-processing equations can
be found in Flint and Flint [13].
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2.3.2. Description of the Basin Characterization Model (BCM)

BCM is a water balance model that runs using Fortran code and relies on monthly
time series of spatially distributed climate parameters input files, including potential
evapotranspiration, spatially distributed properties of soils, and geologic property layer
files and control files for model parameterization (Figure 5). All input files (Table 1) are in
ASCII text format and have the same grid scale, dimension, and map projection, similar
to the digital elevation model (DEM). The BCM control file (Appendix A) contains input
and output file names, LOOKUP tables of vegetation for density and growth parameters,
hydraulic conductivity corresponding to the geologic unit identification for each bedrock
geologic type, and the period for the model simulation (1991–2020). The main output files
generated by BCM simulations include monthly gridded maps of output variables for excess
water, actual evapotranspiration, soil-water storage, climatic water deficit, recharge, runoff,
and monthly and yearly output files that include time series for the simulation period.

Table 1. Input data and output hydrologic variables for the Basin Characterization Model (BCM).

Variable Source Type Description

Climate datasets (maximum
and minimum air temperature

and precipitation (PCP))

Climatic Research Unit
transient monthly dataset Model input

Maximum and minimum monthly air
temperature (◦C) and total monthly

precipitation (mm)

Potential evapotranspiration
(PET) Modeled (pre-processed) Model input

Total amount of water that can evaporate
from ground surface and transpire from

plant bodies (mm)
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Table 1. Cont.

Variable Source Type Description

Digital elevation model
(DEM) USGS Model input Raster representation of ground surface

elevation data

Geology (GEOL) MoWE and CDSWC Model input Geology types with bedrock conductivity
values (Ks, mm/day).

Soil (SOL) MoWE and CDSWC Model input

Soil data with properties (soil depth (m),
porosity (m/m), saturated hydraulic

conductivity (mm/day), water content at
field capacity (m water/m soil), and

permanent wilting point (m water/m soil))

Vegetation (VEG) MoWE and CDSWC Model input
Vegetation types with density and growth
parameters and monthly crop coefficient

values (Kc)

Excess water (EXC) BCM Model output Amount of water remaining in the system,
mm (PCP-PET)

Soil water storage (STR) BCM Model output Average amount of water stored in the
soil (mm)

Actual evapotranspiration
(AET) BCM Model output

Amount of water that evaporates and
transpires that is available in soil water

storage above wilting point (mm)

Climatic water deficit (CWD BCM Model output

Evaporative demand not met by available
water, mm (a measure of how much more

water could have been evaporated or
transpired from a site covered by a standard

crop, had that water been available,
PET-AET)

Runoff (RUN) BCM Model output
Amount of water that becomes runoff, mm

(amount of water that exceeds total storage +
rejected recharge)

Recharge (RCH) BCM Model output

Amount of water that penetrates below the
root zone, mm (infiltration that reaches the

water table and changes the amount of water
in saturated storage)

In the BCM, the water balance conceptual model considers unimpaired conditions and
solves the following equation in the monthly time step: precipitation—evapotranspiration—
sublimation—runoff—recharge—change in soil storage = 0. In this study, the snow process,
one of the components of the BCM, was not considered, as the study area is in a semi-arid
climatic region, and no snow was observed. The BCM begins with precipitation and air
temperature input followed by the calculation of PET from solar radiation with topographic
shading and cloudiness. Then, gridded PET, precipitation, and maximum and minimum
air temperature are used to produce available excess water. The excess water provides
the water available in the watershed for water balance calculation (Figure 5). This excess
water occupies the soil profile and, depending on the soil properties and conductivity of
the underlying bedrock, it becomes either recharge or runoff. Generally, BCM simulates
what moves below the root zone that has the potential to become groundwater recharge.
In wetter regions, it may return to streams as baseflow, while in arid regions with losing
streams, it may move downward through the unsaturated zone. The thickness and porosity
of the unsaturated zone will dictate when and if the recharge reaches the aquifer.

The excess water that exceeds the total soil storage (porosity) becomes runoff, or, if
it is less than porosity but greater than field capacity, it percolates through the soil profile
to become recharge at the rate of bedrock conductivity on a monthly time step. The water
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less than field capacity will be calculated as actual evapotranspiration at the rate of PET
until it reaches the wilting point. Then, runoff and recharge are combined to calculate
basin discharge in post-processing and calibrated to the measured stream flows. The
climate water deficit, the evaporative demand that exceeds the available water, is calculated
by subtracting the actual evapotranspiration from PET. The model calculates hydrologic
variables on a grid cell basis and runs the model at a fine spatial resolution of 10 m by 10 m.
The fine resolution enables the capture of the dynamics of the water balance components
that contributes to the reliable recharge estimation.

