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Abstract: Aerobic composting of conventional municipal sludge has always had the problems of
nitrogen loss and low humification. In this study, biolysed sludge (BS), polyacrylamids-added sludge
(PS) and Fe (III)/CaO-added sludge (FS) were used for composting, respectively, and their effect on
the physical-chemical parameters, nitrogen conversion and humification during composting were
investigated. The results showed that the dissolved organic matter (DOM) concentration of the
BS pile (23.1 ± 0.4 g/kg) was 48.4% and 48.4% higher than the PS (15.5 ± 0.4 g/kg) and FS piles
(15.5 ± 0.0 g/kg) in the initial stage of composting and became the lowest after composting, suggesting
that the degradation of DOM was promoted in the BS pile. BS can also increase the retention rate of
total nitrogen (TN) (27.8% ± 0.8%), higher than that in PS (22.7% ± 1.1%) and FS (24.6% ± 0.5%),
which may be due to the lower production of ammonia nitrogen in the BS pile. Compared with PS
and FS, BS provided more humic substance (HS) and humic acid (HA) for composting and the HA
contents of the compost products were 34.4 ± 1.0, 35.4 ± 0.2 and 34.0 ± 0.3 mg/g in the PS, BS and
FS treated piles, respectively. Fourier transform infrared and the excitation-emission matrix revealed
that BS and FS promoted the aromaticity and stability of HA. The degree of polymerization (DP) of
the products from the BS (1.48) and FS piles (1.56) was higher than that of the PS pile (1.36). However,
the germination index (GI) value (133.4% ± 6.0%) of FS was lower than that of PS (152.3% ± 6.2%)
and BS (158.3% ± 0.8%), showing that the products of FS composting contain more plant biotoxicity.
Thus, compared with PS and FS, BS can increase the nitrogen retention rate and the maturity of the
compost.

Keywords: biolysed sludge; compost; nitrogen conservation; humic acid; humification

1. Introduction

With the fast development of industrialization and urbanization, daily wastewater
treatment capacity has rapidly increased around the world [1]. As a by-product of the
sewage treatment process, sewage sludge (SS) contains large quantities of pathogens,
heavy metals and persistent organic pollutants that could do great harm to the natural
environment and human society [2]. SS composting is an environmentally friendly and
convenient technology which decomposes organic matter into a stable form in an effective
manner and the compost products can be used as organic fertilizers or soil amendments [3].
The sludge conditioning pretreatment is an essential step to improve the dewatering
efficiency of SS [4]. Fe(III)/CaO and polyacrylamids (PAM) are commonly applied as
conditioners for sludge pretreatment, and PAM-added sludge (PS) and Fe (III)/CaO-
added sludge (FS) are obtained, respectively [5]. However, composting with traditionally
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dewatered SS generally meets some problems because of the chemical conditioner dosage.
For example, FS is corrosive and the application of its compost products has degraded a
large amount of cultivated land and brought economic losses. PAM can be degraded into
toxic monomer acrylamide (AM) during composting which is harmful to the ecological
environment [6]. Thus, it is necessary to find a sludge that does not contain chemical
conditioners and is environmentally friendly to compost.

In recent years, Bdellovibrio-and-like organisms (BALOs)-based biocracking technolo-
gies have been developed for dehydration [7]. BALOs are widespread in manmade and nat-
ural environments such as lakes, oceans, soil, sewage and wastewater treatment plants [8].
They can selectively parasitize and can attack most Gram-negative bacteria without leaving
residue or infection problems, and they do not attack eukaryotic cells which is safe for
humans and animals [9,10]. Based on the utilization of BALOs’ unique metabolic character-
istics, Yu et al. previously developed an efficient, environmentally friendly and economical
SS biolysis dewatering technology with no chemicals introduced, and obtained dewatered
biolysed sludge (BS) with a water contents less than 60% [8]. Obviously, composting of
BS could reduce environmental pollution caused by the addition of chemical conditioner
dosages compared to FS or PS composting.

