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Abstract: The surface water in the lakeshore zone is the primary area where cyanobacteria bloom
floats intensively. In lake water environment monitoring, it has become pressing to accurately
identify the distribution and accumulation coverage area of cyanobacteria blooms in the surface
water of the lakeshore zone. This study proposes a real-time and dynamic monitoring technology
for cyanobacteria blooms in surface water using a shore-based camera monitoring network. The
specific work is as follows: Chaohu Lake, a large eutrophic lake in China, is selected as the research
object. The multithreading technology is used to dynamically obtain the hourly video images
of 43 cameras around Chaohu Lake. The semantic segmentation method is used to identify the
cyanobacteria blooms in the video images, calculate the coverage of cyanobacteria blooms, and
draw the spatial distribution map of cyanobacteria blooms in the lakeshore zone of Chaohu Lake.
To improve the accuracy of cyanobacteria blooms recognition, we use the ResNet-50 network to
integrate three semantic segmentation models, namely FCN, U-net, and DeeplabV3+. By comparing
the cyanobacteria blooms results identified by the three methods, it is found that the boundary of the
cyanobacteria blooms results identified by DeeplabV3+(ResNet-50) is clear, which is more consistent
with the real spatial information of the distribution of cyanobacteria blooms and is more suitable for
monitoring the hourly dynamic changes of cyanobacteria blooms in the Chaohu Lake lakeshore zone.
The results demonstrated that the time requirement of monitoring cyanobacteria blooms in real time
on an hourly basis could be met by utilizing technology that uses multiple threads. The OA (Overall
Accuracy), MPA (Mean Pixel Accuracy), IOU (Intersection Over Union) of cyanobacteria blooms,
and the IOU of water values of the DeeplabV3+(ResNet-50) were the highest, which were 0.83, 0.82,
0.71, and 0.74, and the RMSE between the predicted and real cyanobacterial blooms coverage of
43 cameras was 6.65%. The above values show that DeeplabV3+(ResNet-50) is this technology’s most
suitable semantic segmentation model. This technique can provide technical support for the scientific
development of a cyanobacteria blooms management plan in the lakeshore zone of Chaohu Lake by
calculating the coverage area of cyanobacteria blooms and drawing the spatial distribution map of
cyanobacteria blooms in the lakeshore zone.

Keywords: lakeshore zone; cyanobacteria blooms; semantic segmentation; multiple threads

1. Introduction

In recent years, many nutrients have been imported into lakes with the accelera-
tion of urbanization and the intensification of human activities in lake basins. Under
the background of global warming, the water environment of inland lakes has become
increasingly severe [1]. In particular, the large number of cyanobacteria blooms in the
lakeshore zone not only destroys the ecological balance of lakes and reduces the ecological
function of inland lakes [2], but also directly threatens the safety of drinking water by
producing black and smelly water bodies [3]. Previous studies have shown that, in the
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past 40 years, 21,878 lakes around the world have been plagued by cyanobacteria blooms,
and the frequency of cyanobacteria blooms in the lakes of all continents (except Oceania)
has increased significantly since 2010, with the most significant increase being in Asian
and African countries [4]. In Chaohu lake, a typical large-scale eutrophication lake in our
country, the problem of cyanobacteria blooms is outstanding and has attracted extensive
attention from scholars around the world [5,6]. Relevant data show that the frequency of
blue cyanobacteria blooms in Chaohu Lake has been relatively high in the past two decades.
The outbreak time generally starts in February and lasts until January next year. Summer
and autumn are the hot time for large-scale outbreaks of cyanobacteria blooms. The area of
cyanobacteria blooms is also at a high level all year round, and the area of cyanobacteria
algal blooms exceeding 100 km2 also happens frequently [7,8]. Given the above situation,
Chaohu Lake can become a representative example of this study lake’s cyanobacteria
blooms monitoring work.

In the time of the concentrated outbreak of cyanobacteria blooms in lakes, many
cyanobacteria blooms often float in the surface water of the lakeshore zone, which is easy
to form cyanobacteria blooms accumulation and decay, which seriously threatens the safety
of drinking water. Real-time and accurate monitoring of cyanobacteria blooms in the
surface water in this area can provide timely and accurate information on the coverage
area of cyanobacteria blooms in the surface water of lakeshore zone for cyanobacteria
administrators, help to accurately locate the coverage with the severe accumulation of
cyanobacteria blooms, and timely formulate a treatment plan for cyanobacteria blooms.
Currently, the commonly used cyanobacteria blooms monitoring methods include site-
based cyanobacteria blooms monitoring and remote sensing-based cyanobacteria blooms
identification [9,10]. While the cyanobacteria blooms monitoring based on the site can
accurately obtain many water quality parameters, it is time-consuming and challenging
to meet the needs of large-scale cyanobacteria blooms change monitoring [11]. With its
characteristics of solid timeliness and wide monitoring range, remote sensing technology
has become one of the essential tools for monitoring and predicting cyanobacteria blooms
and has been widely used in monitoring and studying the Spatio-temporal dynamic
changes of cyanobacteria blooms [12,13]. While remote sensing technology can realize the
synchronous observation of the spatial distribution of cyanobacteria blooms, cyanobacteria
blooms show high spatial and temporal heterogeneity under wind fields and hydrodynamic
forces. Usually, they have apparent horizontal migration and vertical mixing at the hourly
scale [14]. Limited by the frequency of satellite observation, it is difficult to capture the
rapid dynamic change process of cyanobacteria blooms days [15]. In addition, due to
the limitation of the spatial resolution of remote sensing images, the monitoring method
of cyanobacteria blooms based on satellite remote sensing cannot effectively monitor
the intensity of cyanobacteria blooms in the lakeshore zone. Therefore, how to carry
out accurate monitoring, early warning, and prevention of cyanobacteria blooms in the
lakeshore zone of inland lakes is an essential issue in the current lake pollution control, and
a new means is urgently needed.