2.4. Model Performance Evaluation

An antecedent condition switch was used to initialize the model run, and the cali-
bration period covered 13 years (1984–1996), with wet, normal, and dry years observed
over this period. Six parameters were calibrated manually: LAI (leaf area index to allow
for calculations of vegetation density variables that are used to change the sensitivity to
match the measured data), UpRate and DnRate (variables used to determine how quickly
vegetation grows back from a disturbance at a rate controlled by the amount of precipitation
for that month), UpLimit and DnLimit (parameters within which the maximum yearly LAI
can vary as a result of the variability of climate), and RootDepth (allows the depth of soil to
be increased to simulate the storage of water below the mapped soil depth). Initially, the
default values were adopted from [13] and changed as necessary to achieve the desired
calibration results (Appendix B).

BCM calibration started by calibrating AET to match the available data. Monthly veg-
etation parameters (Kv) were developed based on the actual evapotranspiration (AET_rs)
ratio from remotely sensed data to the average monthly time series of PET for the period
of the record generated from the BCM for each vegetation type. These Kv values were
used for the BCM to calculate the actual evapotranspiration (AET_bcm) to be compared
with AET_rs. The calibration parameters, vegetation density and growth parameters, were
iteratively adjusted to optimize the agreement of the AET of the BCM with the AET of
remote sensing data. The initial and final values of the vegetation density and growth
parameters used in this study are listed in Appendix B.

The estimate of basin discharge as a time series requires further calculation as BCM
calculates recharge and runoff for every grid cell. The BCM recharge and runoff are cali-
brated using a post-processing calculation and the observed streamflow gauges. Calibration
was performed by adjusting the net conductivity of bedrock and coarse alluvium values.
The values were iteratively adjusted to alter the proportion of excess water that becomes
recharge and runoff for optimizing the match between the calculated basin discharge and
measured streamflow.

BCM model results are for unimpaired stream flows. An unimpaired stream flow
represents natural hydrologic flow conditions where water is not diverted from nor sup-
plied to a basin, for example, due to agricultural or municipal diversions. The unimpaired
recharge and runoff from the watershed upstream of the gauges are calculated by summing
the BCM grid cell values upstream of the gauging station. The total upstream, unimpaired
flow is compared to the measured stream gauge using post-processing equations. This
BCM recharge and runoff calibration process is performed by considering equations for
in-stream gains and losses, including base flow, seepage, and deep flow to the aquifer, by
adjusting coefficients (scaling factors and exponents), explained in detail [13]. Then, an
independent five-year dataset (1997–2001) was used to validate the model.

The model was then assessed for performance using three goodness-of-fit statistics:
Nash–Sutcliffe Efficiency (NSE), Coefficient of Determination (R2), and Percent Bias (PBIAS).
Nash–Sutcliffe efficiency [67] measures the match between the simulated and observed
stream flow pattern and is widely used to evaluate the performance of hydrologic models.
The Coefficient of Determination (R2) is the measure of collinearity between simulated and
measured data [68] and is suggested as a useful comparative statistic by [69]. Percent Bias
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(PBIAS) estimates the percentage trend of simulated data to be greater or smaller than the
observed data [70]. The equations for the three goodness-of-fit statistics are

NSE = 1 − ∑n
i=1
(
Qsim,i − Qobs,i

)2

∑n
i=1
(
Qobs,i − Qobs,i

)2 (1)

R2 =

[
∑n

i=1
(
Qobs,i − Qobs,i

)
×
(
Qsim,i − Qsim,i

)]2[
∑n

i=1
(
Qobs,i − Qobs,i

)2
]
×
[
∑n

i=1
(
Qsim,i − Qsim,i

)2
] (2)

PBIAS =
∑n

i=1
(
Qobs,i − Qsim,i

)
× (100)

∑n
i=1
(
Qobs,i

) (3)

where Qsim is the simulated streamflow; Qobs is the observed streamflow (m3/s); the
overbar symbol denotes the mean of the observed and simulated streamflow values; i is
the time step (monthly); and n is the number of days of the simulation period.

