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Abstract: In the context of reaching peak carbon emissions, it is crucial to develop carbon reduc-
tion strategies for high-energy-consuming industries as part of a broader societal transition from
dependence on high-pollution energy sources to low-pollution alternatives. This study focuses on
carbon emission reduction in the non-ferrous metal industry, which is known for its significant
energy consumption. It employs the Logarithmic Mean Divisia Index (LMDI) model to conduct
empirical analyses from three perspectives: carbon emission decomposition, regionalization analysis,
and carbon emission prediction. The objective is to explore the carbon emission characteristics of
high-energy-consuming industries in China and provide theoretical support for future policies aimed
at reducing carbon emissions in these industries. The findings reveal that the economic scale of the
non-ferrous metal industry has a positive correlation with carbon emissions, while carbon emission
coefficients exhibit a negative correlation. Moreover, in the prediction scenarios considered, the
increase in carbon emissions resulting from the economic-scale factor accounted for 75.28%, 87.46%,
and 65.21% respectively, indicating that it has the most significant influence among all factors ana-
lyzed. The study further demonstrates that under stable and active emission reduction scenarios,
the future potential for carbon dioxide emission reduction in the non-ferrous metal industry is es-
timated to reach 858.47 million tons and 1384.65 million tons, respectively. These figures represent
twice and three times the emissions recorded in 2021. By analyzing the factors influencing emission
reduction, targeted regulations can be implemented to develop practical and effective strategies for
reducing carbon emissions in the industry. From the analysis conducted, it can be deduced that
high-energy-consuming industries, particularly the non-ferrous metal industry, exhibit relatively
high levels of carbon emissions. Consequently, it is imperative to implement proactive measures
to reduce these emissions. Additionally, the industry’s carbon emissions are heavily influenced
by changes in economic scale due to its high dependence on it. This highlights the importance of
considering economic factors when devising strategies to mitigate carbon emissions. Furthermore, the
potential for improvement in the non-ferrous metal industry’s energy structure and carbon emission
coefficients is limited. Simply relying on technological innovation alone may not suffice to achieve
significant emission reduction goals. Therefore, it becomes crucial for the government to develop
tailored emission reduction targets and policies based on the industry’s specific circumstances to
attain optimal results.

Keywords: peak carbon emissions; CO2; carbon reduction; LMDI; non-ferrous metals

1. Introduction

In recent years, China’s remarkable economic growth has been accompanied by a
significant increase in energy consumption and carbon dioxide emissions. It is essential
for China to prioritize the development of a low-carbon economy to sustain its domestic
economic growth, fulfill its international environmental obligations, and ensure long-term
sustainability. Given that the industrial sector is responsible for the largest share of energy
consumption and environmental pollution, it is crucial to address this sector during China’s
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economic development process. One of the primary reasons for this focus is that high-
energy-consuming industries often incur substantial energy costs, resulting in significant
energy consumption during the production process. Moreover, the production processes
of these industries generate various environmental pollutants, which have adverse effects
on the natural environment and residents’ health in the surrounding regions [1–3]. The
non-ferrous metal industry, as a typical high-energy traditional industry, plays a vital role in
national infrastructure construction, national economic growth, and China’s industrializa-
tion process. The industry relies heavily on coal and electricity as its main energy sources.
The extensive use of non-renewable energy sources often leads to a high proportion of
carbon dioxide emissions, exacerbating environmental pollution [4–6]. Currently, the non-
ferrous metal industry encompasses copper, zinc smelting, and aluminum sub-industries.
While there has been progress in emission reduction efforts within these sub-industries,
overall, there are still deficiencies in reducing carbon emissions and energy consumption.
Outdated environmental protection production and monitoring equipment, coupled with
the continued use of traditional large-scale smelting equipment, pose challenges for non-
ferrous metal enterprises to effectively transition to more sustainable practices [7–9]. Given
these circumstances, it is imperative to investigate the factors that impact carbon dioxide
emissions reduction in the non-ferrous metal industry. Analyzing these factors will facili-
tate a comprehensive assessment of the industry’s current status in terms of low-carbon
development and provide insights for its future sustainable development.

One of the primary factors influencing carbon dioxide emissions reduction in the
non-ferrous metal industry is the adoption of advanced technologies. Despite efforts to
promote renewable energy use and more efficient production processes, many non-ferrous
metal enterprises still heavily rely on outdated methods. These outdated practices not
only contribute to increased carbon dioxide emissions, but also hinder companies’ ability
to adapt to evolving market conditions. Consequently, providing financial and technical
support to facilitate the transition to sustainable practices is crucial. The development of
comprehensive regulations and policies aimed at reducing carbon emissions is another
important factor. Although some progress has been made, there is still much to be ac-
complished in this regard. The government should implement stricter regulations and
incentivize companies to adopt environmentally friendly practices. This could involve
offering tax incentives to companies investing in renewable energy or imposing penalties
on those that continue to rely on fossil fuels. Additionally, industry participants them-
selves play a vital role. Non-ferrous metal enterprises must take responsibility for their
environmental impacts and actively promote strategies to reduce their carbon footprint.
This can include investing in research and development of new technologies, implementing
energy-saving production processes, and embracing a circular economy model to minimize
waste and improve resource efficiency. In summary, addressing the challenge of carbon
dioxide emissions reduction in the non-ferrous metal industry requires a multifaceted ap-
proach. By promoting innovation through technology investments, implementing stringent
regulations and policies, and encouraging industry participants to assume responsibility for
their environmental impacts, we can pave the way towards a more sustainable future. Only
through collective action and cooperative efforts can we successfully tackle this challenge
and ensure the long-term viability of our planet for future generations.