Currently, the construction of a lakeside video monitoring network can provide real-
time video images, which can monitor the spatiotemporal dynamic changes of cyanobac-
teria at a higher frequency [16]. However, considering that, in addition to cyanobacteria
blooms and water bodies, video images are often rich in other information interference,
such as roads, buildings, and vegetation, and how to identify cyanobacteria blooms in
such video images accurately has become a critical problem that needs to be solved ur-
gently. In recent years, the field of computer vision has witnessed rapid development.
Semantic segmentation methods in deep learning have achieved great success in the field
of image recognition [17,18], and a large number of semantic segmentation models have
emerged, such as FCN [19], U-net [20], and SegNet [21]. PSPNet [22] and Deeplab [23]
models provide a feasible solution for the multi-class image classification task. Moreover,
with the improvement of theory and the huge development of computational power, the
recognition accuracy of the semantic segmentation model is also constantly improved due
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to the optimization and update of the network structure in the deep learning model. For
example, the AlexNet [24], VGG [25] and ResNet [26] networks. In particular, the ResNet
network is the most representative, which deepens the training depth of the network, and
alleviates the problems of gradient disappearance or explosion, network degradation, and
so on. Many studies have used ResNet to improve the semantic segmentation model and
have achieved relatively successful results [27–29]. Therefore, this paper chooses to use the
ResNet-50 network to fuse FCN, U-net, and DeeplabV3+ models to improve the recognition
accuracy of cyanobacteria blooms.

This study proposed a real-time method to identify the distribution characteristics of
cyanobacteria blooms in the surface water of Chaohu lake lakeshore zone using camera
and semantics segmentation methods. The technique uses the DeeplabV3+(ResNet-50)
model and multithreading technology to identify cyanobacteria blooms in images in real-
time, which can meet the requirement of real-time monitoring and the distribution of
cyanobacteria blooms in the surface water of Chaohu lake lakeshore zone and provide
technical support for the scientific formulation of cyanobacteria blooms control scheme. The
main work of this paper is as follows: (1) Integrating ResNet-50 network into FCN, U-net,
and DeeplabV3+ semantics segmentation method, comparing the results of cyanobacteria
blooms recognition before and after the three model improvements and selecting the
optimal semantics segmentation model. (2) Open the thread pool with Python and acquire
43 sets of camera video images of Ring Chao Lake by the multi-threading method, to ensure
that the task of semantics segmentation can be completed within one hour to achieve
the effect of real-time monitoring. (3) Calculate the coverage of cyanobacteria blooms
by using the identification results of cyanobacteria blooms, quantify the accumulation of
cyanobacteria blooms in the lakeshore zone, and draw the distribution map of cyanobacteria
blooms in the lakeshore zone of Chaohu Lake, which provides technical support for the
scientific control of cyanobacteria blooms.

2. Study Area and Data
2.1. Study Area

The purpose of this study was to monitor the accumulation and distribution of
cyanobacteria blooms in the lakeshore zone of Chaohu Lake. Chaohu Lake is one of
the five major freshwater lakes located in the middle and lower reaches of the Yangtze
River, with an area of about 780 km2 and a total length of 55 km, as shown in Figure 1.
According to relevant studies, Cyanophyta is dominant in the composition of phytoplank-
ton in Chaohu Lake, and the dominant species are mainly Microcystis and Anabaena
Flos-Aquae. From March to April, Anabaena Flos-Aquae is prevalent in the formation
of water blooms in Chaohu Lake; from May to September, with the increase in temper-
ature, Microcystis predominates to form water blooms; after October, the daily average
temperature drops, and the water blooms are dominated by Anabaena Flos-Aquae [30,31].
In the past 20 years, cyanobacteria blooms have occurred frequently in Chaohu Lake [32].
Due to the influence of wind and hydrodynamic factors, the lakeshore zone of Chaohu
Lake has become a critical area of cyanobacteria blooms accumulation, which not only
causes harm, such as black and smelly water and water eutrophication, but also seriously
threatens the safety of drinking water. Therefore, through 43 sets of cameras installed in the
lakeshore zone of Chaohu Lake and the semantic segmentation method of deep learning,
this study can accurately identify the distribution characteristics of cyanobacteria blooms in
the lakeshore zone of Chaohu Lake in real time, accurately express the accumulation degree
of cyanobacteria blooms, and provide technical support for the scientific development of
cyanobacteria blooms management plan.
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Figure 1. Current situation of the study area: (a) The specific location of Chaohu Lake is in China;
(b) the cameras set up are in Chaohu Lake; and (c) the specific locations of 43 cameras are in
Chaohu Lake.