The calibrated BCM model was then used to simulate recharge and runoff as gridded
maps for the simulation period (1991–2020). The analysis then focused on the long-term
trends of recharge as a monthly, seasonal, and yearly average, for the thirty-year simula-
tion period.

3. Results and Discussion
3.1. BCM Calibration and Validation

For calibration of AET, vegetation parameters are developed and calibrated using the
actual evapotranspiration of remote sensing (AET_rs) and modeled actual evapotranspira-
tion from BCM (AET_bcm). The time series of monthly AET_rs data and AET_bcm values
calculated with the BCM for the calibration period (2009–2020) were plotted and showed
good agreement with adjusted model parameters (Figure 6). Vegetation parameters were
used to adjust the AET_bcm to match based on the sensitivity to changes in annual precipi-
tation. Figure 6b shows monthly AET for 2009–2020 with AET_bcm matched to AET_rs.
The BCM underestimated most peaks but well captured the trend and the magnitude of
AET compared to the remote sensing data. Figure 6 reveals the validity of the water balance
component estimates with growth parameter adjustment compared with no parameter
adjustment. AET remote sensing data can be considered as an alternative in the absence of
measured data.

Calibration of the BCM recharge and runoff to measured streamflow was performed
by plotting streamflow data from the Golina gauging station against BCM simulated stream-
flow and precipitation. We used the Golina sub-basin, for which the bedrock conductivity
corresponding to the geologic types located within the subbasin was iteratively changed
to alter the proportion of excess water that becomes recharge or runoff to optimize the
match between the simulated sub-basin discharge and measured streamflow. The initial
and calibrated values of the Ks are given in Appendix C. The model was calibrated for
twelve years (1985–1996) and validated for five years (1997–2001) (Figure 7). The gauging
station used for calibration has no impairments, increasing the model’s performance as
BCM produces unimpaired runoff. Then, the model’s performance was evaluated using
the previously defined goodness-of-fit statistics (Table 2).

Table 2. Result of statistical analysis of model calibration and validation.

Performance Measures Calibration Validation

R2 0.83 0.78
NSE 0.78 0.75

PBIAS 2.28 8.34



Sustainability 2023, 15, 15887 12 of 25

Sustainability 2023, 15, x FOR PEER REVIEW 11 of 25 
 

 

PBIAS = ∑ Q , − Q , × 100∑ Q ,  (3)

where Qsim is the simulated streamflow; Qobs is the observed streamflow (m3/s); the overbar 
symbol denotes the mean of the observed and simulated streamflow values; i is the time 
step (monthly); and n is the number of days of the simulation period. 

The calibrated BCM model was then used to simulate recharge and runoff as gridded 
maps for the simulation period (1991–2020). The analysis then focused on the long-term 
trends of recharge as a monthly, seasonal, and yearly average, for the thirty-year simula-
tion period.  

3. Results and Discussion 
3.1. BCM Calibration and Validation 

For calibration of AET, vegetation parameters are developed and calibrated using the 
actual evapotranspiration of remote sensing (AET_rs) and modeled actual evapotranspi-
ration from BCM (AET_bcm). The time series of monthly AET_rs data and AET_bcm val-
ues calculated with the BCM for the calibration period (2009–2020) were plotted and 
showed good agreement with adjusted model parameters (Figure 6). Vegetation parame-
ters were used to adjust the AET_bcm to match based on the sensitivity to changes in 
annual precipitation. Figure 6b shows monthly AET for 2009–2020 with AET_bcm 
matched to AET_rs. The BCM underestimated most peaks but well captured the trend 
and the magnitude of AET compared to the remote sensing data. Figure 6 reveals the va-
lidity of the water balance component estimates with growth parameter adjustment com-
pared with no parameter adjustment. AET remote sensing data can be considered as an 
alternative in the absence of measured data. 

 

Figure 6. Monthly AET comparison for remote sensing and BCM simulated for Raya and Kobo
Valley with (a) no growth parameter adjustment and (b) growth parameters adjusted for annual
precipitation variability.

Sustainability 2023, 15, x FOR PEER REVIEW 12 of 25 
 

 

Figure 6. Monthly AET comparison for remote sensing and BCM simulated for Raya and Kobo Val-
ley with (a) no growth parameter adjustment and (b) growth parameters adjusted for annual pre-
cipitation variability. 