2. Related Works

In recent years, there has been a significant surge in research efforts focused on achiev-
ing low-carbon sustainable development. Sovacool BK’s team conducted an extensive
study on carbon emissions reduction in the power industry. Using a multiple regression
analysis with a dataset comprising 123 countries globally, they found that larger nuclear
power plants did not have a significant impact on reducing carbon emissions compared to
renewable energy sources. Furthermore, they observed a negative correlation between the
adoption of nuclear energy and renewable energy, implying that these two technologies are
often mutually exclusive. This highlights the importance of considering the interactions
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between different technologies when developing comprehensive strategies for emission
reduction [10]. Another team, led by Li J, aimed to address the global energy crisis and
environmental pollution through sustainable means. They conducted a life-cycle assess-
ment of carbon emissions in wind power projects, taking into account the construction and
networking phases. The empirical analysis focused on a 49.5 MW wind power project in
the Xinjiang region, showing a carbon intensity of 4.429 g/kWh and a potential emission
reduction of 2.0416 million tons over its lifecycle. Compared to coal-fired power plants,
wind power projects demonstrated significant emission reduction potential, which could
contribute to mitigating environmental pollution and global warming issues [11]. West
TAP’s team tackled the controversial issue of forest carbon financing plans by comparing the
pre-established credit baseline of a voluntary REDD+ project in the Amazon region of Brazil
with a counterfactual scenario based on quasi-experimental comprehensive control. Their
findings revealed that the deforestation rate assumed by the credit baseline consistently
exceeded the counterfactual forest loss. This was attributed to a decrease in deforestation
during the early implementation phase of the REDD+ project. The study emphasized the
need to strike a balance in forest carbon financing to manage investment risks, ensure
environmental integrity, and better coordinate project and national carbon accounting [12].
Jiang Y’s team developed a Stackelberg game model that incorporated consumers’ low
carbon sensitivity and channel preferences to explore the relationship between emissions
reduction and blockchain investment under a manufacturer-led dual-channel strategy.
Through optimal decision-making calculations and simulation analyses, they identified
variations in emissions reduction and profits across different dual-channel models. The
online direct sales model yielded the highest emissions reduction for manufacturers, while
the traditional dual-channel model with retailers achieved the highest profit. Emission
reduction investments were primarily driven by manufacturers’ profits and influenced by
the benefits and costs associated with low carbon emissions [13]. Moran D’s team combined
micro-level research with a multi-regional input–output economic model to estimate the
potential effects of various behaviors on the carbon footprint of the entire European Union
(EU). The results indicated that the carbon footprint could be reduced by approximately
25%. Three-quarters of this reduction was achieved through emissions reductions within
Europe, while one-quarter was attributed to reducing the carbon footprint of imports.
The study unveiled the profound impact of consumer behavior on the supply chain and
imported carbon, offering a comprehensive method for evaluating consumer energy saving
and emission reduction behavior [14]. Murshed M’s team evaluated the impact of energy
consumption and other macroeconomic variables on the environment in Bangladesh using
the carbon footprint as a measure of environmental welfare. They discovered a positive
correlation between total energy consumption, fossil fuel consumption, and natural gas
consumption with an increase in carbon footprint levels. However, non-fossil fuel con-
sumption and hydropower consumption were shown to effectively reduce carbon footprint
levels. Additionally, the research revealed that economic growth and international trade
were associated with an increase in the carbon footprint. These findings underscored the
need for Bangladesh to undergo a transition towards clean energy sources to address its
environmental challenges. Causal analysis confirmed a one-way causal relationship among
total energy consumption, fossil fuel consumption, natural gas consumption, hydropower
consumption, economic growth, international trade, and the carbon footprint [2]. Nyambuu
U’s team proposed an energy dynamic growth model that accounted for the dynamics
of fossil fuel discovery, extraction, and related costs alongside greenhouse gas emissions,
incorporating damage coefficients, as well. Their research indicated that carbon-intensive
fuels with negative impacts should gradually shift towards renewable energy sources to
slow down the rate of emissions growth, aligning with the objectives of the Paris Agreement.
It was advised not to continue mining fossil fuels, especially coal, unless their resources or
contents are completely depleted [3].

The metal industry, being a traditional high-energy-consuming sector that generates
significant pollution, has witnessed a growing focus on pollution control research in re-
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cent years. Wang H and their team developed a mixed input–output model to identify
high-energy-consuming industries and assess the impact of industrial restructuring on
greenhouse gas emissions, considering China’s escalating energy and environmental chal-
lenges. The study findings indicate that the effect of industrial structure adjustment on
emission intensity is substantial and nonlinear. Moreover, the study suggests that the
Chinese government should continue its efforts in promoting structural reforms in the
energy supply sector to further reduce greenhouse gas emissions [15]. Ma E and their team
conducted empirical research using a quasi-natural experiment stemming from the 2010 ed-
ucation system reform to investigate the impact of local fiscal pressure on carbon emissions.
Through the continuous double difference method, the study revealed a significant increase
in local carbon emissions due to fiscal pressure. To alleviate financial burdens, local govern-
ments regulated high-energy-consuming enterprises and expanded production capacity to
generate more tax revenue, consequently leading to noteworthy carbon emissions. This
study provides essential insights into the relationship between fiscal pressure and carbon
emissions [16]. Xiao’s team employed Shanghai as a case study and utilized a system
dynamics model to examine the factors influencing waste treatment, including economic
development, population size, emission intensity, treatment structure, and power genera-
tion. The study determined that the utilization of landfill gas and improvement in waste
classification were the most effective methods for achieving emission reductions, yielding
reductions of approximately 88.07% and 85.48%, respectively. Additionally, increasing
the incineration rate, reducing garbage generation, and controlling population growth
could lead to emission reductions of 72.29%, 30.06%, and 0.30%, respectively. The study
recommends the utilization of landfill gas, strengthening waste classification practices, and
implementing green initiatives to reduce greenhouse gas emissions [17]. The Logarith-
mic Mean Divisia Index (LMDI) model has been increasingly applied in carbon emission
analysis. Yujie Guo and their team employed the GM (1,1) model to predict total energy
consumption in China and used the LMDI method to analyze carbon emissions across
various industries from 2015 to 2019 based on the Intergovernmental Panel on Climate
Change data. The constructed carbon emission analysis model examined the influence of
energy consumption intensity, population size, urbanization level, and electricity carbon
emissions on carbon emissions. The results indicated that population size, urbanization
level, and electricity carbon emissions promoted the growth of carbon emissions, while
energy consumption intensity, rural population share, and industrial structure played
a restraining role [18]. Wu X and their team utilized LMDI and GM (1,1) methods to
analyze CESEC carbon emissions from 2005 to 2009 and forecasted carbon emissions for
2030. Additionally, a two-dimensional decoupling model was employed to examine the
relationship between carbon emissions and economic development. The research revealed
that economic output had the main impact on carbon emissions, while the effect of energy
intensity alleviated carbon emissions. The study also emphasized the challenging task of
carbon reduction by 2030. Ordos achieved a high level of expansion negative decoupling
conditions between 2015 and 2019, while other regions exhibited relatively low decoupling
conditions. Hence, it is crucial for the region to enhance its emission reduction technologies,
particularly for high-carbon-energy sources such as coal; modify its energy consumption
structure; and secure government policy support in order to promote carbon reduction [19].