2.2. Data

The data used in this study came from the video images of 43 sets of cameras around
Chaohu Lake. Most locations where the cameras are set up are the mouth of the Chao
Lake’s rivers, water intake areas, and areas where cyanobacteria blooms often accumulate.
The 43 sets of cameras were set up to monitor the distribution of cyanobacteria blooms
along the shore of Chaohu Lake, as well as to monitor illegal fish fishing and maintain
social security. To maximize the function of cameras and save costs, the number of cameras
is 43 after field investigation. Therefore, the camera will adjust the monitoring angle under
artificial control. The change in the monitoring angle will make the video image unable
to capture the water surface information. To meet the requirements of monitoring the
cyanobacteria blooms in the lakeshore zone, each camera will adjust the shooting angle
according to the preset attitude parameters in the first 10 min of every hour to obtain the
lake surface image of the lakeshore zone to the maximum extent. Each camera also has
its own webcam video streaming address, which can be viewed by entering the address
on the browser’s web page. By using the selenium module of Python to take screenshots
of the video streaming address images of each camera every hour from 8:00 to 18:00 and
save them, the resolution of the video image data obtained is 1920 × 1080, the collection
period is from September 2021 to October 2022. The collection period is one year, and
a total of 188,943 images were obtained. The pictures of the sample data set are from the
camera images of each month within the year so that the semantic segmentation task can
be adapted to the cyanobacteria bloom identification scene in each month.

3. Method
3.1. Cyanobacteria Blooms Identification Process

The specific process of cyanobacteria blooms recognition is shown in Figure 2, which
is the same as other image segmentation tasks. First, use labelme tools to make sample
datasets. To improve the accuracy of cyanobacteria blooms identification, encoders of
FCN, U-net, and DeeplabV3+ models were modified and trained using the ResNet-50
network, and the optimal models were evaluated according to the segmentation results.
Cyanobacteria blooms identification should be completed within one hour to ensure real-
time monitoring of the hourly dynamic changes of the cyanobacteria blooms along the lake
shore. A thread pool was created through python’s threading module, and threads were
distributed through the thread pool to reduce the task execution time. The specific tasks
to be executed by the thread are as follows: Obtain 43 sets of video stream pictures from
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cameras every hour and input the obtained images into the trained semantic segmentation
model for cyanobacteria blooms identification. The coverage of cyanobacteria blooms was
calculated to quantify the accumulation degree of cyanobacteria blooms in the lakeshore
zone, and the spatial distribution map of cyanobacteria blooms in the lakeshore zone of
Chaohu Lake was drawn.
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3.2. Multi-Thread Mechanism Construction

When acquiring video images, we will encounter a challenging problem: Due to the
slow network speed, it takes more time to load the camera video stream, which will put
pressure on the time required for subsequent models to identify cyanobacteria blooms, and
it may be impossible to fully obtain the cyanobacteria blooms distribution information
in the Chaohu Lake lakeshore zone within one hour. To solve this problem, the multi-
threading technology can set multiple thread plans to enable tasks to process processes
in an asynchronous manner [33,34]. The management of the number of threads can rely
on the thread pool. The role of the thread pool can uniformly manage threads. Under
the constraint of the maximum number of threads, the number of threads can be selected
independently, reducing resource consumption, improving response speed, and reserving
space for adding subsequent functions [35]. The specific process of thread creation is shown
in Figure 3. First, create a thread pool and set the maximum number of threads. The thread
queue in the thread pool is divided into two parts: the core thread queue and the waiting
thread queue. When the task is initiated, select threads from the core threads to execute
the task. When the number of tasks exceeds the number of core threads, use the threads
in the waiting queue to execute the task. If the core thread queue and the waiting thread
queue have no idle threads to use, the execution rejection strategy will be implemented.
The execution rejection strategy in this study is to find the free threads to execute the task
after the task has been waiting for execution for 5 min.
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The increase in the number of threads can reduce the task’s execution time, but too
many threads will bring more pressure to the server’s CPU and threaten the normal opera-
tion of other tasks on the server, thus causing the collapse of the task process. Therefore,
after multiple tests on 43 cameras on a 2vCPU-4GIB server with 8M network bandwidth,
the number of threads is set, as shown in Table 1. In the process of increasing threads from 1
to 7, the processing time of the task decreases step by step. The task processing time can be
basically controlled within 60 min for the number of threads more than 4 times. However,
when the number of threads reaches 6, the CPU load is up to 92.5%, which will cause
interference with other processes in the server. However, in the case of unexpected camera
shutdown and network crash, not all 43 sets of camera images will participate in the task.
Even 2 to 3 threads can meet this case’s task processing time requirements. Therefore, use
the python threadpool module to create a thread pool. The maximum number of threads is
7, the number of threads in the core thread queue is 5, and the number of threads waiting
for the thread queue is 2.

Table 1. Thread number selection table.