The major disadvantages of traditional SS composting are the low humification degree
and nitrogen loss which hold back its industrial application [11]. Determining humification
degree is essential for evaluating compost quality. Humic substances (HS) obtained by
aerobic compost can be used to remediate soil and improve soil fertility and humic acid
(HA) and fulvic acid (FA) are essential components of HS [12,13]. HA, which is composed
of aliphatic and aromatic compounds, holds a high aromatic polymerization. The formation
of HA can increase the aromatization and humification of HS and it is important to evaluate
humification degrees [11,14]. The humification degree is affected by material properties
and could be characterized by the content of humus and the molecular structure [15].
Zhang et al. found that the concentrations of HS and HA in chicken manure were higher
than those in urea at 50 d of lignocellulose biomass composting [16]. Cao et al. reported
that hyperthermophilic pretreatment composting could prolong the thermophilic stage
and contribute to the formation of HA during composting [17]. The organic nitrogen in a
composting mixture can be degraded to ammonia by ammonification, nitrified to nitrite
and nitrate and will eventually be emitted into the atmosphere in the form of NH3, N2
or N2O by denitrification [18]. The emissions of N-containing gases will also reduce the
agronomic value of compost products. Therefore, strengthening nitrogen fixation and
retention in the composting process is key to promote SS treatment and recycling. Nitrogen
conservation is mainly affected by material properties and other factors, such as microbial
inoculation, carbon/nitrogen ratio (C/N) and pH [19]. Numerous researchers have shown
that microorganisms play an important role in the transformation of substances during
composting, which could control hazardous gas releases and limit nitrogen loss [20]. Hu
et al. found that bioleached dewatered sludge used for composting drastically increased
nitrogen conservation because of its lower pH, higher intensity of microbial assimilation
and the presence of water soluble Fe compared to conventional sludge [19].

In the preliminary experiment (Figure S1), HS and HA in BS were found to be 50%
higher than those in FS and PS, and this meant that BS composting might display great po-
tential for HA generation and contribute to the degree of compost humification. A previous
study found that biolysis strongly damaged the structure of sludge and the cell integrity,
and partially degraded proteins in the extracellular polymeric substances [21]. It is still
unclear how these changes in properties of the sludge affect nitrogen conservation during
composting. It was speculated that BS composting could enhance nitrogen conservation
because the relative abundances of the dominant genera Ferruginibacter, Pseudomonas and
Thermomonas related to denitrification had a significant decrease after biolysis treatment [22].
However, published literatures have hardly documented composting of BS because studies
on SS biolysis dewatering started just from 2017, as mentioned above. The objectives of this
work are to understand the changes in the physicochemical properties of BS composting
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and explore the potential of BS composting in enhancing humification degree and nitrogen
conservation compared with those for traditional FS composting and PS composting. The
findings of our study hope to provide guidance for the large-scale composting application
of BS.

2. Materials and Methods
2.1. Sludge Conditioning and the Mechanical Dewatering of the Conditioned Sludge

PS was directly collected from one municipal wastewater treatment plant (MWTP)
in Nanjing, China. In addition, the SS before dewatering was collected from a secondary
sedimentation tank located in the same WWTP for Fe (III)/CaO conditioning and biolysis
with BALOs, respectively. Specifically, the SS was mixed with CaO at 0.20 kg/kg dry mass
(DM) in a 3000 L reactor equipped with a stirrer device for 10 min, and then FeCl3 at 0.04 kg
FeCl3/kg DM was added into the above sludge. After stirring for 10 min, the sludge was
dewatered with a plate-and-frame filter to obtain FS, while the BALOs cultures developed
by [7,21] were inoculated into the same reactor and the sludge was aerated for 12 h and
dewatered with the same plate-and-frame filter press to obtain BS.

2.2. Composting Treatment of Dewatered Sludges

Wheat straw (Surui Straw Processing Factory, Lianyungang, China) was cut into
1–3 cm pieces as the bulking compost agent, with physico-chemical properties shown
in Table 1. The microbial inoculum for composting was purchased from Haowangnong
limited company (Zhengzhou, China).

As shown in Figure 1, a 216 L stainless steel cubic box was developed as the compost
reactor covered with a layer of foam board (4 cm in thickness) from outside and further
covered with aluminum foil thermal insulators to reduce heat loss. Holes with diameters
of 2 cm were evenly distributed at the bottom of the box, accounting for about 1/16 of
the total floor area for natural ventilation and drainage. A removable foam lid cover was
placed on top of the reactor for insulation.
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Figure 1. Diagram of the sludge compost reactor. Figure 1. Diagram of the sludge compost reactor.