It is evident that there is a lack of comprehensive exploration into the low-carbon and
sustainable development of traditional high-energy-consuming industries, particularly
the non-ferrous metal industry, in existing research. To address this research gap, this
study adopts a novel approach by analyzing the traditional non-ferrous metal industry as a
representative of the high-energy-consumption industry. By doing so, it aims to shed light
on these overlooked areas and contribute to filling this research void. Furthermore, recent
variable analyses on the direction of low-carbon sustainable development have predomi-
nantly focused on new energy research and macro regional perspectives, with relatively
limited specific analysis on traditional high-energy-consumption industries. This research
gap poses a significant challenge. In response, this study utilizes the Logarithmic Mean



Sustainability 2023, 15, 13437 5 of 20

Divisia Index (LMDI) model to investigate the factors influencing CO2 emission reduction
in the non-ferrous metal industry. The application of this model not only introduces new
research methods to related fields, but also significantly supplements and advances existing
research efforts. This study holds great importance for researchers wishing to comprehend
and explore strategies for achieving the low-carbon and sustainable transformation of
traditional high-energy-consuming industries.

3. Model Construction
3.1. Theoretical Framework of Variable Analysis

The study titled “Influencing Factors of CO2 Emission Reduction in High Energy
Consuming Industries during the Peak Carbon Emissions Period” aims to investigate how
the non-ferrous metal industry can achieve CO2 emission reduction amidst the context of
peak carbon emissions. To accomplish this objective, three quantitative analysis methods
will be employed: the design of a carbon emission decomposition model for the non-ferrous
metal industry, the implementation of a regional classification analysis model specific to the
non-ferrous metal industry, and the development of a carbon emission prediction model
for the same industry. These three methods are grounded in relevant theories and boast
scientific rigor and reliability.

Firstly, the design of the carbon emission decomposition models for the non-ferrous
metal industry is rooted in ecological theory. This model dissects carbon emissions into
distinct components by scrutinizing the production process and energy consumption
within the non-ferrous metal industry. As a result, it provides a more accurate assessment
of its environmental impact. Simultaneously, this model can offer targeted suggestions for
emission reduction to non-ferrous metal enterprises, thereby promoting their sustainable
development. This method facilitates companies in better understanding their carbon
emissions and formulating more effective measures to reduce them.

Secondly, the regional classification analysis model for the non-ferrous metal industry
draws on the theory of Geographic Information Systems (GIS). This model comprehensively
analyzes factors such as geographical location, industrial structure, and resource endow-
ment of non-ferrous metal enterprises, ultimately categorizing them based on various
regions. Subsequently, tailored emission reduction strategies and policies are formulated
according to the unique characteristics and requirements of each region, with the aim of
improving the overall environmental performance of the industry. This approach assists
governments in gaining a better understanding of the environmental protection scenario in
different regions, facilitating the formulation of targeted environmental policies.

Finally, the carbon emission prediction model for the non-ferrous metal industry
relies on time series analysis theory. This model leverages historical data analysis and
forecasting techniques to predict carbon emissions over a future time span. This feature
is pivotal for non-ferrous metal enterprises in developing long-term emission reduction
plans and strategies, while also aiding governments in formulating more scientifically
grounded environmental policies. Additionally, this method enables the provision of
future market opportunities and risk warnings to enterprises, fostering informed business
decision making.

In summary, this study employs multiple quantitative analysis methods that inter-
twine with relevant theories to provide scientific foundations and effective solutions for
CO2 emission reduction in the non-ferrous metal industry. These approaches not only
enhance companies’ understanding of their carbon emissions, but also support governmen-
tal efforts in formulating environmental policies. Future research should further explore
effective practices concerning carbon emission reduction in other industries, with the aim
of applying these experiences to the non-ferrous metal industry, thereby propelling societal
development towards a more sustainable trajectory. Simultaneously, it is imperative to
strengthen the promotion and education of environmental awareness, encouraging more
individuals to recognize the significance of environmental protection and actively engage
in related actions.
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3.2. Carbon Emission Decomposition Model Design for the Non-Ferrous Metals Industry

The study selected 2011 to 2022 as the main analysis interval, within which carbon
dioxide emissions showed a stable upward trend, as shown in Figure 1.
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The research utilizes the LMDI model to develop a decomposition analysis model
for assessing CO2 emissions in the non-ferrous metal industry. The LMDI model is a
widely used method for decomposing energy consumption, allowing for the analysis of
trends in energy consumption changes by breaking it down into various contributing
factors. Specifically, the LMDI model can decompose energy consumption based on its
structural, intensity, and combinatorial effects [20–22]. In the context of this study, the
decomposition of CO2 emissions is categorized into four primary factors: carbon emissions,
energy intensity, energy structure, and economic scale. The decomposition model obtained
by applying four factors to the non-ferrous metal industry for variable refinement is shown
in Formula (1).

C = ∑
i

Ci = ∑
i

Ci
Ei

Ei
E

E
P

P = ∑
i

CIiESiEIP (1)

In Formula (1), i represents the type of energy, and C represents the CO2 emissions
associated with the total energy output. Ci represents the CO2 emissions of a single ap-
plication energy type. E is the total energy consumption, and Ei represents i’s energy
consumption. P represents the total industrial output value. CIi, ESi, and EI, respectively,
represent the carbon emission coefficient corresponding to energy consumption, the pro-
portion of single energy in total energy, and energy intensity. The CO2 emissions between
the reference year and year T during the research period are shown in Formula (2).

∆CT = CT − C0 = ∆CI
T

e f f ect + ∆ES
T

e f f ect + ∆EI
T

e f f ect + ∆P
T

e f f ect (2)

In Formula (2), CI
T

e f f ect represents the role of the carbon emission coefficient from the

base year to year T, ES
T

e f f ect represents the role of energy structure from the base year to

year T, EI
T

e f f ect represents the role of energy intensity from the base year to year T, and

P
T

e f f ect represents the role of economic scale from the base year to year T. The single annual
CO2 emissions are shown in Formula (3).

∆C = CT+1 − CT = ∆CIe f f ect + ∆ESe f f ect + ∆EIe f f ect + ∆Pe f f ect (3)

In Formula (3), CIe f f ect represents the role of the carbon emission coefficient in a single
year, ESe f f ect represents the role of the energy structure in a single year, EIe f f ect represents
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the role of energy intensity in a single year, and Pe f f ect represents the role of economic scale
in a single year. The variation of carbon emission coefficient factors in the model is shown
in Formula (4).

∆CIT
e f f ect = ∑

[(
CT

i − C0
i

)
/
(

ln CT
i − ln C0

i

)]
ln
(

CIT
i /CI0

i

)
(4)

The changes in energy structure factors in the model are shown in Formula (5).