Number of Threads Average Time (min) CPU Load (%)

0 67 41.8
1 59 42.9
2 58 53.6
3 56 75.2
4 51 78.6
5 46 89.1
6 45 92.5
7 43 98.7

3.3. Sample Set Production

The video images obtained after adjusting the camera attitude still cannot guarantee
that there are no other ground objects except cyanobacteria blooms and water bodies in
all the pictures. Given this situation, to better evaluate the accuracy of cyanobacteria
blooms recognition in the recognition results, the recognition task of cyanobacteria blooms
is defined as multiple classification tasks to intuitively compare whether the cyanobacteria
blooms and the boundary segmentation between water bodies and other ground objects
are accurate. As shown in Figure 4, the labelme tool was used for sample labeling. Sample
labels were divided into six categories, namely cyanobacteria blooms (green), water (blue),
road (purple), vegetation (red), sand (yellow), and other categories (black). The scope of
sample selection includes video image files of all 43 cameras and image files containing all
ground object types. In addition, image files with shadows and water ripples are added to
evaluate the semantic segmentation model from more perspectives. The image resolution
was 1920 × 1080 and 1736 samples were made. Through translation, scaling, inversion,
and fuzzification of image augmentation technology, the samples were increased to 3126.
Of that, 80% is used to train the model, and 20% is used to validate the model.
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Figure 4. Sample original picture and label picture: (a,c,e,g) are camera original pictures; (b,d,f,h) are
label pictures.

3.4. Model Improvement and Training

In recent decades, semantic segmentation methods based on convolutional neural net-
works (CNN) have achieved good results in image segmentation, including FCN, SegNet,
U-net, PSPNet, DeeplabV3+, and other methods. This paper uses three classical semantic
segmentation methods (FCN, U-net, and DeeplabV3+) to evaluate the performance of
cyanobacteria blooms recognition [36]. In addition, the ResNet-50 network was chosen to
integrate the three semantic segmentation methods that were investigated in this study
so that the number of parameters used in the process of semantic segmentation could be
decreased, the network depth could be increased, the convergence of training could be
completed more quickly, and the classification accuracy could be increased. ResNet-50 is
based on the traditional linear convolution network structure for the purpose of increasing
a fast connection. Its design is illustrated in Figure 5, and it works as follows: The input
image first, after steps 2 and 7 × 7 convolution kernels of convolution operation, the size of
the input image is reduced twice. Finally, the image size is reduced once more through a top
pooling layer. Among the four bottleneck residual blocks, each residual module contains
two convolution layers, an activation function layer, and two batch normalization layers.
The size of the convolution kernel in the convolution layer is 3 × 3, and the underlying
parameters can be relocated to the next layer through a shortcut connection, and the jump
connection can prevent the gradient loss during backpropagation [26].
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The network structure of the three semantic segmentation methods is composed of
an encoder to extract the image features and a decoder to locate the image features. In
this study, ResNet-50 is employed as the primary network structure for the encoder of
the three semantic segments. In the decoder portion of FCN, the fully connected layer
and pooling layer of the original convolutional network are eliminated and replaced with
1 × 1 convolution and transposed convolution. Through network layers, such as the
deconvolution layer [37], the target’s specifics and corresponding spatial dimensions are
gradually recovered. The decoder part of the U-net consists of an up-sampled convolution
layer, feature concatenation, and two 3 × 3 convolution layers with a step size of 1. The
up-sampling method uses deconvolution to double the feature map size, concatenation,
and two convolution layers to fuse the features prior to and after up-sampling [38]. The
decoder part of DeeplabV3+ extracts the low-level feature map from the second convolution
block of ResNet-50. The output multi-scale high-level feature map is combined with the
low-level feature map using a series of convolution operations and the up-sampling method
of bilinear interpolation. Following a bilinear interpolation, the image size is restored to
conclude the image segmentation task [39,40].

2501 photos were used for training the three models, and the remaining 635 photos
were used as the verification set of the model. The three models use the same training set
and verification set. The model is trained and verified in NVIDIA GeForce GTX 1660Ti
mobile graphics card, and the processor is an Intel i7-9750H CPU @ 2.60 GHz × 8–12
processor. The training time of the three models takes 595 min on average. The three
semantic segmentation methods all perform 100 epochs. Each epochs contains 80 steps. The
loss function uses the cross entropy loss function. With the Adam optimizer, the learning
rate is 1 × 10−4 [41]. Since the ResNet-50 network is used, use pre-trained parameters to
initialize the default weight value. The performance of the three semantic segmentation
methods for cyanobacteria blooms recognition is evaluated by comparing with the real
image of the camera image. The segmentation results were compared with the natural mask
of the sample, and the following indexes were calculated. The IOU is shown in Formula (1).
The Mean Intersection Over Union (mIOU) is shown in Equation (2). The MPA is shown in
Equation (3). The OA is shown in Equation (4).