PS (15.9 kg), BS (7.2 kg) and FS (7.1 kg) (controlling the same mixed liquid suspended
solids in dewatered sludge) were mixed with wheat straw (12 kg), respectively, to obtain
a PS mixture, BS mixture and FS mixture. Fifty mL of Microbial inoculum was added to
each mixture and the water content of each mixture was adjusted to about 58% by adding
DI water. Eventually, the mass of each mixture was about 33.8 kg, and the volume of
the mixture was about three quarters of the reactor. The composting piles were agitated
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manually at certain intervals, i.e., three times per day in the first 6 days, twice a day from day
7 to day 15 and once every 3 days in the latter stage. The samples from different piles were
collected before agitation on day 0, 2, 5, 8, 12, 17, 23 and 31 of the composting. Each sample
was mixed by ten subsamples (approximately 120 g) from the depth of approximately 15cm
and 25cm below the surface of the composting piles. The temperature and oxygen content
(OC) of the composting piles were monitored twice a day before agitation with a mercury
thermometer and oxygen monitor (Wanchuang electronic products Co., Ltd, Dongguan,
China), respectively, at four different points 25 cm below the surface of the composting
piles.

Table 1. Physicochemical properties of the raw composting materials.

PS BS FS Wheat Straw PS Mixture BS Mixture FS Mixture

MC (%) 81.6 ± 0.0 59.1 ± 1.3 59.0 ± 1 6.2 ± 0.2 55.6 ± 2.3 54.1 ± 0.7 54.1 ± 0.5
OM (%DM) 48.3 ± 0.1 45.6 ± 0.3 41.2 ± 0.9 92.6 ± 0.1 84.9 ± 1.6 84.4 ± 0.9 77.3 ± 0.4
EC (µs/cm) 137 ± 11 214 ± 3 848 ± 51 1486 ± 72 1800 ± 52 1690 ± 8 2070 ± 33

pH value 6.94 ± 0.06 7.46 ± 0.06 9.12 ± 0.15 7.27 ± 0.03 7.35 ± 0.03 7.68 ± 0.13 7.89 ± 0.06
TOC (g/kg) 227.6 ± 2.2 207.5 ± 12.7 155.4 ± 21.2 387.5 ± 6.5 343.0 ± 5.3 339.3 ± 0.7 310.4 ± 1.8
TN (g/kg) 39.2 ± 0.8 36.3 ± 0.3 28.3 ± 0.4 4.7 ± 0.1 18.4 ± 1.2 16.1 ± 0.2 15.9 ± 6.5
C/N ratio 5.8 5.7 5.5 82.4 18.6 21.1 19.5

PS: PAM-added sludge; BS: biolysis sludge; FS: Fe (III)/CaO-added sludge; MC: moisture content; OM: organic
matter; EC: electrical conductivity; TOC: total organic carbon; TN: total nitrogen; DM: dry mass.

2.3. Analytical Methods

The samples were divided into two parts. Part of the fresh one was mixed at a 1:10
(w/v) ratio with deionized (DI) water for 1 h at 30 ◦C and the mixture was filtered through
a 0.45 µm filter membrane. An oxidation reduction potential (ORP) meter, pH meter, EC
meter (Leici, Shanghai, China) and TOC analyzer (OI Analytical, College Station, TX, USA)
were used to determine the ORP, pH, EC and dissolved organic matter (DOM), respec-
tively [23]. A germination index (GI) test was conducted with the same water extract using
cabbage seeds [24]. The moisture content was measured by weight loss of the compost
sample after drying at 105 ◦C for 12 h and the OM was measured by burning at 550 ◦C for
6 h [20]. Fifty mL of 2 M KCl was used to extract 5 g of fresh sample and to determine the
content of NH4