∆EST
e f f ect = ∑

[(
CT

i − C0
i

)
/
(

ln CT
i − ln C0

i

)]
ln
(

EST
i /ES0

i

)
(5)

The changes in energy structure factors in the model are shown in Formula (6).

∆EIT
e f f ect = ∑

[(
CT

i − C0
i

)
/
(

ln CT
i − ln C0

i

)]
ln
(

EIT
i /EI0

i

)
(6)

The changes in energy structure factors in the model are shown in Formula (7).

∆PT
e f f ect = ∑

[(
CT

i − C0
i

)
/
(

ln CT
i − ln C0

i

)]
ln
(

PT
i /P0

i

)
(7)

3.3. Regional Classification Analysis Model for the Non-Ferrous Metal Industry

Using a single LMDI model alone is insufficient for accurately analyzing CO2 emis-
sions in the non-ferrous metal industry at the provincial level, and it becomes even more
challenging to compare emissions differences between different regions. Additionally,
there is currently no universal standard for assessing CO2 emission reduction performance
across different regions [23–25]. Due to variations in regional distribution and promotion
strategies, a single aggregate measure of total carbon emissions cannot be used to gauge the
carbon reduction status of different regions effectively. To comprehensively and precisely
evaluate changes in CO2 emissions, it is necessary to thoroughly consider the factors that
influence these changes [26,27]. Therefore, a regionalized classification analysis model is
proposed to classify the carbon dioxide emissions of the non-ferrous metal industry in
various provinces based on the number of positive influencing factors and their respective
changes. This model includes four factors that contribute to emissions, with the number of
positive influencing factors serving as the vertical axis, ranging from 0 to 4. The change
in CO2 emissions is represented on the horizontal axis, with positive values indicating an
increase and negative values indicating a decrease. Figure 2 illustrates this model and its
graphical representation.
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Furthermore, it is important to emphasize that positive factors primarily contribute to
an increase in total emissions. If all influencing factors are positive, the total carbon dioxide
emissions will inevitably be in an upward trajectory. Conversely, when the positive factor
is 0, it indicates that carbon dioxide emissions cannot be increasing. Similarly, when the
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positive factor is 4, it signifies that carbon dioxide emissions cannot be decreasing. As a
result, different regions can be classified into eight distinct types, as illustrated below.

In Figure 3, ∆c represents the emission changes during the study period. If ∆c is
greater than 0, emissions tend to grow. If ∆c is greater than 0, emissions tend to decrease.
n represents the number of positive influencing factors. The study mainly distinguishes
eight types. The higher the classification type of a province, the more severe the emissions
change, and the more positive influencing factors there are. Among them, the province
with type A showed the best performance in reducing carbon dioxide emissions, including
0 positive influencing factors. The carbon dioxide emissions of type D show a downward
trend, but the number of positive influencing factors has increased to three. The increase in
carbon dioxide emissions of type E includes one positive influencing factor. Type H has the
worst performance, with an increase in carbon dioxide emissions, including four positive
influencing factors.
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3.4. Carbon Emission Prediction Model for the Non-Ferrous Metal Industry

The study used scenario prediction analysis to predict carbon emissions in the non-
ferrous metal industry by the LMDI. The emission prediction formula is shown in Formula (8).

Ct = C0 + ∆Pe f f ect + ∆EIe f f ect + ∆ESe f f ect + ∆CIe f f ect (8)

In Formula (8), C0 is the emission value of year 0, i.e., the base year; ∆Pe f f ect is the
emission change of economic scale; ∆EIe f f ect refers to the carbon emission change of energy
intensity; ∆ESe f f ect refers to the carbon emission change of energy structure; and ∆CIe f f ect
refers to the carbon emission change of the carbon emission coefficient. Assuming that the
target year is t, the growth rate of economic scale from the base year to the target year is α,
the growth rate of energy intensity is β, the proportion of the i energy is γi, and the carbon
dioxide emission coefficient of the i energy is δi. The economic scale of the target year can
be calculated as:

Pt = P0 ∗ (1 + α) (9)

The energy intensity can be calculated by Formula (10).

EIt = EI0 ∗ (1 + β) (10)

The proportion of a single energy source can be calculated using Formula (11).

ESt = ES0 ∗ (1 + γi) (11)

The proportion of the carbon emission coefficient can be calculated using Formula (12).

CIt = CI0 ∗ (1 + δi) (12)
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On this basis, the carbon emission changes of economic scale can be obtained as shown
in Formula (13).

∆Pe f f ect = ∑
C∗

i [(1 + α) ∗ (1 + β) ∗ (1 + γi) ∗ (1 + δi)− 1]
Ln[(1 + α) ∗ (1 + β) ∗ (1 + γi) ∗ (1 + δi)]

∗ LN(1 + α) (13)

The carbon emission change of energy intensity is shown in Formula (14).

∆EIe f f ect = ∑
C∗

i [(1 + α) ∗ (1 + β) ∗ (1 + γi) ∗ (1 + δi)− 1]
Ln[(1 + α) ∗ (1 + β) ∗ (1 + γi) ∗ (1 + δi)]

∗ LN(1 + β) (14)

The carbon emission changes in the energy structure are shown in Formula (15).

∆ESe f f ect = ∑
C∗

i [(1 + α) ∗ (1 + β) ∗ (1 + γi) ∗ (1 + δi)− 1]
Ln[(1 + α) ∗ (1 + β) ∗ (1 + γi) ∗ (1 + δi)]

∗ LN(1 + γi) (15)

The change in carbon emissions of the emission coefficient is shown in Formula (16).