IOU =
TP

(TP + FP + FN)
(1)

mIOU =
∑i ii

N
(

∑i ∑j xij + ∑j xji − xii

) (2)

MPA =
i

N + 1

n

∑
i=0

Xii

∑n
j=0 Xij

(3)

OA =
∑N

i=1 xii
∑n

i=1 ∑n
j=1 xij

(4)

where N represents the number of classes, xij represents the number of pixels of prediction
class i as class j, and xii represents the number of correctly predicted pixels. TP is the
number of positive classes predicted by actual positive classes; FN is the number of
negative classes predicted by actual positive classes; and FP is the number of positive
classes predicted by actual negative classes.

3.5. Calculation of Cyanobacteria Blooms Coverage

The identification results of cyanobacteria blooms are aimed at the distribution of
cyanobacteria blooms on the surface of the lakeshore zone waters. To quantitatively
ex-press the cyanobacteria biomass in the region’s surface waters, the coverage rate of
cya-nobacteria blooms is proposed. For the camera pictures adjusted according to the preset
pose parameters, the cyanobacteria blooms coverage rate, and the cyanobacteria biomass of
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the surface water body show a positive proportion relationship. The cyanobacteria blooms
coverage rate under different values can provide an additional reference for managing
cyanobacteria blooms in the lakeshore zone. The calculation method of cyanobacteria
blooms coverage can be divided into two steps. In the first place, count the number of
pixels in the cyanobacteria blooms area and the number of pixels in the non-cyanobacteria
blooms water body in accordance with the RGB color value and subsequently divide the
number of pixels in the cyanobacteria blooms area and the number of pixels into the two
areas, and present them in percentage. The formula is shown in (5):

P =
Bnum

Wnum + Bnum
× 100% (5)

P represents the coverage of cyanobacteria blooms. The greater the percentage value,
the more severe the accumulation; the smaller the value is, the less severe the accumulation
is (P ∈ [0.00%, 100.00%]). Bnum represents the number of pixels in the cyanobacteria blooms
area, and Wnum denotes the number of pixels in the water area.

By comparing the calculated coverage of cyanobacteria blooms with the actual mask
value of cyanobacteria blooms, the identification performance of the Root Mean Square
Error (RMSE) evaluation method was calculated, and the formula was shown in (6):

RMSE =

√
∑i(Pm − Pa)

2

N
(6)

Pm is the cyanobacteria blooms coverage value calculated using the results identified
by the semantic segmentation model, Pa is the actual cyanobacteria blooms coverage value,
and N is the number of photos used.

4. Result
4.1. Identification of Cyanobacteria Blooms

The loss and accuracy curves are plotted during model training, as indicated in
Figure 6. The loss is the total error of each image sample in the training and testing stages,
and it represents the performance of the model after each epoch. The three models all
demonstrate good convergence speed. After 60 epochs, the jitter potential tends to be flat,
and the jitter range is between 0.08 and 0.25. The training loss of DeeplabV3+(ResNet-50)
closely resembles the jitter value of the test loss. The accuracy curves of the three models
also indicate a good convergence effect. DeeplabV3+(ResNet-50) has the highest accuracy
value in training and testing, between 0.82 and 0.86. FCN(ResNet-50) had the lowest
training and testing accuracy, ranging from 0.78 to 0.81. U-net’s (ResNet-50) training and
testing accuracy values are in between.

The image segmentation performance of the six models was evaluated by comparing
the six models’ mIOU, MPA, IOU(cyanobacteria blooms, water) and OA indexes. The
results are shown in Table 2. After the integration, the index values of the three models
have been significantly enhanced, and the range of the enhancement is between one and
three percent. In comparison to the other two integrated models, the performance of the
FCN(ResNet-50) model is poor, and the values of OA, MPA, mIOU, and IOU(cyanobacteria
blooms and water) all occupy the lowest level. The MPA value of the U-net(ResNet-
50) model is similar to that of the DeeplabV3+(ResNet-50) model, but the values of OA,
mIOU and IOU (cyanobacteria blooms and water) of the U-net model are slightly lower
than those of the DeeplabV3+(ResNet-50) model. DeeplabV3+(ResNet-50) has a superior
performance based on the analysis of the four preceding metrics, but the gap between
DeeplabV3+(ResNet-50) and U-net(ResNet-50) is relatively small.
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Table 2. OA, MPA, mIOU, and IOU of six model evaluation forms.

Method OA
(%) MPA (%) mIOU

(%) Cyanobacteria Blooms-IOU (%) Water-IOU (%)

FCN 76.96 77.54 67.73 66.38 68.43
U-net 78.24 78.63 68.43 68.29 70.25

DeeplabV3+ 80.29 79.84 69.82 69.46 71.24
FCN(ResNet-50) 79.42 78.41 67.36 68.73 70.26
U-net(ResNet-50) 81.21 80.68 71.23 70.03 72.43

