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Abstract: Climate change caused by CO2 emissions is posing a huge challenge to human survival,
and it is crucial to precisely understand the spatial and temporal patterns and driving forces of CO2

emissions in real time. However, the available CO2 emission data are usually converted from fossil
fuel combustion, which cannot capture spatial differences. Nighttime light (NTL) data can reveal
human activities in detail and constitute the shortage of statistical data. Although NTL can be used as
an indirect representation of CO2 emissions, NTL data have limited utility. Therefore, it is necessary
to develop a model that can capture spatiotemporal variations in CO2 emissions at a fine scale. In this
paper, we used the nighttime light and the Moderate Resolution Imaging Spectroradiometer (MODIS)
normalized difference vegetation index (NDVI), and proposed a normalized urban index based on
combination variables (NUI-CV) to improve estimated CO2 emissions. Based on this index, we used
the Theil–Sen and Mann–Kendall trend analysis, standard deviational ellipse, and a spatial economics
model to explore the spatial and temporal dynamics and influencing factors of CO2 emissions over
the period of 2000–2020. The experimental results indicate the following: (1) NUI-CV is more suitable
than NTL for estimating the CO2 emissions with a 6% increase in average R2. (2) The center of China’s
CO2 emissions lies in the eastern regions and is gradually moving west. (3) Changes in industrial
structure can strongly influence changes in CO2 emissions, the tertiary sector playing an important
role in carbon reduction.

Keywords: CO2 emissions; normalized urban index based on combination variables; standard
deviational ellipse; Theil–Sen and Mann–Kendall trend analysis; nighttime light

1. Introduction

Global warming, glacial melting, and ocean level rise caused by climate change have
created great threats to human survival and development [1–3]. If global temperatures
continue to rise, it is possible that more extreme weather events will occur. How to deal with
climate change has become a thorny issue for scholars from all over the world [4,5]. It has
been widely accepted that CO2 emissions are a major cause of climate change and that fossil
fuel combustion is the main contributor to CO2 emissions [6,7]. Curbing energy-related
CO2 emissions is a necessary path to achieve carbon neutrality and is the key to mitigating
the human climate crisis [8]. As its economy grows, China’s demand for fossil fuels is also
increasing. At present, China has the highest level of CO2 emissions in the world [9–11].
In the context of climate change, China has formulated many measures to reduce CO2
emissions. In 2015, the Chinese government showed its determination to save energy and
reduce emissions. It pledged to achieve a 60–65% reduction in CO2 emissions intensity by
2030 compared to 2005 [12]. Therefore, an accurate and comprehensive understanding of
the spatiotemporal distribution and driving forces of CO2 emissions is a prerequisite for
implementing precise emission reduction strategies [13–15].
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In different parts of a city, CO2 emissions may have different spatial dynamics, but
statistical data can only show the overall development of a city and cannot reveal the urban
internal landscapes [16]. Therefore, how to investigate CO2 emissions at a fine-scale has
become an important topic of concern to many scholars. It has been pointed out that night-
time light data (e.g., the Defense Meteorological Satellite Program’s Operational Linescan
System [DMSP-OLS] and the Visible Infrared Imaging Radiometer Suite Day/Night Band
[VIIRS-DNB]) can describe socio-economic phenomena related to human activities [17].
These data are widely used in studies on urbanization [18–20], poverty analysis [21,22],
impervious surface extraction [23–25], environmental variations [26–28], population spa-
tialization [29,30], electric power consumption [31,32] and economic analysis [33–35]. Since
nighttime light is highly correlated with human activity, and CO2 emissions are an in-
evitable product of human activities, a connection can be made between nighttime light
with CO2 emissions [36,37]. Doll et al. found a high correlation between CO2 emissions
and DMSP-OLS nighttime light data, and mapped the distribution of CO2 emissions at
a global scale [38]. Ghosh et al. introduced population distribution data to model CO2
emissions from people in areas with more or less nighttime light [39]. However, their
method was relatively simple and the DMSP-OLS data have limitations in estimating CO2
emissions [40,41]. The spatial resolution of DMSP-OLS is about 1000 m, and it cannot
distinguish pixels with values larger than 63. All values larger than 63 are recorded as 63,
and the phenomenon is the saturation effect [42,43]. Due to the saturation effect and coarse
spatial resolution of DMSP-OLS, it fails to reflect the differences in core urban areas in
detail [32,44]. Although many scholars have proposed various correction methods for this
problem, these methods may provide quite different results [45–47]. VIIRS-DNB not only
has a higher spatial resolution, but also has a longer detection range without saturation
effects [48]. Since the release of VIIRS-DNB data, the higher spatial resolution and longer
detection range have motivated scholars to perform higher resolution studies [49,50]. Shi
et al. demonstrated that VIIRS-DNB is a powerful indicator for modeling socioeconomic
phenomena [51].