∆CIe f f ect = ∑
C∗

i [(1 + α) ∗ (1 + β) ∗ (1 + γi) ∗ (1 + δi)− 1]
Ln[(1 + α) ∗ (1 + β) ∗ (1 + γi) ∗ (1 + δi)]

∗ LN(1 + δi) (16)

Using this model, researchers can make predictions about the future levels of carbon
dioxide emissions at specific target time points. Furthermore, the model allows for quanti-
fying the contributions of various influencing factors during the prediction process. In this
study, three distinct scenarios were established to conduct a comprehensive comparative
analysis. The factors of carbon emission, energy intensity, energy structure, and economic
scale in each scenario were set based on the existing annual average growth rate. Figure 4
illustrates the three scenarios.
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In Figure 4, the study focuses on three main scenarios: the baseline scenario, high-
emission scenario, and low-emission scenario. These scenarios are hypothetical represen-
tations that aim to predict future trends in energy development. They provide valuable
reference points for government and business entities when formulating sustainable energy
plans. The prediction period for these scenarios is based on the year 2033, ten years from
now. The baseline scenario serves as the foundation for future predictions, assuming that
various influencing factors will follow historical trends. Specifically, when calculating the
energy structure, the annual growth rate of energy consumption for different sources is
determined based on past trends. This allows for the estimation of the proportion of energy
consumption by 2033. Similarly, carbon emission coefficients for electricity and other energy
sources are adjusted according to corresponding annual growth rates. The baseline scenario
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provides a relatively basic framework for the subsequent high-emission and low-emission
scenarios. The high-emission scenario builds upon the baseline scenario and assumes that
China’s non-ferrous metal industry will have significantly higher carbon dioxide emissions
by 2033. In this scenario, both energy scale and energy intensity are projected to grow at
a 2% annual rate above the baseline scenario. Additionally, it is assumed that the carbon
emission coefficient of electricity will increase by 2% annually, while the growth rate of
other energy sources remains unchanged. Consequently, the high-emission scenario reflects
a future where energy extraction and usage are more frequent and extensive compared
to the baseline scenario, resulting in increased pressure on carbon emissions. Conversely,
the low-emission scenario also starts from the baseline scenario, but predicts lower carbon
dioxide emissions in China’s non-ferrous metal industry by 2033. This particular scenario
assumes that the annual growth rate of energy scale and energy intensity is 2 percentage
points below the baseline, and the annual growth rate of the carbon emission coefficient of
electricity is also 2 percentage points lower than the baseline. The annual growth rate of
other energy sources remains unchanged. As a result, the low-emission scenario indicates
a future where energy consumption and carbon emissions decrease, contributing to im-
proved environmental quality. In summary, these three scenarios offer distinct estimations
in different directions for future energy development. They provide valuable insights into
future energy market and environmental trends, while also serving as a scientific basis for
formulating sustainable energy plans in the future.

4. Empirical Analysis
4.1. Carbon Emissions Decomposition Analysis

The study selected the period from 2012 to 2022 as the main data decomposition
period, and the specific decomposition results for the period from 2012 to 2016 are shown
in Table 1.

Table 1. Decomposition results from 2012 to 2016.

Years

Energy Intensity Energy-Resource Structure Economic Scale Carbon Emission Coefficient Carbon
Emission

Change in
Emission

(104 t)

Contribution
Rate (%)

Change in
Emission

(104 t)

Contribution
Rate (%)

Change in
Emission

(104 t)

Contribution
Rate (%)

Change in
Emission

(104 t)

Contribution
Rate (%)

Change in
Emission

(104 t)

2012 −108.41 7.26 −48.21 3.24 1144.61 76.61 −193.06 12.93 794.93
2013 −319.07 13.52 496.26 21.04 1525.29 64.56 −21.65 0.93 1682.83
2014 −715.22 19.26 −8.09 0.22 2974.44 80.08 −17.18 0.47 2233.95
2015 −2070.82 34.48 311.46 5.18 3330.73 55.48 −291.51 4.86 1279.86
2016 −1900.45 29.81 −168.11 2.65 4250.66 66.65 −58.98 0.93 2123.12

In Table 1, the change value of carbon emissions shows a gradual upward trend. Under
this trend, the contribution rate of energy intensity shows an upward trend, while the
contribution rate of economic scale shows a downward trend. The specific decomposition
results for the period from 2017 to 2022 are shown in Table 2.

Table 2. Decomposition results from 2017 to 2022.

Years

Energy Intensity Energy-Resource Structure Economic Scale Carbon Emission Coefficient Carbon
Emission

Change in
Emission

(104 t)

Contribution
Rate (%)

Change in
Emission

(104 t)

Contribution
Rate (%)

Change in
Emission

(104 t)

Contribution
Rate (%)

Change in
Emission

(104 t)

Contribution
Rate (%)

Change in
Emission

(104 t)

2017 −1136.44 16.98 14.38 0.22 5355.28 80.05 −184.40 2.77 4048.82
2018 −256.27 3.09 −873.93 10.53 6608.76 79.53 −572.09 6.89 4906.42
2019 −3501.18 39.73 224.19 2.55 4592.78 52.07 −498.23 5.66 816.96
2020 −2077.78 29.04 −609.22 8.52 4166.87 58.25 −300.72 4.23 1179.15
2021 8007.52 56.34 −506.21 3.55 5035.13 35.43 −666.61 4.68 11,869.84
2022 −2969.46 48.76 307.14 2.31 6227.62 46.84 −279.74 2.11 2923.28

In Table 2, it is observed that an increase in economic scale leads to higher emissions,
while a decrease in economic scale results in reduced carbon emissions. Specifically, the
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expansion of the non-ferrous metal industry has a significant impact on emissions. The
proportion of this impact on the economic scale is the highest among all the years analyzed.
Notably, in 2018, the carbon emissions attributed to the economic scale experienced the
most substantial change, reaching 66,087,600 tons. On average, from 2012 to 2022, CO2
emissions caused by the economic scale accounted for 63% of the total changes. Table 3
presents the results of provincial regional decomposition from 2012 to 2016.

Table 3. Results of provincial regional decomposition from 2012 to 2016.

Provincial Region

2012–2016

Economic
Scale

Energy
Intensity

Energy-
Resource
Structure

Carbon
Emission

Coefficient

Carbon
Emission

Beijing 4.48 −7.34 0.23 −0.08 −2.72
Tianjin 5.16 −6.56 0.44 −0.21 −1.18
Hebei 46.64 −64.15 −17.28 −1.98 −36.86
Shanxi 830.04 −128.52 84.19 −24.96 760.66

Inner Mongolia 712.42 250.67 −139.68 −62.74 760.69
Liaoning 320.09 −270.83 13.65 −4.97 57.93

Jilin 42.67 −18.27 −15.41 0.18 9.18
Heilongjiang 24.36 −26.72 −0.29 −1.53 −3.26

Shanghai 26.48 −17.67 5.88 −0.48 14.22
Jiangsu 67.62 −63.85 13.27 −4.12 12.93

Zhejiang 190.53 −117.27 −0.32 −3.89 68.87
Anhui 162.56 −167.95 −1.38 −3.41 −9.19
Fujian 87.45 −19.87 −4.27 −3.88 59.43
Jiangxi 411.39 −259.32 −10.48 −16.59 126.48