Calibration of the BCM recharge and runoff to measured streamflow was performed 
by plotting streamflow data from the Golina gauging station against BCM simulated 
streamflow and precipitation. We used the Golina sub-basin, for which the bedrock con-
ductivity corresponding to the geologic types located within the subbasin was iteratively 
changed to alter the proportion of excess water that becomes recharge or runoff to opti-
mize the match between the simulated sub-basin discharge and measured streamflow. 
The initial and calibrated values of the Ks are given in Appendix C. The model was cali-
brated for twelve years (1985–1996) and validated for five years (1997–2001) (Figure 7). 
The gauging station used for calibration has no impairments, increasing the model’s per-
formance as BCM produces unimpaired runoff. Then, the model’s performance was eval-
uated using the previously defined goodness-of-fit statistics (Table 2). 

 
Figure 7. Calibration and validation time series for comparison of the measured discharge and the 
discharge calculated with the BCM in the catchment area of the Golina discharge measuring station. 

Table 2. Result of statistical analysis of model calibration and validation. 

Performance Measures Calibration Validation 
R2 0.83 0.78 

NSE 0.78 0.75 
PBIAS 2.28 8.34 

NSE values for the monthly streamflow calibration and validation are 0.78 and 0.75, 
respectively. According to the model performance ratings’ recommended statistics for a 
monthly time step, BCM simulated the streamflow trends very well, as shown by the sta-
tistical results, which agree with the graphical results. The R2 values are 0.83 and 0.78 for 
both calibration and validation, respectively, which indicates that the model performance 
for streamflow residual variation showed very good performance. The PBIAS values 
showed 2.28% during calibration and 8.34% during validation. The magnitude of simu-
lated monthly streamflow values was within the very good range (PBIAS < ±10) for cali-
bration and validation. Generally, the model showed a good performance with values 
slightly higher for calibration than validation. The overall performance revealed that the 
model could be considered for analyzing historical and future hydrological changes (re-
charge and runoff estimation). The calibration and validation performance indicates that 
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discharge calculated with the BCM in the catchment area of the Golina discharge measuring station.

NSE values for the monthly streamflow calibration and validation are 0.78 and 0.75,
respectively. According to the model performance ratings’ recommended statistics for
a monthly time step, BCM simulated the streamflow trends very well, as shown by the
statistical results, which agree with the graphical results. The R2 values are 0.83 and 0.78 for
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both calibration and validation, respectively, which indicates that the model performance
for streamflow residual variation showed very good performance. The PBIAS values
showed 2.28% during calibration and 8.34% during validation. The magnitude of simulated
monthly streamflow values was within the very good range (PBIAS < ±10) for calibration
and validation. Generally, the model showed a good performance with values slightly
higher for calibration than validation. The overall performance revealed that the model
could be considered for analyzing historical and future hydrological changes (recharge and
runoff estimation). The calibration and validation performance indicates that the model
can be locally calibrated for smaller watersheds, increasing the model’s performance as
watershed impairments can be easily assessed and evaluated.

3.2. Recharge and Runoff Estimates

This study analyzed the generated in-place recharge and runoff output through BCM
simulations as gridded maps and monthly and yearly time series outputs of the long-term
trends for the simulation period (1991–2020). The long-term estimates of monthly recharge
and runoff time series were computed over the entire catchment area of 3506 km2 at a
horizontal grid resolution of 10 m by 10 m (Figure 8). The modeling results show that
recharge and runoff in the study area are temporally variable. The estimated recharge
is generally lower than the estimated runoff. The estimated monthly recharge (1991 to
2020) ranges from zero to 126.22 × 106 m3, while the runoff ranges from 2.04 × 106 m3 to
295.56 × 106 m3.
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Figure 8. Raya and Kobo Valleys simulated monthly recharge and runoff for water years 1991–2020.

The long-term estimates of monthly recharge and runoff time series indicated that the
water balance components follow the temporal pattern of rainfall amount. This implies that
rainfall variability and the number of dry and wet episodes determine the rate and pattern
of the water balance components. However, the relation of recharge to precipitation is not
linearly related, and it is observed that it requires the exceedance of precipitation to produce
substantial recharge. During dry months of zero or minimum observed precipitation, all
precipitation is lost to evapotranspiration and soil-moisture replenishment. The simulated
recharge showed zero values during the dry to low precipitation months. During months
of high precipitation, for example, a small portion of precipitation is lost to evapotranspi-
ration and soil-moisture replenishment, and the remaining contributes to recharge and
runoff. That is why significant runoff peaks are always observed ahead of recharge. It
is noticed from Figure 8 that the most notable peaks of runoff occur in July and August,
whereas for recharge, the peaks start in July and end in September. In September, a more
significant portion of the precipitation (24% of rainfall amount) contributes to recharge.
This nonlinearity, in fact, reflects that changes in evapotranspiration and soil moisture
are not proportional to changes in precipitation. In the mountains, a larger proportion of
annual precipitation becomes runoff and recharge. However, in general, in the valley area,



Sustainability 2023, 15, 15887 14 of 25

evapotranspiration and soil-moisture replenishment remove most incoming water, thus
preventing conditions that lead to runoff and recharge.