Although nighttime light data can study the CO2 emissions in cities, there are still
some shortcomings in using nighttime light data alone [12,24,52,53]. More and more
scholars are introducing vegetation cover data (e.g., normalized difference vegetation index
[NDVI]) into their studies [23,54]. Experiments have shown that this combination provides
good results in impervious surface area (ISA) mapping. However, few surveys use this
method to estimate CO2 emissions. Based on the existing studies, some scholars have
studied the changes in CO2 emissions at different scales, but they only summarized CO2
emissions of different administrative units, and the trend of CO2 emissions on pixels is
still unclear [7,16,55]. Although some scholars have simply analyzed the change of CO2
emissions, significant analysis of trends in changes is still lacking [10,47]. Additionally, the
analysis of the spatial and temporal dynamic patterns and the influencing factors related to
CO2 emissions is not comprehensive [56]. Therefore, it is necessary to conduct an in-depth
and systematic analysis of the influencing factors related to CO2 emissions [57–59].

In this study, a new combination index was proposed to improve the estimation
accuracy of CO2 emissions. We then aimed to explore the trends and significance in
CO2 emissions at the pixel scale. Furthermore, we investigated the spatial and temporal
dynamics of CO2 emissions and the drivers of CO2 emissions were discussed.

2. Study Area and Datasets

Mainland China is the main area under examination in this paper and we divided the
study area into three major regions based on the research by Guo et al. [53]. The detailed
region division results are shown in Figure 1. The datasets used in this study are nighttime
light imageries, MODIS NDVI product, energy consumption statistics, socioeconomic data
and administrative boundaries.
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Figure 1. Study area.

Nighttime light data from 2000 to 2020 were used, referring to the method proposed
by Chen et al. [60], and the original dataset of 2000–2012 was taken from the enhanced
vegetation index-adjusted NTL index (EANTLI) dataset [61]. By integrating DMSP-OLS
and enhanced vegetation index (EVI) data, EANTLI can reduce the saturation effect of
DMSP-OLS and enhance image information:

EANTLI =
1 + (NTLnor − EVI)
1− (NTLnor − EVI)

× NTL (1)

where NTLnor denotes the normalized DMSP-OLS, EVI is an annual data of EVI, and NTL
is the original nighttime light brightness.

Monthly VIIRS-DNB data after 2013 were used to produce an annual median VIIRS-
DNB dataset to obtain more reliable annual data. Then, the annual VIIRS-DNB products
were treated with reference to Shi et al. [51], who proposed an auto-encoder model with
convolutional neural networks (CNN) to transform EANTLI data into VIIRS-DNB-like data.
The data from 2013 and 2012 were used as the training and testing sets, respectively. This
dataset can describe the dynamic changes of socio-economic characteristics accurately over
a long time period with a resolution of 15 arc-second (~500 m). Although NTL can be used
as an indirect representation of CO2 emissions, NTL data have limited utility. Therefore, it
is necessary to introduce additional data to capture the spatiotemporal variations in CO2
emissions at a fine scale. Among them, vegetation cover data is regarded as a data source
that can effectively supplement the nighttime light information.

MODIS NDVI (MOD13A1) data were downloaded from the Google Earth Engine
platform and produced as an annual product. The energy consumptions were obtained
from the China Energy Statistics Yearbook, which describes eight energy types and can
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be used to estimate CO2 emissions. Statistics, such as year-end population, added value
of the secondary industry (AVSI), and added value of the tertiary industry (AVTI) were
downloaded from the China National Bureau of Statistics. The administrative boundary
data of the country and its provinces were taken from China’s National Geomatics Centre.
The details of the dataset are summarized in Table 1.