Shandong 1484.05 −726.73 256.36 −21.88 992.77
Henan 2608.36 −475.51 286.52 −79.48 2239.94
Hubei 189.043 −59.03 −7.27 −17.36 105.38
Hunan 438.18 −305.19 60.78 −24.81 167.97

Guangdong 206.43 −200.14 7.88 −2.31 11.87
Guangxi 188.29 −91.77 12.18 −71.89 36.81

Chongqing 111.37 −43.09 6.65 −3.34 71.92
Sichuan 379.82 85.06 120.58 −18.85 566.53
Guizhou 444.09 −58.67 −26.51 −29.51 318.42
Yunnan 725.96 −375.43 60.28 −60.65 350.18
Shaanxi 307.73 −145.73 −6.56 −14.31 141.14
Gansu 718.51 −397.16 70.92 −47.73 344.03

Qinghai 511.25 −11.08 5.98 −112.52 393.27
Ningxia 215.77 276.54 −47.51 −11.79 433.04
Xinjiang 103.27 41.77 −18.12 −2.63 124.32

According to the data in Table 3, changes in the economic scale are the key factor
leading emissions increasing in most provinces of the country, and this situation exists in
all provinces. The decomposition results of provincial-level regions from 2017 to 2022 are
shown in Table 4.

Tables 3 and 4 provide insights into the impact of economic scale and energy structure
changes on carbon dioxide (CO2) emissions across different years. When considering
economic scale, the expansion in Henan province had the most significant effect on CO2
emissions. Specifically, the industry’s expansion contributed to 260,836 tons and 43.8477
million tons of emissions, accounting for 75% and 69% of the total emission changes,
respectively. The analysis also reveals substantial differences in the influence of changes in
energy structure on carbon dioxide emissions among various provinces. Enhancing energy
intensity plays a crucial role in reducing emissions and is one of the factors with the most
substantial negative impact on carbon dioxide emissions. Additionally, the reduction of the
carbon dioxide emission coefficient is another critical factor contributing to the decrease in
carbon dioxide emissions. Figure 5 visually represents the contribution rates of changes in
carbon dioxide emissions across different regions in the non-ferrous metal industry.
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Table 4. Results of provincial-level regional decomposition from 2017 to 2022.

Provincial Region

2017–2022

Economic
Scale

Energy
Intensity

Energy-
Resource
Structure

Carbon
Emission

Coefficient

Carbon
Emission

Beijing 0.18 −0.11 −0.12 −0.08 −0.12
Tianjin 5.27 −7.23 −0.16 −0.07 −2.18
Hebei 31.69 −32.18 −2.64 −1.96 −5.08
Shanxi 225.47 461.47 −9.51 −61.11 616.34

Inner Mongolia 3054.45 −1633.05 198.49 −32.98 1586.91
Liaoning 527.95 −512.07 4.82 −22.44 −11.37

Jilin 101.55 −103.96 −8.27 −6.97 −19.63
Heilongjiang 6.67 −30.48 0.78 −2.65 −25.67

Shanghai 8.03 −2.55 −0.89 −1.82 2.78
Jiangsu 146.89 101.08 −29.18 −9.45 215.93

Zhejiang 115.93 −157.21 −84.22 −19.18 169.76
Anhui 163.63 −76.25 −14.41 −11.23 61.78
Fujian 154.14 −91.34 −9.66 −13.68 39.47
Jiangxi 489.55 −468.06 25.81 −24.78 22.56

Shandong 2110.39 −828.94 −287.84 −45.83 947.81
Henan 4384.77 −1079.77 −548.06 −383.02 2373.97
Hubei 376.48 −200.26 27.43 −29.84 162.83
Hunan 652.85 −393.43 12.17 −41.94 229.66

Guangdong 276.18 −55.48 45.17 −8.14 257.75
Guangxi 743.41 −170.91 −75.08 −45.74 450.91

Chongqing 193.33 41.65 15.73 −24.77 225.94
Sichuan 672.05 −465.76 −45.22 −119.55 40.55
Guizhou 168.57 590.12 259.08 −65.84 951.92
Yunnan 541.82 −204.52 14.57 −103.67 247.38
Shaanxi 352.45 −148.31 28.47 −28.23 203.26
Gansu 992.33 305.55 −95.85 −45.58 1155.35

Qinghai 848.25 437.68 −335.66 −143.96 805.34
Ningxia 453.68 −264.37 56.58 −30.43 214.47
Xinjiang 88.02 −46.87 −0.15 −8.83 32.18
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4.2. Regionalization Classification of the Non-Ferrous Metals Industry

The regional classification analysis results of the non-ferrous metal industry from 2012
to 2016 are shown in Table 5.

Table 5. Analysis results of regionalization classification of the non-ferrous metal industry from 2012
to 2016.

Carbon Emission
2012–2016

∆c Type

Beijing 2 <0 C
Tianjin 2 <0 C
Hebei 1 <0 B
Shanxi 2 >0 F

Inner Mongolia 2 >0 F
Liaoning 2 >0 F

Jilin 2 >0 F
Heilongjiang 1 <0 B

Shanghai 2 >0 F
Jiangsu 2 >0 F

Zhejiang 1 >0 E
Anhui 1 <0 B
Fujian 1 >0 E
Jiangxi 1 >0 E

Shandong 2 >0 F
Henan 2 >0 F
Hubei 1 >0 E
Hunan 2 >0 F

Guangdong 2 >0 F
Guangxi 2 >0 F

Chongqing 2 >0 F
Sichuan 3 >0 G
Guizhou 1 >0 E
Yunnan 2 >0 F
Shaanxi 1 >0 E
Gansu 2 >0 F

Qinghai 2 >0 F
Ningxia 2 >0 F
Xinjiang 2 >0 F

All provinces have been categorized into five types: B, C, E, F, and G. Throughout the
research period, approximately half of the provinces fell under type F, which is higher than
any other category. This indicates that the prospects for reducing carbon emissions are not
optimistic in these regions. The regional classification analysis results from 2017 to 2022 are
presented in Table 6.

Table 6. Analysis results of regionalization classification of the non-ferrous metal industry from 2017
to 2022.

Carbon Emission
2017–2022

n C Type

Beijing 1 <0 B
Tianjin 1 <0 B
Hebei 1 <0 B
Shanxi 2 >0 F

Inner Mongolia 2 >0 F
Liaoning 1 <0 B

Jilin 1 <0 B
Heilongjiang 2 <0 C

Shanghai 1 >0 E
Jiangsu 2 >0 F

Zhejiang 2 >0 F
Anhui 1 >0 E
Fujian 1 >0 E
Jiangxi 2 >0 F

Shandong 1 >0 E
Henan 1 >0 E
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Table 6. Cont.