+–N, NO2
−–N and NO3

−–N in the piles [25].
The other one was crushed after air-drying and screened by a 100-mesh sieve, and then

kept at −20 ◦C for further determination. The air-dried and crushed samples were oxidized
by potassium dichromate to measure HS, HA and TN using the Kjeldahl method [26]. Loss
of TN from the composting piles was estimated according to an equation by a previous
study [27]. The extraction and purification of HS and HA were performed by referring
to a previous method [23]. The solution of HA was divided into two parts: one part of
the solution was diluted with DI water to a TOC of 10 mg/L for the determination of
the three-dimensional excitation and emission matrix (3D-EEM) using a F-4600® fluores-
cence spectrophotometer (Hitachi, Tokyo, Japan) [28]. The other part of the solution was
lyophilized to analyze the evolutions of the functional groups in the HA by Fourier trans-
form infrared (FTIR) spectroscopy. A Nicolet iS-50® FTIR equipment (Thermo Scientific,
Waltham, MA, USA) was used to determine the samples’ characteristics, and the absorption
bands ranged from 4000–400 cm−1 [28]. The scanning analysis parameters were set as
follows: monochromator slit widths of Ex = 10 nm and Em = 10 nm; scanning speed of
1400 nm/min; and wavelength range: Ex in the 200–600 nm and Em in the 200–600 nm [29].

The degree of polymerization (DP) was calculated according to Equation (1).

DP =
CHA

CHS − CHA
× 100% (1)

CHA: carbon content of HA;
CHS: carbon content of HS.
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2.4. Statistics Analysis

All the samples were performed in triplicate and the data were presented as mean ± stan-
dard deviations. Statistical analyses were carried out by Microsoft Excel 2020, Origin 2018.
The significance of difference analysis was determined with SPSS 25.0 wherever applicable
(p < 0.05).

3. Results and Discussion
3.1. Basic Physical and Chemical Indicators during Composting

The physicochemical properties of the sludge are presented in Table 1. Furthermore,
FS exhibited the lowest OM, TOC and TN content among the three sludge types. This could
be attributed to the addition of Fe (III)/CaO during the treatment process. In comparison
to PS, the content of OM, TOC and TN in BS showed a slight decrease. This decrease
may be attributed to the partial degradation of certain high-molecular-weight organic
compounds in the BS, resulting in the formation of smaller molecular substances [21]. It
can be observed that the MC of BS is comparable to that of FS, but significantly lower than
that of PS (p < 0.05). The lower MC in BS suggests its potential to reduce the requirement
for bulking agents in practical applications. Previous studies have demonstrated the use of
bioleached dewatered sludge with a MC of 59.2% for composting, resulting in a reduction
of approximately 10% of PS composting and saving around 700 kg of bulking agents per
ton of sludge [19].

The processes of OM decomposition by microbes released heat to the composting piles.
As shown in Figure 2a, the composting process of all three piles has gone through four
stages: the mesophilic, thermophilic, cooling and mature stages. During the Mesophilic
stage, the temperature rose sharply in the first two days and the FS pile reached a maximum
temperature (68.4 ◦C) on day 2, which was higher than the 57.2 ◦C of the BS pile and 61 ◦C
of the PS pile. Wang et al. found that lime can provide enough calcium to improve the
metabolic activity of the microbial community, thus promoting the temperature of the
composting piles [30]. At the same time, the reaction of the CaO residual in FS with water
(moisture) also produced a certain amount of heat which may explain why the FS pile had
the highest composting temperature. Although the maximum temperature of the BS pile
was lower than that of the other two, it has been reported that thermogenic microorganisms
could be killed when the temperature is too high and thus reduce the decomposition rate
of the compost material [19], and this could be the reason that the BS pile still held a
temperature above 50 ◦C for 7 days, which is longer than that of the PS pile (6 days) and
the FS pile (6 days).

The BS pile had the lowest levels of OC during the mesophilic and thermophilic stages
while the FS pile had the highest levels of OC (Figure 2b). Oxygen can provide an electron
acceptor for the microbial biodegradation of OM. In general, the OC of the piles should be
kept above 10 vol% during composting [31]. In the early stage of composting, although the
agitation frequency was kept at three times a day, the levels of OC in the PS pile, BS pile
and FS pile were maintained at 5.1% ± 0.1%, 3.3% ± 0.0% and 4.1% ± 0.1%, respectively.
This is probably because of the excessive oxygen consumption by aerobic microorganisms
during the thermophilic stage [30]. The ORP values of the BS pile and the PS pile were both
higher than that in the FS pile for most of the composting period (Figure 2c). Meanwhile,
the ORP values of all three piles decreased first and then increased as the biochemical
reaction process occurred, which is consistent with previous literature [32]. The higher
levels of ORP in the BS and the FS piles indicated that the high oxygen diffusion in the
composting matrix of the BS pile and the PS pile may increase oxygen consumption [33].