Table 1. Datasets used in research.

Data Description Year Source

Nighttime light
(DMSP-OLS,
VIIRS-DNB)

Long time series of global
nighttime light data. 2000–2020

https://dataverse.harvard.edu/dataset.xhtml?
persistentId=doi:10.7910/DVN/YGIVCD

(accessed on 13 August 2023)

MODIS NDVI
(MOD13A1)

Global 500 m spatial
resolution 16-day product. 2000–2020

Google Earth Engine platform
(https://code.earthengine.google.com/,

accessed on 13 August 2023)
Energy consumption

data
Energy statistics for
30 provinces (104 t). 2000–2020 China Energy Statistics Yearbook

Socioeconomic data
Three types of socio-economic
indicators: population, AVSI,

and AVTI.
2000, 2010, 2020 China National Bureau of Statistics

3. Methods

There were four steps in our research methods. First, we preprocessed the remote sens-
ing data to maintain the same resolution and coordinate system. Second, CO2 emissions
were calculated from energy consumption. Third, we investigated the spatiotemporal dy-
namics of CO2 emissions. Finally, the driving forces behind CO2 emissions were discussed.
The detailed process is shown in Figure 2.
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3.1. Preprocessing of Remote Sensing Data

For the uniformity of projection, all remote sensing data (i.e., nighttime light and
MODIS NDVI) were reprojected to the Albers Conical Equal Area projection and resampled
to 500 m resolution.

https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/YGIVCD
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In order to avoid the impacts of outliers, we set the maximum of nighttime light to 100,
and all pixels with DN values greater than 100 were set to 100. The reason for setting this
threshold is that most pixel values in the nighttime light imageries are less than 100 [24].
After that, the nighttime light data were normalized with Equation (2):

NTLnor =
NTL− NTLmin

NTLmax − NTLmin
(2)

where NTLnor is the normalized nighttime light data, with a range of 0–1; and NTLmax and
NTLmin represent the maximum and minimum pixel values, respectively.

To avoid the confusion of bare soil, water bodies, and ISA, we used the maximum
value method to composite the multi-period NDVI images:

NDVImax = MAX[NDVI1, NDVI2, · · · , NDVIn] (3)

where NDVI1, NDVI2, . . ., NDVIn are the multitemporal MOD13A1 NDVI images.

3.2. Estimation of CO2 Emissions

We used the formula developed by the Intergovernmental Panel on Climate Change
(IPCC) to compute statistical CO2 emissions [62]. The statistical CO2 emissions (SC) can be
formulated by:

SC = ∑W
w=1 Ew × CECw × ALCw (4)

where E represents the amount of energy consumption, ω denotes the energy types, and
CEC and ALC are the carbon emission coefficients and the average low-order calorific
values, respectively.

A new index is presented here, named the Normalized Urban Index Based on Combi-
nation Variables (NUI-CV), which combines the nighttime light (NTL) and MODIS NDVI
datasets:

NUI-CV = (1− NDVImax)× log2

(
1 +
√

NTLnor

)
(5)

Since NDVImax is negatively associated with urban sprawl, 1− NDVImax (ranging
between 0 and 1) is positively associated with urban information. log2

(
1 +
√

NTLnor
)

not only smooths the extreme values of nighttime light, but also holds the value between
0–1. The information on human activities can be enhanced by integrating NTL and NDVI
datasets in this way. To verify the accuracy of NUI-CV, we modeled NTL and NUI-CV,
respectively, with CO2 emissions using a linear regression model. It is because linear re-
gression models are able to describe the relationship between different variables intuitively
and are simple to implement and widely used.