Carbon Emission
2017–2022

n C Type

Hubei 2 >0 F
Hunan 2 >0 F

Guangdong 2 >0 F
Guangxi 1 >0 E

Chongqing 3 >0 G
Sichuan 1 >0 E
Guizhou 3 >0 G
Yunnan 2 >0 F
Shaanxi 2 >0 F
Gansu 2 >0 F

Qinghai 2 >0 F
Ningxia 2 >0 F
Xinjiang 1 >0 E

In addition, the number of provinces belonging to types B and G increased during the
second stage, while the number of provinces performing best and worst also increased,
indicating a differentiation in carbon emissions among provinces during the second re-
search stage.

4.3. Carbon Emissions Prediction and Analysis in the Non-Ferrous Metal Industry

The carbon emission prediction analysis results under the first and second scenarios
are shown in Figure 6.
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Figure 6. Carbon emission prediction for the non-ferrous metal industry.
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In the first scenario, based on the model’s prediction, carbon emissions are projected
to increase by 1028.23 million tons by 2033 compared to the levels in 2022. This represents
a significant growth rate of up to 245%. In the second scenario, assuming a two-percentage-
point increase in the economic scale, energy intensity, power growth rate, and power
emission coefficient of the non-ferrous metals industry compared to the original situation,
the model calculates a considerable increase in carbon emissions. By 2033, carbon emissions
are estimated to have risen by 1886.88 million tons compared to the growth observed in
2011, reflecting a growth rate of 449%. Conversely, if the economic scale, energy intensity,
power growth rate, and power emission coefficient of the non-ferrous metals industry are
two percentage points lower than the original situation, the model predicts a comparatively
smaller increase in carbon emissions. By 2033, the carbon emissions are projected to rise by
502.08 million tons, or 119%, compared to the levels in 2022. A detailed comparison of the
influence and variation values of each factor is provided in Table 7.

Table 7. The impact value and variation value of each factor.

Scenario Category Scenario Parameters Variable Value Contribution Rate
(%)

Scenario 1

Total changes in
carbon dioxide 102,824 100

Economic scale
impact 153,064 75.28

Energy intensity
impact −31,695 −15.58

Energy structure
impact −9826 −4.82

Impact of carbon
emission coefficient −8722 −4.28

Scenario 2

Total changes in
carbon dioxide 188,669 100

Economic scale
impact 220,297 87.46

Energy intensity
impact −21,748 −8.64

Energy structure
impact −9291 −3.68

Impact of carbon
emission coefficient −589 −0.24

Scenario 3

Total changes in
carbon dioxide 502,207 100

Economic scale
impact 107,668 65.21

Energy intensity
impact −36,248 −21.96

Energy structure
impact −9153 −5.55

Impact of carbon
emission coefficient −12,058 −7.31

Among the three scenarios, the expansion of the economic scale primarily drives the
increase in carbon emissions. In Scenario 1, the contribution of the economic scale to the
carbon emissions increase accounts for 75.28% of all factors. In Scenario 2 and Scenario
3, although the impact of the economic scale has increased and decreased, respectively,
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its contribution proportion among all factors remains significant at 87.46% and 65.21%,
respectively. Both the energy structure and carbon emission coefficient have a modest, but
positive, effect on reducing carbon dioxide emissions. However, their impact is relatively
small. In all three scenarios, their contribution to total carbon emissions does not exceed 8%.
To assess the feasibility of reducing carbon dioxide emissions in China’s non-ferrous metal
industry, two scenarios have been formulated: a stable emission reduction scenario and a
positive emission reduction scenario. The implementation of the stable emission reduction
scenario would result in a shift from Scenario 2 to Scenario 1 in terms of carbon dioxide
emissions in the non-ferrous metal industry. On the other hand, adopting the positive
emission reduction scenario would lead to a shift from Scenario 2 to Scenario 3 in terms of
emissions changes. Table 8 presents the potential for emissions reduction in both scenarios.

Table 8. Sensitivity analysis.

Parameter Baseline
Scenario Value

High-Emission
Scenario Values

Low-Emission
Scenario Value

Carbon dioxide emission factor 1.0 1.1 1.2
Energy intensity factor 1.0 1.1 1.2
Energy structure factor 1.0 1.1 1.2
Economic scale factor 1.0 1.1 1.2

As the carbon dioxide emission factor increases, the predicted carbon dioxide emis-
sions by the model will also increase accordingly; this indicates that the model has a certain
sensitivity to changes in carbon dioxide emission factors. As the energy intensity factor in-
creases, the carbon dioxide emissions predicted by the model will also increase accordingly;
this indicates that the model also has a certain sensitivity to changes in energy intensity
factors. As the energy structure factor increases, the carbon dioxide emissions predicted by
the model will decrease; this indicates that the model has a certain sensitivity to changes
in energy structure factors. As the economic scale factor increases, the carbon dioxide
emissions predicted by the model will increase; this indicates that the model has a certain
sensitivity to changes in economic scale factors.

In Table 9, the potential to reduce CO2 emissions in the future is very great. In the
scenario of stable emission reduction, the industry’s emission reduction potential by 2033
is 858.47 million tons of standard coal, accounting for 59.29% of the total emissions that
year. In the active emission reduction scenario, its potential will reach 1384.65 million tons
of standard coal by 2033, which is 150.19% of the total emissions that year. The comparison
between carbon emissions and predicted results in 2022 is shown in Figure 7.

Table 9. Emission reduction potential.

Time 2033

Stable carbon dioxide
emission scenario

Emission reduction 85,847 million tons
Proportion in total emissions 59.29%

Positive CO2 emission
scenarios

Emission reduction 138,465 million tons
Proportion in total emissions 150.19%

In the scenario of stable emission reduction, its future potential reaches 858.47 million
tons, nearly twice the carbon dioxide emissions of 419.87 million tons in 2011. Under the
active emission reduction scenario, its potential will reach 1384.65 million tons, nearly three
times the emissions in 2011.

Based on the above research results, the following policy recommendations are proposed:
Optimize industrial structure. Encourage the upgrading of high-energy-consuming

non-metallic industries and develop low-carbon, green, and circular economy industries.
Through policy guidance, promote enterprises to transform and upgrade towards high-
end, intelligent, and green directions; increase industrial added value; and reduce energy
consumption and emission intensity.
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Strengthen regional coordinated development. Based on the resource endowment,
industrial foundation, and development potential of each region, formulate differentiated
industrial policies to guide the concentration of funds, technology, and talent in advantageous
regions. At the same time, strengthen cross-regional cooperation, achieve complementary
advantages and share resources, and improve overall industrial competitiveness.