The FS pile held the highest pH during the entire composting period among all three
piles, probably because of the contained Ca(OH)2. The initial pH values in the PS pile,
BS pile and FS pile were 7.35 ± 0.04, 7.68 ± 0.02 and 7.89 ± 0.01, respectively (Figure 2d).
All three piles were in the suitable pH range (5.5–8) for composting [19]. The pH rose
rapidly in the early composting stage for all three treatments because of the production of
NH4

+–N (Figure 2a). At the end of the composting, the pH of the FS pile (7.59 ± 0.02) was
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higher than that of the BS pile (7.02 ± 0.03) and the PS pile (6.57 ± 0.02). The formation of
alkaline amino groups (C–NH2) by humification or the retention of NH4

+–N could lead to
the higher pH [11]. Considering the NH4

+–N concentration in the BS pile was lower than
the PS pile, the main contribution of the higher pH value in the BS pile was biochemical
humification rather than NH4

+–N.
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The composting product of the BS pile showed lower phytotoxicity than that from
the FS pile or the PS pile. GI can reflect the degree of maturity of organic manure and the
phytotoxicity of compost which is one of the most efficient biological indicators [34]. GI
values of different sludge piles decreased slightly in the early composting stage (Figure 3a).
From the eighth day, the GI values increased with the composting period. The final GI value
in the BS pile (158.3% ± 0.8%) was higher than that in the PS pile (152.3% ± 6.2%) and the
FS pile (133.4% ± 6.0%). Studies have shown that the compost can be considered to be non-
toxic to plants when GI is more than 80% [35], and the compost products from all three piles
met this standard. EC can reflect the concentration of soluble salts in composting products
and help determine phytotoxicity or inhibit plant growth [36]. The EC values of the three
piles increased during the initial period (Figure 3b). After 33 d of composting, the EC in
the BS pile (1.80 ± 0.04 mS/cm) was lower than that in the PS pile (1.88 ± 0.02 mS/cm)
during the composting period, while the EC in the PS pile was significantly lower than that
in the FS pile (2.34 ± 0.00 mS/cm) (p < 0.05). A previous study found that EC has a good
correlation with GI, because numerous of the DOM and Soluble organic nitrogen which
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affect the GI were produced with the degradation of the organics [37]. This may explain
why the BS pile with lower DOM had a higher GI value than that in the PS and FS piles.
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3.2. Organic Matter Degradation

The OM content of all treatments showed a decreasing trend during composting and
the FS pile had the lowest OM degradation rate (Figure 3c). The initial OM content in the PS
pile, BS pile and FS pile were 84.9% ± 1.6%, 84.4% ± 0.9% and 77.3% ± 3.8%, respectively.
There was a distinct difference in the OM contents between the FS treatment and the BS
and PS treatments, which was probably due to the inorganic substances, i.e., Ca(OH)2
and FaCl3, in the FS, reducing OM. After composting, the OM degradation rate in the BS
pile (17.8%) was lower than that in the PS pile (19.0%), which may be attributed to the
OM content partial degradation by biolysis in the BS treatment. Extracellular polymeric
substances (EPS) were produced by cellular dissolution and adsorption of organic matter
in WAS, containing 60–80% organic matter in the sludge, and part of the OM in the EPS
was degraded in the process of the sludge biolysis treatment [21,38]. Partial degradation
of the macromolecular organic substance will promote the release of a simple soluble OM
from polymeric OM which may lead to an increase in DOM in the BS.