The modeling result indicated that the valley floor and the adjacent mountain area
receive different mean monthly recharges (Figure 9). The mean monthly recharge ranged
from 0 mm (December to March) to 46 mm in August (accounting for 17% of rainfall
amount). From December to March, there was low rainfall and the watershed was dry;
therefore, the available rainfall first satisfies the moisture deficit in the catchment before
contributing to recharge. Then, a small amount of recharge was observed in the month of
April and the proportion of precipitation to contribute to recharge continued increasing
until September where 11.64 mm (24% of rainfall amount) of recharge was observed.
Similarly, the mean monthly runoff ranged from 0 mm in December–March to the 84 mm
peak in August. The recharge and runoff minimum values were observed on the valley
floor of the study area, with the maximum occurring in the mountainous part. A higher
proportion of recharge (over 85% of the annual recharge) occurred in July, August, and
September during periods of high rainfall. On the contrary, during the dry months, there
was no recharge. This causes increased landscape stress or climatic water deficit, which, on
the other hand, increases the reliance on withdrawing groundwater to meet water demands
in the valley. The estimated hydrologic derivatives of this study result, the recharge and
runoff quantities can be used to plan for water and land resource demands. Monthly
groundwater withdrawals should consider the spatial and temporal recharge patterns.
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Recharge and runoff were also observed to spatially vary, where the maximum is
estimated in the volcanic rocks of the mountains and the minimum on the valley floor of
the alluvial deposits. Figure 10 shows the yearly average spatial variation in the estimated
recharge and runoff for the groundwater basin and the surrounding mountain from 1991
to 2020. The average annual recharge varies from a minimum of 0 mm on the valley floor
of the alluvial aquifer to a maximum of 200 mm in the high elevations of the volcanic
mountains. Similarly, the average surface runoff varies from a minimum of 0 mm on the
valley floor to a maximum of 300 mm in the mountains. The average amount for the
study area is 73 mm for recharge and 169 mm for runoff. One third of the rainfall in the
drainage basin becomes recharge and runoff, while the remaining two-thirds is lost through
evapotranspiration. Despite the considerable percentage of rainfall amount being lost to
evapotranspiration, more water is able to infiltrate into the soil and percolate to recharge the
groundwater system in the wet months, particularly in August, which coincides with the
month of the highest rainfall in the basin. The result indicates that the recharge represents
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a reasonable distribution of the hydrologic conditions throughout the study area, including
precipitation timing and variation and varying bedrock types and soil depths.
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The western part of the study area is topographically elevated and mountainous, with
thin soils that cover the underlying, predominantly Ashange basalt. This mountainous part
is thus topographically and geologically distinct from the adjacent lowland areas, which are
relatively flat and underlain by thick unconsolidated sediments of alluvial basin-fill deposits
that form highly productive aquifers (Figure 2). Higher elevations receive proportionately
higher amounts of precipitation and experience lower air temperatures than the foothills
and valley bottoms. This was confirmed as the BCM simulated recharge and runoff maps
showed significantly higher values in the highlands (Figure 10a). The BCM generates
recharge and runoff maps indicating the quantity and where in the watershed they are
generated. Substantial recharge typically does not occur in the center of a structural basin
without a perennial or intermittent streamflow therein. However, a significant component
of recharge to basin aquifers occurs in coarse alluvium along the mountain front in semi-arid
climates [25,71–73].

Precipitation is the most important variable contributing to the variation in recharge
in this study. The amount of precipitation is the highest controlling factor for the spatial
recharge estimation, which confirms the result from the findings of Kim and Jackson [74],
who found that precipitation had the strongest effect. Nolan and Healy [75] also studied
the factors influencing the spatial variation in recharge in the Eastern United States and
confirmed that precipitation is the region’s most influencing factor for variation. Our study
area is a semi-arid climate characterized by an extreme water deficit from evaporation
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exceeding precipitation. This illustrates the nonlinear relationship of precipitation to
recharge in a semi-arid watershed. Describing the episodic nature of recharge as illustrated
by [76], occurring when precipitation by far exceeds PET, the rainfall in previous months
should first satisfy the moisture deficit in the catchment before contributing to recharge.
The study in the semi-arid climate in Western Australia by Skrzypek and Siller [77] also
confirms the same result, showing that recharge is episodical and occurs only after a
considerable amount of precipitation, while all other precipitation events are quickly lost
to evaporation [76].