3.3. Assessment of Spatiotemporal Dynamics of CO2 Emissions
3.3.1. Analysis of CO2 Emissions Trend

The Theil–Sen and Mann–Kendall (TS-MK) trend analysis method included Theil–Sen
slope estimation and the Mann–Kendall test [63]. Theil–Sen slope estimation is generally
employed to calculate the trend value, and it is insensitive to outliers in the series dataset.
However, it cannot provide significance judgments and usually needs to be performed
together with the Mann–Kendall test [64]. The Mann–Kendall test is a non-parametric time
series trend test that provides the significance of the trend of change. TS-MK is often used
in the studies related to vegetation cover and climate change. In this paper, the method is
used to detect the significance of the change trend of CO2 emissions.

The Theil–Sen slope formula is:

β = Median
( xj − xi

j− i

)
, j > i (6)
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where β represents the trend degree; when β is greater than 0 means that CO2 emissions
are increasing over time, when β is less than 0 means that CO2 emissions are decreasing; xi
and xj represent the carbon emissions in years i and j.

The statistical values associated with Mann–Kendall test are calculated, as shown in
equation.

S = ∑n−1
i=1 ∑n

j=i+1 sgn
(
xj − xi

)
, sgn

(
xj − xi

)
=


+1, xj > xi
0, xj = xi
−1, xj < xi

(7)

Z =


S−1√
VAR(S)

, S > 0

0, S = 0
S−1√
VAR(S)

, S > 0
, Var(S) =

n(n− 1)(2n + 5)
18

(8)

where n is the time period (2000–2020), S is the test statistic, Var(S) is the variance of S,
and Z denotes the significance.

According to different confidence levels, β and Z are classified into different categories.
The detailed categories are found in Table 2.

Table 2. Categories of changes in CO2 emission trends.

β Z Trend Category

β > 0

2.58 < |Z| Extremely significant increase
1.96 < |Z| ≤ 2.58 Significant increase
1.65 < |Z| ≤ 1.96 Slightly significant increase
|Z| ≤ 1.96 Not significantly increased

β = 0 Any value No change

β < 0

|Z| ≤ 1.96 Not significantly decrease
1.65 < |Z| ≤ 1.96 Slightly significant decrease
1.96 < |Z| ≤ 2.58 Significant decrease

2.58 < |Z| Extremely significant decrease

3.3.2. CO2 Emissions Evolution Direction

Standard deviational ellipse (SDE) can describe the spatial distribution of data from
multiple directions [65]. By analyzing various parameters related to SDEs, the direction and
the change in the distribution trend of CO2 emissions can be obtained [66]. The weighted
mean center is the center of the spatial distribution and can be calculated using Equation (6):

M(x̂, ŷ) =
(

∑n
i=1 wixi

∑n
i=1 wi

,
∑n

i=1 wiyi

∑n
i=1 wi

)
(9)

where M(x̂, ŷ) is the weighted mean center, xi and yi are the coordinates of spatial unit i, ω
denotes the spatial weight, and n represents the sum of spatial units. The rotation angle
can be described with tan θ as follows:

tan θ =

(
∑n

i=1
∼
x

2
i −∑n

i=1
∼
y

2
i

)
+

√(
∑n

i=1
∼
x

2
i −∑n

i=1
∼
y

2
i

)2
+ 4
(

∑n
i=1
∼
x i
∼
y i

)2

2∑n
i=1
∼
x i
∼
y i

(10)
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where θ is the azimuth angle of the ellipse, and
∼
x i and

∼
y i denote the deviation of the XY

coordinate from the weighted mean center.

δx =

√√√√√∑n
i=1

(
wi
∼
x icos θ − wi

∼
y isin θ

)2

∑n
i=1 w2

i
(11)

δy =

√√√√√∑n
i=1

(
wi
∼
x isin θ − wi

∼
y icos θ

)2

∑n
i=1 w2

i
(12)

In the above equation, δx and δy are the standard deviations of the ellipse x-axis and
y-axis, respectively.

3.4. Driving Force Analysis of CO2 Emissions

In contrast to the traditional econometrics, spatial econometric models are able to
adequately account for spatial dependence [67]. The first law of geography proposed by
Tobler et al. highlights the existence of interactions between spatial units and provides
a theoretical basis for spatial measurement [68]. To investigate how the spatial effects
influence CO2 emissions, here the spatial lag model (SLM) and spatial error model (SEM)
were introduced into the experiment. The SLM represents the impact of CO2 emissions
from surrounding provinces on CO2 emissions in a particular city [69]. The model is
specified as follows:

Y = ρWY + Xβ + µ (13)

where X and Y represent the dependent and independent variable matrices, respectively,
ρ denotes the spatial effect coefficient, W represents the spatial matrix, β is the parameter
vector, and µ denotes the random error vector, satisfying µ ∼ N

(
0, σ2).