In OM, DOM has higher mobility and bioavailability, which can maintain microbial
activity and nutrient availability in soil [35]. The initial DOM concentration of the BS
pile (23.1 ± 0.4 g/kg) was 48% and 48% higher than that of the PS (15.5 ± 0.4 g/kg) and
FS piles (15.5 ± 0.0 g/kg) (Figure 3d), showing that BS provides more DOM and it was
easily consumed by microorganisms. This could also be the reason that temperatures
above 50 ◦C in the BS pile lasted longer (7 days) than that in the PS (6 days) and the FS
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(6 days), which suggested that BS has a stronger heating and degradative potential. DOM
increased during the initial composting days, which could be due to the degradation of
organic macromolecules into small molecular substances and degradation of lignocellulose
components [39]. After composting, the DOM content of the BS pile (23.7 ± 0.2 g/kg) was
lower than the PS pile’s (29.1 ± 0.0 g/kg) and the FS pile’s (34.6 ± 0.6 g/kg), suggesting
the degradation of DOM was promoted in the BS pile.

3.3. Nitrogen Conversion Index

With the rise in temperature, the NH4
+–N concentrations increased rapidly during the

first 2 days and peaked at 0.78 ± 0.07 g/kg in the PS pile, 0.58 ± 0.04 g/kg in the BS pile
and 1.09 ± 0.06 g/kg in the FS pile, respectively, due to organic nitrogen ammonization
(Figure 4a). Then, the concentrations of NH4

+–N in the three treatments gradually dropped,
probably due to nitrification or conversion into NH3 [34]. At the end of the composting, the
NH4

+–N concentration of the BS pile (0.035 ± 0.007 mg/g) was lower than that in the PS
pile (0.051 ± 0.009 mg/g) and the FS pile (0.048 ± 0.005 mg/g). It has been shown that GI
has a distinctly negative correlation with NH4

+–N concentration [40]. The concentration
of NH4

+–N produced in the BS pile was significantly lower than that in the PS and FS
piles during the composting process and the lower ammonification rate in the BS pile
implies that the BS contained less easily mineralizable organic nitrogen. Indeed, Yan et al.
found that organic nitrogen such as protein in EPS were partially degraded after biolysis
treatment [21].
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Nitrification is important to promote the conversion of NH4
+–N to oxidized N and

reduce nitrogen loss [41]. Figure 4b,c shows that concentrations of NO3
−–N and NO2

−–N
in the three treatments were lower than the concentrations of NH4

+–N during the whole
composting stage, indicating that inorganic nitrogen mainly existed in the form of NH4

+–N
in the composting process. From days 23 to 33, the NO3

−–N concentrations increased with
the decrease in composting temperature, which was attributed to recovery of nitrifying bac-
teria [13]. NO2

−–N concentrations of all treatments were gradually decreased throughout
the whole composting. As the first and rate-limiting step of nitrification, ammoxidation
includes two processes: NH3/NH4

+ is oxidized to hydroxylamine, which is immediately
translated to NO2

−–N. NO2
−–N is later oxidized to NO3

−–N [42]. It was reported that the
activity and growth of nitrifying bacteria could be inhibited because of the high tempera-
ture and numerous NH3 [43]. Heterotrophic nitrifiers, of which the nitrification efficiency is
normally lower than that of autotrophic nitrifiers, are often the dominant nitrobacteria [44].
At the same time, an anoxic microenvironment during mesophilic period could also lead
to microbial denitrification [42]. Compared to the PS pile and the FS pile, the BS pile
consistently held lower NO2

−–N and NO3
−–N concentrations during the composting

period, which may be caused by lower NH4
+–N concentrations in the compost materials.

BS composting showed a minimum loss of TN among all three treatments, which
indicated its enhanced nitrogen conservation potential. The TN content (per g of DM) in all
three piles increased after composting. Specifically, the TN content of the BS pile and the
PS pile exhibited an upward trend from day 0 to day 5 and day 22 to day 33 (Figure 4d),
which could be attributed to the higher carbon decomposition rate than that of nitrogen
and the reduction in compost mass [20,45]. The TN content in the BS pile and the PS pile
decreased from day 5 to day 22 because of the bio-degradation of organic nitrogenous
materials and the emissions of NH3 [46]. At the end of composting, the TN contents in
the PS, BS and FS piles were increased by 27.8% ± 0.8%, 22.7% ± 1.1% and 24.6% ± 0.5%,
respectively. The transformation of NH4

+–N in the composting mixture to ammonia gas
is generally considered as the main route of nitrogen loss [47,48]. The lower content of
NH4

+–N produced in the BS pile could be the reason that the nitrogen retention rate of
the BS pile was 13.1% and 22.3% higher than the PS and FS piles, respectively (Figure 2d).
Overall, the BS pile reduced the losses of TN by reducing the production of NH4

+–N.