DeeplabV3+(ResNet-50) 83.27 81.78 72.42 71.65 74.38

Intending to compare the performance of cyanobacteria blooms recognition before
and after the model integration in a more intuitive manner, 12 images containing all
image segmentation categories are chosen, as demonstrated in Figure 7. The six models
are capable of identifying cyanobacteria blooms based on the segmentation results of
eleven images. Additionally, all six models performed equally well for an image full of
cyanobacteria blooms (yellow box in Figure 7). The identification performance of the
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three models containing cyanobacteria blooms in long-shot photographs was poor before
integration. In comparison to the DeeplabV3+(ResNet-50) and U-net(ResNet-50), the
cyanobacteria blooms identified by the FCN(ResNet-50) failed to identify cyanobacteria
blooms. The cyanobacteria blooms area estimated by the U-net(ResNet-50) is significantly
smaller than the actual blooms area (as shown in the red circle in Figure 7). For the
overlapping area of cyanobacteria blooms and surface ripple, the accuracy of cyanobacteria
blooms identification by the FCN(ResNet-50) andDeeplabV3+(ResNet-50) is significantly
improved, particularly the segmentation of the junction of cyanobacteria blooms and
other ground features is more accurate. Nonetheless, the consequences of cyanobacteria
blooms identification before and after U-net integration were similar, and the accuracy of
recognition did not improve. DeeplabV3+ is sensitive to overlapping areas of cyanobacteria
blooms and surface ripples. It can accurately identify boundary information (as depicted
in the pink circle in Figure 7), which may be why DeeplabV3+ fuses low-level features
with high-level features to improve the accuracy of boundary segmentation. The image of
cyanobacteria blooms is not visible in the cyanobacteria blooms area with bright vista light,
and the DeeplabV3+(ResNet-50) has a particular advantage in recognizing cyanobacteria
blooms in this area, followed by the U-net(ResNet-50). At the same time, FCN ignores
the glory of cyanobacteria blooms in this area (as demonstrated in the green circle in
Figure 7). The spatial state of cyanobacteria blooms distribution can be identified accurately
by all six models (as shown in the golden circle in Figure 7). For the shaded areas that
often appear at the junction of cyanobacteria blooms and coastal roads, grassland, and
sandy land, the six models have relatively accurate identification effects (as shown in the
purple circle in Figure 7). As for the shaded regions of other regions, the accuracy of the
six models was greatly disturbed (as indicated in the red circle in Figure 7). For images
with weak light intensity, the cyanobacteria blooms results identified by the improved
model are more accurate, particularly the cyanobacteria blooms area identified by the
DeeplabV3+(ResNet-50), which is more similar to the real mask image (as indicated in
the blue circle in Figure 7). At the interface between cyanobacteria blooms and water
bodies, the spatial distribution shape of cyanobacteria blooms is typically irregular and
ribbon-like. For the cyanobacteria blooms identification task in this area, the FCN, and
DeeplabV3+ models before integration perform relatively poorly, with a weak response
to the recognition of small patches. Nonetheless, the FCN(ResNet-50) model rectified the
initial erroneous cyanobacteria blooms location. The identification results of cyanobacteria
blooms in theDeeplabV3+(ResNet-50) model were quite similar to the real mask image,
while the consequences before and after the integration of the U-net model showed no
significant changes (as indicated in the green circle in Figure 7). For the image’s text area,
the accuracy of the six models is comparable. Moreover, for the image of mixed turbidized
water and cyanobacteria blooms, the identification result of the DeeplabV3+(ResNet-50)
has the closest resemblance to the actual mask (see the brown circle in Figure 7). The areas
within cyanobacteria blooms identified by the six models are frequently accompanied by
holes, due in part to the disruption of organisms and camera-style rainfall. In combination
with the calculated performance indicators and the comparison results of cyanobacteria
blooms identification, the DeeplabV3+(ResNet-50) network model was selected as this
study’s final semantic segmentation model.
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FCN(ResNet-50), U-net(ResNet-50), and DeeplabV3+(ResNet-50).

4.2. Calculation of Cyanobacteria Blooms Coverage

The images of 43 cameras with common angles around Chaohu Lake were input to the
DeeplabV3+(ResNet-50) model for cyanobacteria blooms identification, and subsequently,
the recognition effect of DeeplabV3+(ResNet-50) in all common camera scenarios was
evaluated. It should be noted that, due to the location of certain coastal areas, even when
Chaohu Lake has a high concentration of cyanobacteria blooms, cyanobacteria blooms
rarely accumulate in coastal areas. Consequently, most of the time, some camera images
are only in the water area. As indicated in Figure 8, on the basis of the overall analysis of
the cyanobacteria blooms recognition results of 43 cameras, the DeeplabV3+(ResNet-50)
can accurately identify the spatial distribution of cyanobacteria blooms and accurately
depict the water body, the boundary between algal blooms and the shore in images with
a few types of ground objects and close up pictures. Moreover, DeeplabV3+(ResNet-50) can
identify the spatial information of cyanobacteria blooms from distant images with precision.
DeeplabV3+(ResNet-50) also provides satisfactory recognition results at the junction of
multiple feature types for images with numerous features. Shadows and wavy reflective
water surfaces have a small impact on DeeplabV3+(ResNet-50)’s recognition of cyanobacte-
ria blooms. For images with other surface features on the water surface, DeeplabV3+can
also accurately exclude these features from the identification of cyanobacteria blooms and
water body. Nonetheless, DeeplabV3+(ResNet-50) did not accurately separate the images
of turbid water bodies and cyanobacteria blooms. Consequently, the problem may be
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that the pixel context information in this area is complex, and the image resolution is
low. In accordance with the analysis of the total combined outcomes of the identification
of cyanobacteria blooms by 43 cameras, DeeplabV3+(ResNet-50) is capable of accurately
identifying cyanobacteria blooms in the lakeshore zone surrounding Chaohu Lake.
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Figure 8. Common scene pictures of 43 cameras in Chaohu Lake and identification results of
cyanobacteria blooms.