The SEM assumes that the spatial error term is correlated with the spatial totality [70].
The error of an individual will affect other individuals with spatial effects:

Y = Xβ + ε (14)

ε = λWε + µ (15)

where λ represents the coefficient of spatial error term and ε is the error term of spatial
auto-correction.

Previous studies have indicated that differences in population and industrial structure
are major contributors to CO2 emissions [12,53]. However, few scholars constructed SLM
and SEM to investigate their relationship with CO2 emissions.

4. Results and Discussion
4.1. Comparative Analysis of Variables and Models

Figure 3 illustrates the detailed information of a different dataset at the same position.
Compared with NTL, NUI-CV can enrich the detailed information within the city. To
compare the reliability of CO2 emissions, we employed a linear regression model to validate
the estimated CO2 from NTL and NUI-CV, respectively. Table 3 showed that the average R2

of NUI-CV (0.74) was significantly higher than that of NTL (0.68). As a conclusion, NUI-CV
is more suitable than NTL for estimating CO2 emissions.
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Table 3. R2 comparison of experimental results.

Year NTL NUI-CV Year NTL NUI-CV

2000 0.5794 0.6461 2011 0.725 0.7718
2001 0.5336 0.6312 2012 0.6069 0.7035
2002 0.7525 0.7547 2013 0.7519 0.8251
2003 0.7706 0.7772 2014 0.7436 0.7907
2004 0.7643 0.7848 2015 0.6644 0.7716
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2010 0.7211 0.7666 Average 0.6796 0.7423

4.2. Spatiotemporal CO2 Emissions Dynamics
4.2.1. Variations at National and Provincial Scales

The trend in CO2 emissions in the majority of provinces is similar to the national trend,
i.e., upward (Figure 4). However, some provinces (such as Beijing, Chongqing, Henan and
Shanghai) have experienced a negative growth within recent years.

There are two possible reasons for this phenomenon: first, some provinces have
undergone an industrial structural transformation, which has reduced CO2 emissions;
second, some developed provinces have reduced the local CO2 emissions by moving
industries with high CO2 emissions to other provinces [12]. At the same time, some
provinces (such as Shandong, Shanxi, Hebei and Inner Mongolia) have consistently high
CO2 emissions. This is due to the developed heavy industries, high-energy consumption,
and low-energy efficiency in these provinces. Among these provinces, Shandong has a
well-developed heavy industry, Hebei is dominated by the steel industry, and Shanxi and
Inner Mongolia produce large amounts of coal [71]. These traditional industrial provinces
with strong secondary industries inevitably produce large amounts of CO2 emissions. It
is difficult to change the industrial structure of a city, so the CO2 emissions generated
by energy consumption will not decrease quickly. However, this also shows us the way:
optimizing industrial structure and increasing energy efficiency is the necessary method
for traditional industrial provinces to achieve emission reduction goals.
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Figure 4. Statistical CO2 emissions by province in China.

As illustrated in Figure 5, the spatial distribution of CO2 emissions shows a significant
change from 2000 to 2020. The areas of CO2 emissions are mainly concentrated along the
eastern coastal region and are relatively sparse in the western regions. The reason for this
phenomenon is that the coastal areas are economically developed, with high population
density and greater urbanization, resulting in intensive CO2 emissions. As time goes on,
there is an obvious expansion of CO2 emissions and a high distribution in core urban areas
and a low distribution in peripheral areas. This indicates that urbanization is increasing
and that human activity is becoming more intense in core urban areas and is gradually
expanding to the suburbs.

At the same time, it is shown in Figure 5 that the growth of statistical CO2 emissions
in 2020 is not significant compared to 2019. This is due to the COVID-19 pandemic in 2020
and the global economic slowdown, which has reduced the consumption of fossil fuels.
However, such reductions have only slowed the growth rate of CO2 emissions, rather than
leading to a decline in statistical CO2 emissions.