Improve energy efficiency. Promote advanced energy-saving technologies and equip-
ment to reduce enterprise energy consumption. Implement an energy management system,
strengthen energy supervision and assessment of enterprises, and ensure that they meet
national and industry energy consumption standards. In addition, encourage enterprises
to replace traditional energy with clean energy to reduce carbon emissions.

Establish a carbon emission trading market. By establishing a carbon emission trading
market, companies are incentivized to reduce carbon emissions. The government can limit
and manage emissions, and trade the remaining emission rights in the market. This can
not only regulate the carbon emission behavior of enterprises, but also provide effective
carbon reduction mechanisms for the market.

Strengthen the enforcement of environmental regulations. Strengthen environmental
supervision of high-energy-consuming non-metallic industries and strictly implement
environmental protection regulations. For enterprises that violate environmental regula-
tions, their legal responsibilities should be pursued in accordance with the law, forming
an effective deterrent effect. At the same time, encourage enterprises to take proactive
environmental protection measures to reduce pollution emissions.

In summary, in order to achieve the sustainable development goal of China’s high-
energy-consuming non-metallic industry, we need to start from optimizing industrial
structure, strengthening regional coordinated development, improving energy utilization
efficiency, establishing a carbon emission trading market, strengthening the enforcement of
environmental regulations, etc., to formulate practical and feasible policies and measures
to achieve emission reduction goals and promote the healthy development of the industry.

The Jiang T team pointed out that climate change will bring more uncertainty and
risks to China’s agriculture. Therefore, a series of measures need to be taken to address
climate change, including optimizing planting structures and developing adaptive crop
varieties. This study focuses more on developing targeted emission reduction policies
in the high-energy-consuming industry [28]. The Yang C team studied the impact of
urbanization on the environment in China and proposed a sustainable urbanization model,
pointing out the need to establish a sustainable urbanization model, including promoting
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low-carbon city construction, strengthening garbage classification and treatment, and
improving energy utilization efficiency. This study focuses on the specific development of
industries in the process of urbanization, focusing on high-energy-consuming industries,
and conducting targeted analysis [29]. Hart S L proposed strategies to promote balanced
development of international trade, pointing out the need to adopt a series of strategies,
including strengthening intellectual property protection, promoting the construction of
free trade zones, and strengthening regional economic cooperation [30]. This study mainly
focuses on the direction of industrial development, with a greater emphasis on formulating
targeted emission reduction policies in high-energy-consuming industries. In summary, the
advantages of this study compared to the above three literature studies are as follows: firstly,
in-depth research was conducted on the special situation of the high-energy-consumption
industry; secondly, the Logarithmic Mean Divisia Index model was used for empirical
analysis, providing more accurate data support; finally, suggestions were put forward to
formulate different emission reduction goals and policies for different situations, which
have strong practicality and operability.

5. Conclusions

This study focuses on the non-ferrous metal industry, which is a high-energy-consuming
sector. The research investigates three main aspects: carbon emission decomposition, region-
alization analysis, and carbon emission prediction. Using the LMDI model, corresponding
models were developed and validated. The findings of this research indicate that the economic
scale factor had the greatest impact throughout the study period. Specifically, in 2018, the
economic scale factor led to a significant increase in carbon emissions, reaching 66.0876 million
tons. Additionally, improvements in energy intensity and reductions in the carbon dioxide
emission coefficient contributed to the decrease in carbon dioxide emissions. During the
research period, approximately half of the provinces were classified as type F, indicating a
less optimistic outlook for carbon emission reduction. Type F provinces exhibited higher
carbon emissions compared to other types. In the prediction analysis, under three different
scenarios, carbon emissions were projected to increase compared to 2022. The increases
were estimated to be 1028.23 million tons, 1886.88 million tons, and 50.208 million tons
under the first, second, and third scenarios, respectively. Among the three scenarios, the
economic scale factor accounted for 75.28%, 87.46%, and 65.21%, respectively, of the total
factors contributing to the increase in carbon emissions. The impact of the energy structure
and carbon emission coefficient on reducing carbon emissions was relatively small. Finally,
under a stable emission reduction scenario, the non-ferrous metal industry was estimated
to have a potential reduction of 858.47 million tons in future carbon dioxide emissions.
Under an active emission reduction scenario, the potential reduction was even greater,
reaching 1384.65 million tons, two to three times higher than that of 2021. This indicates
that the non-ferrous metal industry has significant potential for reducing carbon emissions
in the future.

This study focuses on the non-ferrous metal industry within the high-energy-consumption
sector, and it explores three key aspects: carbon emission decomposition, regional analysis,
and carbon emission prediction. By employing the Logarithmic Mean Divisia Index (LMDI)
model and conducting empirical analysis, this research provides a comprehensive under-
standing of carbon emission characteristics in China’s high-energy-consumption industry.
The findings offer valuable theoretical support for the formulation of future carbon emission
reduction policies in this industry.

One of the innovative aspects of this study lies in its examination of the non-ferrous
metal industry within the high-energy-consumption sector, expanding the research scope
in related fields. The utilization of the LMDI model as an analytical tool to investigate
carbon emission characteristics in high-energy-consuming industries represents a novel
contribution. Furthermore, this study analyzes the factors influencing carbon emissions
in high-energy-consuming industries from three perspectives: economic scale, energy
intensity, and carbon emission coefficient. This analysis sheds light on the extent to which
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each factor impacts carbon emissions. Another significant contribution of this study is
the classification and prediction of carbon emissions in various provinces, under different
emission reduction goals and policies. These predictions identify the potential for future
carbon emissions, providing a basis for the government to formulate targeted emission
reduction strategies.

Building on the aforementioned research results, future studies can be pursued in the
following three directions. Firstly, with regards to regional analysis, in-depth investiga-
tions into the carbon emission characteristics and influencing factors of non-ferrous metal
industries in different regions should be conducted. This will facilitate the development of
emission reduction strategies tailored to local conditions. Additionally, factors such as the
energy structure, economic development level, and policy environment in different regions
should be considered, enabling the identification of more targeted solutions. Secondly,
interdisciplinary research cooperation should be strengthened by integrating knowledge
from various disciplines, such as climate economics and systems engineering, into carbon
emissions research in the non-ferrous metal industry. This interdisciplinary approach
will help uncover the complex relationships among carbon emissions and various factors,
providing theoretical support for the formulation of more effective policies and measures.
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