Collect the predicted value of the cyanobacteria blooms coverage of 43 cameras and
the cyanobacteria blooms coverage of the real mask of the image, and make a 1:1 scatter
plot, as indicated in Figure 9. On the whole, the R2 is 0.98 and the RMSE value is 6.65%.
Twenty-six of the 43 predicted cyanobacteria blooms coverage values are lower than the
actual cyanobacteria blooms mask coverage, but the difference is between 2% and 9%,
and the recognition error falls within the acceptable range. There are four cyanobacteria
bloom prediction values that are the same as the actual mask values. Additionally, these
four images only contain water body areas, with no surface features interfering. This
demonstrates that DeeplabV3+(ResNet-50) accurately identifies water bodies in these
images, which is similar to the actual situation. In the six pictures with dense coverage
of cyanobacteria blooms, four of the predicted values of cyanobacteria blooms are lower
than the real ones, while the remaining two are the opposite. The range of the total error
is between two and four percent. This error displays that DeeplabV3+(ResNet-50) is also
applicable to the pictures with a high coverage of cyanobacteria blooms.
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4.3. Chaohu Case Study

The experiment was conducted from 8:00 a.m. to 6:00 p.m. on 1 September 2022, and
8:00 a.m. to 6:00 p.m. on 30 September 2022, to assess the viability of the cyanobacteria
blooms recognition task. The period was one month, and the reason for the selection was
an outbreak of cyanobacteria blooms in Chaohu Lake this month. Calculate the average
task execution time at eleven-time points during the current month. As demonstrated
in Figure 10, the blue color is the average time after statistics, and the number of photos
used to identify tasks is represented by the yellow color. Due to the fact that the camera
maintenance downtime, the average number of photos extracted per hour is between 34
and 36, the average time for task execution per hour is within 45 min, the average execution
time for each photo is 1.3 min, and the number of threads automatically started by the
thread pool is four–six. On the condition that 43 lakeshore zone pictures of the whole lake
are recognized every hour, the total time can be managed within one hour, which fulfills
the overall requirements of the study.

To further check the identification of cyanobacteria blooms on a specific day during
the experimental period, the identification results of cyanobacteria blooms on 17 September
2022 were selected, and a hotspot map was drawn in accordance with the coverage of
cyanobacteria blooms, as indicated in Figure 11. On this day, 43 sets of cameras along the
Chaohu Lakeshore were all involved in the cyanobacteria blooms recognition task. A total
of 10 cameras showed null values in the hotspot map of cyanobacteria blooms coverage,
especially for cameras No. 2, No. 4, and No. 5. After investigation, it was found that the
three cameras were offline at the time when the null value appeared. A total of 13 sites
detected cyanobacterial blooms coverage of more than 50%, indicating that the area of
these camera sites had a severe cyanobacterial blooms accumulation on that day. From
the time scale analysis, there are 55 camera pictures with a coverage rate of cyanobacteria
blooms exceeding 30%, among which 44 are obtained from 10:00 to 16:00, indicating that
this period is the hot time of cyanobacteria blooms accumulation. In contrast, the coverage
rate of cyanobacteria blooms in other periods is less than 20%. The reason for the sudden
decrease of cyanobacteria blooms coverage in two adjacent periods was found to be caused
by the artificial fishing of cyanobacteria. In the subsequent step, the spatial distribution of
cyanobacteria blooms accumulation will be combined to further validate the accuracy of
cyanobacteria blooms identification.
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The spatial distribution map of cyanobacteria blooms in the lakeshore zone of Chaohu
Lake was drawn by applying the proportion values of cyanobacteria blooms accumulated
from each camera site. As displayed in Figure 12, the images prove 8:00, 11:00, 14:00, and
18:00 on 17 September 2022: The distribution of cyanobacteria blooms in the Chaohu Lake
lakeshore zone. The analysis of image results indicated that the spatial distribution of
cyanobacteria blooms in the lakeshore zone of Chaohu Lake changed significantly within
a day, and there were 13 hotspots of blooms throughout the day, most of which were situated
near urban villages and river estuaries. 8:00 is the initial time for identifying cyanobacteria
blooms, and three areas demonstrate a high accumulation of cyanobacteria blooms. All of
the photographs taken by the camera are close-up images, the shooting area of the overall
water area is small, and the identification consequence of the cyanobacteria blooms is
accurate. At 11:00, there were seven hot spots of cyanobacteria blooms accumulation. In
accordance with the pictures, the brightness of the images becomes intense. The seven
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pictures contain other surface feature types except for water bodies and cyanobacteria
blooms, and reflective ripples appear on the water surface, and yet the recognition results
of cyanobacteria blooms are more accurate. However, the three hot spots appeared at 8:00
have disappeared, which is considered to be caused by the artificial salvage of cyanobacteria
blooms. The spatial distribution map of cyanobacteria blooms at 14:00 indicates that the
accumulation of cyanobacteria blooms in the lakeshore zone of Chaohu Lake is severe at
this moment in time, and there are heavy accumulations of cyanobacteria blooms in the east,
west, and central and three regions of the lake area. In combination with photo comparison
information, the identification results of cyanobacteria blooms are relatively accurate, which
could be caused by the increasing temperature and wind speed, leading to this situation
at this time. The identification of cyanobacteria blooms concluded at 18:00. Consequently,
the results showed that four areas were identified as hot spots. Notwithstanding, due to
the low light, the two hot spots in the upper half of the lake area were not distinguishable
by the naked eye. The percentage of cyanobacteria blooms in the other two identified
cyanobacteria blooms is also low. Nonetheless, these areas are still defined as hot spots
because the accumulation of cyanobacteria blooms in other areas is lower than that in these
four areas, which proves that at 18:00, with the temperature decreasing, the sun weakens.
There is no severe accumulation of cyanobacteria blooms in the Chaohu Lake lakeshore
zone as a result of artificial salvage.
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at 11:00, (c) is the cyanobacteria blooms distribution at 14:00, and (d) is the cyanobacteria blooms
distribution at 18:00.