4.2.2. Study of Variation Trends at Pixel Scale

Although CO2 emissions increased a lot in 2020 compared to 2000, in some urban core
areas, CO2 emissions showed a significant downward trend (Figure 6). Due to the increase
in urbanization, the urban core cannot meet a city’s development needs and, over time,
some developed cities have entered the end of their industrialization development. Many
people and industries are moving to the suburbs and the urbanization of the countryside is
accelerating. Based on this shift, the industrial CO2 emissions within the core urban areas
are gradually decreasing, resulting in a reduction in emissions intensity. Due to the influx
of a large number of people and industries, the suburban areas inevitably consume a lot of
resources, resulting in a significant increase in CO2 emissions.

Figure 7 shows the proportion of different categories of CO2 emissions trends. Within
the total study area, the proportion of extremely significant increase is the highest (0.467%),
and the proportion of significant decrease is the lowest (0.008%). The categories of sig-
nificant, slightly significant and not significant increase accounted for 0.133%, 0.034%
and 0.105% in the study area, respectively. For the category with a decreasing trend, the
highest proportion is extremely significant decrease, accounting for 0.054%. The propor-
tion of slightly significant decrease and not significant decrease were 0.016% and 0.028%,
respectively.
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4.2.3. Evaluation of The SDE Results

In Figure 8, the SDEs almost cover the central and eastern regions in China where
CO2 emissions are concentrated. The range of CO2 emissions in 2020 is higher than that in
2000. Furthermore, the spatial distribution of CO2 emissions shows a pattern of northeast–
southwest directional polarization, and the directional trend of CO2 emissions in 2000 is
more obvious than in 2020.
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We also found that the weighted mean center of China’s CO2 emissions is located near
Henan and Shanxi, rather than in the geometric center of China’s land territory, Lanzhou.
Lanzhou, located in Gansu Province, is not only the geometric center of China’s land
territory, but is also a key city in the western region [72]. This indicates that CO2 emissions
are imbalanced in spatial distribution, and the CO2 emissions are higher in the east. In terms
of the movement path of the weighted mean center, the center of national CO2 emissions
is moving to the west. This change may be due to China’s “Western Development” and
industrial transfer strategy. Due to its geographical location, western China is developing
its economy at the expense of polluting the environment. The movement of some industries
from the eastern coastal provinces to the west has enhanced local economic development,
but has also generated significant CO2 emissions. As a result, the national center of CO2
emissions is moving to the west, and the directional trend of CO2 emissions is weakening.

Although some scholars have simply analyzed the change of CO2 emissions, signif-
icant analysis of trends in changes is still lacking. At the same time, few scholars have
studied the migration of the weighted mean center of CO2 emissions. The results of our
innovative work have filled a gap in this field.
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4.3. Driving Forces of CO2 Emissions

To explore the drivers for CO2 emissions, this study employed a spatial econometric
model. The results for Log likelihood, Akaike info Criterion (AIC), and Schwarz Criterion
(SC) are shown in Table 4.

Table 4. Result of spatial economics model.

Variables
SLM SEM

2000 2010 2020 2000 2010 2020

Population 0.1335 0.1838 0.6918 ** 0.2162 0.2395 0.6985 **
AVSI 1.2972 *** 1.1154 *** 0.9205 ** 0.8983 *** 0.9851 *** 0.9275 ***
AVTI −0.6465 * −0.579 ** −0.9178 *** −0.1862 −0.4202 * −0.8458 ***

R2 0.8199 0.8141 0.6258 0.8472 0.8612 0.7072
Log likelihood −21.4209 −18.1811 −27.5137 −19.7957 −14.758 −24.8366

AIC 52.8418 46.3623 65.0273 47.5915 37.5161 57.6733
SC 60.0117 53.5322 72.1973 53.3274 43.252 63.4093

Note: Significant at * 10% level, ** 5% level, *** 1% level.