The long-term average results of BCM modeling for Raya and Kobo Valleys are
summarized in Table 3. Over 81% of the total annual recharge in the drainage basin occurs
in the wet season, while the remaining 19% occurs during the dry season. Dry season
recharge spatially varies between 0 mm on the valley floor and 50 mm in the mountains,
whereas most recharge occurs in the wet season, with a variation from 0 mm for 3% of the
area on the valley floor to 200 mm for 2% of the area in the mountains (Figures 11 and 12).
The average annual runoff also shows a similar pattern to recharge, with 83% during the
wet season and the remaining 17% contribution during dry seasons to the annual runoff.
During the dry season, the runoff varies between 0 mm and 70 mm from the valley floor to
the mountains, respectively, while an enormous runoff occurs during the summer rainy
season between 0 mm for 3% of the area in the valley and 250 mm for 9% of the higher
volcanic area. The dry season is characterized by high evapotranspiration and little surface
runoff, often resulting in no recharge. In the wet season, the surface runoff increases, but
evapotranspiration drops because of lower temperatures. Hence, more water is available
for recharge.

Table 3. Long-term recharge and runoff simulated for Raya and Kobo Valleys with BCM for water
years 1991–2020 in mm.

Parameter Kobo and Raya
(Area = 3506 km2)

Volcanic Mountain (Western
Part, Area = 2042 km2)

Alluvial Aquifer (Valley Area,
Area = 1464 km2)

Annual Precipitation 799.28 920.54 630.14
Recharge 73.32 98.12 38.72
Runoff 167.22 235.22 72.37

Wet Precipitation 479.99 561.00 367.00
Recharge 59.23 78.61 32.21
Runoff 137.29 204.5 43.51

Dry Precipitation 312.13 366.00 237.00
Recharge 14.39 22.41 3.21
Runoff 30.26 48.28 5.12
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Figure 11. Percentage of annual and seasonal precipitation, recharge, and runoff occurrence in the
volcanic mountain and the alluvial aquifer—the groundwater basin.



Sustainability 2023, 15, 15887 17 of 25

Sustainability 2023, 15, x FOR PEER REVIEW 17 of 25 
 

 

Figure 11. Percentage of annual and seasonal precipitation, recharge, and runoff occurrence in the 
volcanic mountain and the alluvial aquifer—the groundwater basin. 

  

Figure 12. Maps of mean seasonal recharge for Raya and Kobo Valleys’ study area for water years 
1991–2020 during (a) the wet season and (b) the dry season. 

Simulated recharge and runoff are also dependent on soil types. For the light soil 
types, loamy and sandy loam soil, recharge shows higher values, while for the heavier 
soils (silty clay and black cotton soil), recharge shows lower values. As a result, the west-
ern volcanic mountains have a relatively high recharge due to the high annual rainfall and 
loamy and sandy loam soil. On the contrary, in the lowland areas, in the eastern part of 
the study area, a relatively low recharge amount is calculated due to silty clay and black 
cotton soil in addition to the low rainfall and high evapotranspiration rate amount com-
pared to the western highland areas. This has indicated that on the valley floor with 
thicker soil relative to the mountain part, a greater volume of water is needed than for the 
thin soil in the mountain part to exceed the soil-water storage capacity of the root zone. 
When the soil-water storage capacity is high, and the hydraulic conductivity of the soil is 
low, for example, for the silt clay, the drainage through the root zone occurs slowly, and 
evapotranspiration has more time to remove stored water between periods of precipita-
tion and run-on from the gentle slopes on the valley floor. A high runoff of over 250 mm 
occurs on loam, sandy loam, and loamy sand soil types in high-slope areas in western 
volcanic mountains. In contrast, low runoff occurs in silty clay and black cotton soil in 
alluvial aquifers in the valley due to the gentle topography. The results shown demon-
strate that most of the recharge occurs in the mountains part. This was an expected result 
because, as indicated above, the mountains typically have higher precipitation, lower air 
temperatures, and thinner soils relative to the valley floors. 