3.4. Humification Process during Composting

BS composting displayed better maturity in the final product among all three treat-
ments. Converting biodegradable OM into HS and HA is a humification of organic waste
composting [49]. The initial concentrations of HS and HA in the BS treatment were higher
than those in the PS and FA treatments (Figure 5a,b). HA decreased during the mesophilic
stage and was followed by a sharp increase in the BS pile and the PS pile. The decrease from
days 0 to 2 could be attributed to the degradation of unstable HA with the temperature in-
creasing. In general, as compost progresses, precursors such as polysaccharides and amino
acids are converted to HS continuously. However, all treatments showed a declining trend
in the cooling and maturing stages, probably due to the reduction in unstable compounds
in HS [17]. After composting, the HA content in the BS pile (35.4 ± 0.2 mg/g) was higher
than that in the PS (34.4 ± 0.4 mg/g) and FS (34.0 ± 0.3 mg/g) (p < 0.05) and the HS content
in the PS, BS and FS piles were 59.8 ± 2.2, 59.3 ± 0.9 and 55.8 ± 1.2 mg/g, respectively,
implying that FA with low molecular weight was used as a nutrient substrate for microbial
growth and was transformed into a more stable structure and larger molecular weight
HA [50].

DP have been widely used to explore the effects of the humification process of compost-
ing [16]. As shown in Figure 6, DP increased throughout the composting which reflected
the transformation from FA to HA [17]. After composting, the DP value in the BS pile
(1.48 ± 0.01) and the FS pile (1.56 ± 0.02) was significantly higher than that of the PS pile
(1.36 ± 0.04), indicating that products of the BS and the FS piles showed better maturity and
stability than that in the PS. BS and FS may promote the polycondensation of the precursor.
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There is an argument that humus behaves as an association of relatively small molecules
rather than macromolecular polymers. Thus, the increase in pH of the BS and FS piles
may contribute to the transformation of those small molecules from a low-molecular size
fraction (FA) to high-molecular size fraction (HA) [51], which partly explains the higher DP
in BS and FS during composting. That the FS pile had a slightly higher DP value may be
because lime could promote the formation of precursors by contributing to the hydrolysis of
C–H bonds [30]. However, considering GI was also an indicator for compost maturity and
the GI of the FS pile was significantly lower than that of the BS, BS had a better maturity.
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3.5. Fourier Transform Infrared Spectroscopy Analysis of Compost HA

BS and FS increased the aromaticity of HA which could increase the benefits of the
composting end-products [52]. The spectra of HA had similar absorbance bands and vari-
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ation trend at the onset and finish of the composting for the three treatments (Figure 7).
According to the intensity, position and shape of the absorption peak in the FTIR spectra,
the functional groups of HA contained in the composting mixture can be determined [53].
Previous literature [54] showed the absorption peak values and their corresponding func-
tional groups (Table S1). The main absorbance bands were identified on the FTIR spectra
for the HA of the three treatments (Figure 4). Peaks at 3401 cm−1 and 2927−2850 cm−1

represent the O–H stretching of alcohols or phenols C–H stretching of alkanes, respectively.
Their decline in all treatments demonstrated that the microbes decomposed carbohydrate,
fatty substances, polysaccharides, lignin and saturated hydrocarbons in HA and degraded
with the progress of composting [51]. The peak intensities at 2958 cm−1 decreased due to
the biodegradation of the complex molecules [55].
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The FTIR spectrum showed that the intensities of the absorption peak of 835 cm−1,
which is regarded as the C–H bending of the benzene ring or C–H bending of alkenes [51],
in all three composting slightly rose during the processes, and the peak intensity in the
BS and FS piles were higher than that in the PS pile, indicating that BS and FS promoted
an increase in the aromatic ring and olefinic bond structure. The variation of intensity in
1665 cm−1 (C=C stretch of alkenes and aromatic rings) showing a similar trend to 832 cm−1

can also reflect the increase in aromaticity in BS and FS. In addition, stronger absorptions
were found at 1030 cm−1 (aromatic ethers, –C-O-C of carbohydrates or Si-O-C groups)
in the BS and FS piles after composting, suggesting that BS and FS could promote the
polymerization of HA [55]. Previous studies have found that lime (existing in FS) could
promote the formation of aromatic HS by inhibiting the activities of denitrifiers [52,56].