AVSI significantly correlates with CO2 emissions (Table 4), which aligns with the
“high-energy consumption and high emissions” characteristics of the secondary industry.
At present, the secondary sector is the main industry in China, and this will be difficult to
change. This means that it will be difficult to see a significant reduction in CO2 emissions
in a short period of time because of the industrial structure. Although clean energy is being
used and the industrial structure has improved in this regard, the impact of the secondary
industry on CO2 emissions is still high. Therefore, the industrial sector should continue to
improve its industrial structure, in order to increase energy efficiency.

Only the population coefficient for 2020 passes the significance test at the 5% level. The
results of SLM indicate that the population impact on CO2 emissions is increasing year by
year in 2000, 2010 and 2020 with coefficients of 0.13, 0.18 and 0.69, respectively. Population
growth leads to more demand for food, housing, and transportation. These require more
energy to meet the demands of industry, electricity, and transportation, resulting in more
CO2 emissions. These findings are also supported by other studies, which showed that
the effect of population on CO2 emissions cannot be ignored [73,74]. For some developed
provinces, population size could be controlled as an effective way to control CO2 emissions.

It is remarkable that the effect of AVTI on CO2 emissions is always negative. This
means that a strong development in the tertiary sector will help to cut CO2 emissions. The
financial and service industries are representative of the tertiary industry. These industries
require less energy and produce less CO2. This means that by keeping other variables
constant, promoting the tertiary industries will help reduce CO2 emissions. Therefore,
promoting the transformation of traditional industries and supporting the development of
the service and financial sectors should be the focus of government attention.

5. Conclusions

In this study, we examined the spatiotemporal dynamics of CO2 emissions in China,
and identified the regional heterogeneity of CO2 emissions. Based on nighttime light
images and MODIS NDVI data, the CO2 emissions from 2000 to 2020 were estimated
for the first time at 500 m spatial resolution in China. The model outputs showed that
the proposed NUI-CV is more suitable for measuring CO2 emissions than the traditional
model (NTL). In addition, we evaluated the spatiotemporal dynamics and drivers of CO2
emissions using the Theil–Sen and Mann–Kendall trend analysis, standard deviational
ellipse and spatial econometric model.

Nationwide, China’s CO2 emissions are distributed unevenly, with more intensive
emissions in the east. This phenomenon may be related to differences in regional devel-
opment. The eastern region is economically developed and consumes a large amount of
fossil fuels, leading to significant CO2 emissions. The growth rate of CO2 emissions in 2020
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shows a significant reduction due to the impact of COVID-19 pandemic. Although the total
amount of CO2 emissions continues to increase, the CO2 emissions in urban core areas
do not rise, but show a downward trend. It is inspiring evidence for the achievement of
carbon reduction targets. We also found that the national center of CO2 emissions is moving
to the west, and the directional trend of CO2 emissions is weakening. Meanwhile, AVSI
and population are positively correlated with CO2 emissions, while AVTI has a negative
correlation with CO2 emissions.

6. Policy Implications

Our research provided some inspiration for carbon emissions reduction. According
to the dynamic changes of CO2 emissions in different cities, different emission reduction
measures should be formulated separately. Energy efficiency and population size should
become the focus of the government. Our results confirmed that the development of the
tertiary sector is the key to reducing CO2 emissions, and thus the relevant sectors should
pay attention to this. Relevant departments should formulate a series of measures to
promote the transformation of traditional industries and support the development of the
service and financial sectors.

In conclusion, the impact of population and secondary sector on CO2 emissions cannot
be ignored. Raising residents’ awareness of low-carbon approaches is also a crucial part of
the reduction process. For underdeveloped provinces, economic growth and urbanization
are the themes of development. Local governments should develop a series of policies that
seek to protect the environment and develop the economy at the same time.

7. Limitations and Future Recommendations

However, there are still aspects of the study that can be improved. The first is the satu-
rated image element problem of DMSP-OLS data, which limits their application. Although
the nighttime lighting data used in this paper can solve this problem to some extent, the
correction of DMSP-OLS data is the focus of upcoming research. Second, this paper only
considers the population and industrial structure, and does not consider the effects of trade,
policy, and capital flows on CO2 emissions. Thus, the impact mechanisms behind CO2
emissions still need to be further explored. We encourage scholars to study similar works
of NUI-CV in other countries and regions.
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