5. Discussion

Compared to the monitoring method based on site, the monitoring method provided
in this study can save cost and meet the needs of large-scale monitoring. Monitoring based
on satellite data can achieve the effect of low cost. Currently, satellite sensor data commonly
used for cyanobacteria bloom monitoring include Modis, Landsat, and MSI [42–44]. However,
the highest spatial resolution of these widely used satellite data is 10 m (MSI, acquisition
cycle is ten days), and the shortest acquisition cycle is two scenes a day (Modis, resolution
is 250 m), which is challenging to meet the needs of real-time and accurate monitoring.
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The monitoring method in this study can avoid the influence of sizeable spatial resolution
of remote sensing data (most remote sensing image pixels in the lakeside zone are mixed
pixels) and long acquisition period to monitor the distribution of cyanobacteria accurately
blooms in the lakeside zone on an hour scale.

However, some aspects of this study also need to be further studied and solved. For
example, in rainy weather, raindrops in camera images will interfere with camera imaging
results. Due to the camera angle, only a tiny amount of water is included in the picture
when measuring the coverage of cyanobacteria blooms due to the camera angle, but there
are a large number of cyanobacteria blooms in a small amount of water. In this case, when
calculating the coverage of cyanobacteria blooms, a large proportion of cyanobacteria
blooms will be recorded, but it does not mean the accumulation degree of cyanobacteria
blooms in this area is serious.

In the follow-up study, we will focus on the above issues and conduct in-depth
research. For example, consider whether to introduce rainproof camera hardware [37], add
more sample datasets with small shooting angles and rich shadows, and introduce other
semantic segmentation mechanisms to improve network models’ accuracy of cyanobacteria
bloom recognition. For the problems in measuring the coverage of cyanobacteria blooms,
consider adding a spatial mechanism to count the specific area of cyanobacteria blooms
while counting the range of cyanobacteria blooms to evaluate the accumulation degree and
distribution status of cyanobacteria blooms in lakes from more perspectives.

6. Conclusions

Effectively monitoring cyanobacteria blooms in the lakeshore zone of lakes can support
the scientific formulation of the cyanobacteria blooms control scheme. Considering the
high spatial resolution and weak timeliness of cyanobacteria blooms monitoring method
based on satellite data. This study aims to provide a real-time and accurate identification
technology for cyanobacteria blooms on the lake shoreline. This technology defines the
cyanobacteria bloom identification task as an image segmentation problem. It uses the
multi-thread technology and real-time images provided by the camera around the lake
and uses the DeeplabV3+(Resnet-50) model for real-time recognition of cyanobacteria
bloom in the camera images. The novelty of this work lies in the accurate monitoring
of the distribution of cyanobacteria blooms on the 11 h scale every day, and the hourly
spatial distribution map of cyanobacteria blooms on the shoreline of lakes can be drawn by
calculating the coverage of cyanobacteria blooms. The technology was successfully used to
monitor the cyanobacterial blooms in Chaohu Lake in September 2022. The results showed
that, compared to the FCN and U-net models, the DeeplabV3+ model with ResNet-50
network fusion could accurately identify cyanobacteria blooms and delineate the boundary
shape of cyanobacteria blooms more clearly. The IOU of cyanobacteria blooms reached 0.72.
The RMSE of the predicted and measured cyanobacterial bloom coverage of 43 cameras
was 6.65%. The use of multi-threaded technology also ensures that hourly cyanobacterial
bloom identification tasks are completed within one hour. Finally, it is proved that this
technology can solve the problems of weak timeliness and low accuracy of cyanobacteria
bloom monitoring in the lakeshore zone and can provide scientific and technical help for
cyanobacteria bloom management personnel. In addition, the technical framework of this
study also has certain general adaptive value. For lakes with cyanobacteria as the dominant
species, this technology may be directly applied to coastal bloom monitoring; for lakes with
non-cyanobacteria as the dominant species, sample data sets need to be remade to train
semantic segmentation models.
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