Figure 12. Maps of mean seasonal recharge for Raya and Kobo Valleys’ study area for water years
1991–2020 during (a) the wet season and (b) the dry season.

Simulated recharge and runoff are also dependent on soil types. For the light soil
types, loamy and sandy loam soil, recharge shows higher values, while for the heavier soils
(silty clay and black cotton soil), recharge shows lower values. As a result, the western
volcanic mountains have a relatively high recharge due to the high annual rainfall and
loamy and sandy loam soil. On the contrary, in the lowland areas, in the eastern part
of the study area, a relatively low recharge amount is calculated due to silty clay and
black cotton soil in addition to the low rainfall and high evapotranspiration rate amount
compared to the western highland areas. This has indicated that on the valley floor with
thicker soil relative to the mountain part, a greater volume of water is needed than for the
thin soil in the mountain part to exceed the soil-water storage capacity of the root zone.
When the soil-water storage capacity is high, and the hydraulic conductivity of the soil is
low, for example, for the silt clay, the drainage through the root zone occurs slowly, and
evapotranspiration has more time to remove stored water between periods of precipitation
and run-on from the gentle slopes on the valley floor. A high runoff of over 250 mm occurs
on loam, sandy loam, and loamy sand soil types in high-slope areas in western volcanic
mountains. In contrast, low runoff occurs in silty clay and black cotton soil in alluvial
aquifers in the valley due to the gentle topography. The results shown demonstrate that
most of the recharge occurs in the mountains part. This was an expected result because, as
indicated above, the mountains typically have higher precipitation, lower air temperatures,
and thinner soils relative to the valley floors.

Land use and land cover also influence the simulated recharge and runoff. For
cultivation areas, there is an apparent influence of the seasons. It is assumed that the land
in the dry season is almost bare, which results in increased surface runoff and higher actual
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evapotranspiration. The wet season is characterized by a higher annual rainfall, cooler air
temperature, and reduced actual evapotranspiration, enabling higher recharge.

The average annual recharge estimated is 73 mm, accounting for 9% of the mean annual
precipitation. The average yearly surface runoff estimated is 167 mm, accounting for 21%
of the mean annual precipitation. This result is comparable to many studies that estimated
recharge and runoff using the WetSpass model in Ethiopia with similar climatic conditions.
For example, for Northern Ethiopia, ref. [78] estimated 7.9% of recharge and 13.7% of
surface runoff of the mean annual precipitation, and for the southwestern escarpment of
the main Ethiopian Rift, ref. [79] estimated 9.4% of recharge and 20% of surface runoff of
the mean annual precipitation. In this regard, the current study’s findings confirm evidence
from previous work conducted in volcanic aquifers with variable topography [80], where
the spatial variation in recharge is influenced by topography, geomorphology, geology,
and climatic setting, and higher recharges are observed in or adjacent to steep-sloping
topographies, whereas valley bottoms experienced small recharges.

The spatially and temporally distributed estimates of recharge and runoff provided
a means to investigate the fundamental concepts and evaluate mechanisms that control
recharge in the study area. The effects of precipitation, soil properties including thick-
ness, and hydraulic permeability of the underlying geologic materials were evaluated by
using the BCM. As explained earlier, the study area is characterized by two geomorphic
features—the surrounding mountains and the alluvial basin floor—which is the structural
groundwater basin in the study area. The observed recharge in the mountain includes
infiltration from precipitation and streams near mountain fronts and percolation through
the mountain block, reaching the adjacent alluvial basin floor. Conceptually, this process
is classified into two recharge processes. One is as a mountain-block recharge, where the
water recharges directly into the bedrock and the groundwater inflows to a lowland aquifer
from an adjacent mountain block. The other is as a mountain-front recharge, where a
fault-controlled recharge occurs to the coarser sediments that are present along the basalt-
alluvium contact, veneered by thin soils and that grade into the finer alluvium on the valley
floor. Many studies have recognized the importance of mountain-front and mountain-block
recharge as the main sources of water for arid and semi-arid regions [71,73].