3.6. Fluorescence Characteristics of HA

HA is a fluorescent compound and fluorophore structure of compost-derived HA and is of-
ten analyzed by 3D-EEM [53]. According to a previous article [57], three-dimensional fluorescence
spectrum can be divided into five regions and region I (Ex = 220–250 nm, Em = 220–330 nm),
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II (Ex = 220–250 nm, Em = 330–380 nm), III (Ex = 220–250 nm, Em = 380–600 nm), IV
(Ex =250–550 nm, Em = 250–380 nm) and V (Ex = 250–550 nm, Em = 380–600 nm) were
related to tyrosine, tryptophan, fulvic acid-like materials, soluble microbial byproduct-like
materials and humic acid-like organics, respectively. It has been reported that the fluo-
rescence intensity can reflect the degree of humification and aromatization of compost
products [29]. After 33 days of composting, the fluorescence intensities of regions I, II and
IV from all treatments had a slight increase (Figure 8). On the other hand, the fluorescence
intensities of region III and V had a significant increase. The fluorescence intensities of
humic acid-like organics in the BS pile were higher than that in the PS and FS piles on day
0, showing that not only raw sludge after biolysis can release more HA, but also improve
the aromatic structures of the HA.
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Figure 8. Three-dimensional excitation-emission matrix (3D-EEM) spectra of humic acid on days 0
and 33 in the PS, BS and FS pile. (Region I (Ex = 220–250 nm, Em = 220−330 nm), II (Ex = 220–250 nm,
Em = 330–380 nm), III (Ex = 220−250 nm, Em = 380–600 nm), IV (Ex = 250–550 nm, Em = 250–380 nm)
and V (Ex = 250−550 nm, Em = 380−600 nm)).

After composting, the fluorescence intensity of area III of the BS treatment was lower than
that of the PS treatment while region V was the opposite, demonstrating that BS composting
stimulated conversion from humic-like substances to a stabilized structure such as humic-like
substances in HA. However, it is apparent that the intensities of region III and V in the FS pile
were significantly higher than the BS and PS piles, which is consistent with the conclusion
that lime can promote compost maturity [30]. In conclusion, the results of the FTIR and
3D-EEM spectra illustrated that the HA in the BS and FS piles contributed to a more intensive
aromatization and stability than in the PS pile, demonstrating that BS and FS can promote the
humification degree of compost, thus showing their potential in remediation of contaminated
soils and may exhibit better stability in soil applications [11,54].
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4. Conclusions

BS could provide more DOM (23.1 ± 0.4 g/kg) than PS (15.5 ± 0.4 g/kg) and FS
(15.5 ± 0.0 g/kg) in the initial stage of composting and the degradation of DOM was pro-
moted in the BS pile, which could increase the duration of the high temperature period. The
lower ammonification rate in the BS pile implied that BS contained less easily mineralizable
organic nitrogen and the lower content of NH4

+–N produced in the BS pile could be the
reason that BS contributed to nitrogen conservation during composting. The FTIR and
3D-EEM results showed that BS and FS contributed to the increase in aromaticity and
stability of HA, demonstrating that BS and FS can promote the humification degree of
compost. After composting, the HA content in the BS pile (35.4 ± 0.2 mg/g) was higher
than that in PS (34.4 ± 0.4 mg/g) and FS (34.0 ± 0.3 mg/g) (p < 0.05). The higher DP of the
BS (1.48) and FS piles (1.56) showed that their compost products had a better maturity and
stability than that in PS. The GI (133.4%) of the FS pile was lower than that in the BS pile
(158.3%), indicating that the FS pile had higher plant toxicity. Therefore, BS composting has
a higher nitrogen retention rate and maturity, showing a great potential in land use.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/su151310119/s1. Figure S1: (a) initial contents of TOC and TN in
PS, BS and FS, respectively; (b) initial contents of HS and HA in PS, BS and FS, respectively. Table
S1: Main characteristics of the Fourier transform infrared (FTIR) spectra of HAs during different
composting process.
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