4. Conclusions

In the ever-increasing water scarcity around the world, sustainable management of
groundwater resources is of prime concern, in particular in arid and semi-arid regions.
However, the data paucity in these regions and the limitations in available approaches
are challenges in regard to precisely estimating groundwater recharge—pivotal for the
sustainable use and development of groundwater. Therefore, the current study developed
an approach for a reliable estimation of recharge by combining local and global datasets
using a Basin Characterization Model (BCM). The execution of the two-step calibration
method was adopted to reduce the uncertainty in the recharge estimate. This study was
conducted in the Raya and Kobo Valley basins, a semi-arid area in Northern Ethiopia,
covering 3506 km2. Climatic Research Unit monthly datasets (1991 to 2020) and WaPOR
evapotranspiration data were used.

The model results show that the recharge and runoff are spatially and temporally
variable. The average annual recharge ranged from 0 mm (3% of the area in the valley’s
center) to about 200 mm (2% of the area in the adjacent western range). The average annual
runoff ranged from 0 mm (3% of the area in the middle of the valley) to 300 mm (12% of
the area at the highlands). Over 80% of the annual recharge and runoff occurs during the
rainy season. The average annual recharge was estimated at 73 mm, about 9% of the mean
annual precipitation, while the surface runoff was found at 167 mm constituting 21% of the
mean annual precipitation.

The estimated monthly recharge and runoff time series (1991 to 2020) indicated that
the water balance components follow the temporal pattern of precipitation amount. The
quantified recharge in the alluvial deposits on the valley floor was found to be low because
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of the deep soil holding the water and the lowland areas receiving low amounts of precipita-
tion. The valleys, which are relatively open and warmer, have a higher evapotranspiration,
and the mountainous part experiences a lower evapotranspiration due to its high elevation
and colder climate.

The capacity of watershed models such as the BCM to simulate at a finer spatial resolu-
tion (e.g., 10 m by 10 m) allows for overcoming data scarcity problems at smaller watershed
levels. The recent improvements in water balance modeling enabling the refinement of
water balance components contributed to an improvement in its precise estimation. More-
over, the water balance models were crucial in making data available in data-scarce regions
that can be used as a boundary condition for the three-dimensional groundwater model
to improve groundwater water modeling. Generally, in semi-arid regions suffering from
data availability challenges, using water balance models by merging local and global data
sources enables reliable estimation of the spatial and temporal distribution of hydrologic
variables to assess water availability and develop management strategies for coping with
the ever-increasing water demand. This could be further enhanced by coupling the BCM
results as a boundary condition to a conjunctive use and landscape simulation model of the
valley floor, such as MODFLOW-OWHM [31,32,35,36,81] for water resources management.

The improvement in the BCM focused on refining the actual evapotranspiration com-
ponent, consequently enabling reliable recharge estimation. The improvement in this
component was enabled by the availability of a national, gridded actual-evapotranspiration
product from the WaPOR remotely sensed data. The main limitation of the model ca-
pabilities of the current version of the BCM is the reliance on a land use static property
layer, which does not account for the temporal variation in the impact of land use land
cover change on the water balance components. Hence, future predictions should take this
limitation into consideration for improvement.

The results of the current study are crucial for water managers and stakeholders to
develop plans for sustainable groundwater resource management. The results from this
study can also be used to provide inputs to a three-dimensional groundwater model to
analyze the available resources against the growing water demands for future groundwater
availability and management. In general, the water balance model BCM, climate datasets,
and remote sensing data are viable options for the reliable estimation of the recharge
and runoff in data-scarce developing regions of the world for sustainable management of
groundwater resources.
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Initial value 0 to 1 1 to 3.5 0.5 to 1 1 to 2.5 0.5 to 1 0 to 2.5
Shrubland 1.00 1.50 0.75 1.40 0.55 0.25
Grassland 1.00 2.00 0.80 1.50 0.70 1.00
Tree 1.00 1.30 1.00 1.10 0.98 1.20
Urban 1.00 2.00 1.00 1.20 0.80 1.50
Water 1.00 1.00 1.00 1.50 0.00 0.00
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Irrigated crops 1.00 1.00 1.00 1.00 0.50 0.00
Eucalyptus 1.00 2.00 0.85 1.35 0.65 0.50
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Appendix C

Table A2. Calibrated bedrock conductivities. Results of final calibrated bedrock conductivities (source
of initial estimate: Ethiopian Construction Design & Supervision Works Corporation (CDSWC)
office; [13]).

Geologic Type Bedrock Conductivity, Ks (m/day)
Initial Value Calibrated Value

Alluvium 6.65 2.8
Ashange basalt 0.032 0.031
Fursa rhyolite 0.0005 0.0005

Granite intrusion 0.0015 0.041
Aiba basalt 0.003 0.029
Limestone 0.1 0.08
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