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Abstract: Maintaining the efficiency of road pavement is essential to achieving the highest road
performance and comfort for road users. Pavement monitoring plays a significant role in maintaining
the sustainability of road networks. Additionally, assessments have been performed using different
equipment and devices or through visual inspections to determine the type and severity of pavement
degradation. However, some obstacles may affect the sustainability of road networks by preventing
the regular monitoring and maintenance of pavements, such as the COVID-19 pandemic. Due to
the COVID-19 pandemic, the construction and management of transportation systems have been
affected by economic shut-downs and imposed social restrictions. Road networks have also suffered
from neglect and a lack of monitoring and maintenance due to the government’s lockdowns in
addition to strict regulations that limit movement on roads and any form of construction, monitor-
ing, inspection, and evaluation to improve road pavement conditions. This research introduces a
safe pavement monitoring system using an e-bike to evaluate and predict pavement degradation.
An accelerometer sensor and line-scan camera were used to collect pavement vibration data during
the e-bike’s movement. The results of the proposed monitoring method showed reliable evaluation
outcomes. Moreover, the SVM model showed a significant contribution to detecting and classifying
pavement distress.

Keywords: pavement condition; vibration; prediction

1. Introduction

The infrastructure and transportation sectors are the backbone of urban cities and
significantly contribute to a city’s economic income. Those sectors have faced many
obstacles over the last few decades, including wars, natural disasters, and health pandemics,
which have reduced their quality and usage while increasing their rehabilitation and
reconstruction costs. Recently, the COVID-19 pandemic had a significant effect on business,
decreasing the GDP percentage in most countries worldwide; additionally, many setbacks
and disturbances were caused in those countries’ institutions and work systems during and
after the pandemic. Due to the COVID-19 pandemic, the construction and management
of transportation systems have been changed and affected by economic shut-downs and
imposed social restrictions. Road networks have also suffered from neglect and lack of
monitoring and maintenance due to government lockdowns, in addition to strict regulations
that limit movement on roads and any form of construction, monitoring, inspection, and
evaluation to improve road pavement condition. Therefore, the need for an accurate
pavement monitoring system that satisfies the needs of the COVID-19 pandemic restrictions,
in terms of keeping a safe social distance and minimizing contact with other people, is a top
priority, allowing for the inspection, evaluation, and prediction of road pavement conditions
in order to ensure the continuation of appropriate maintenance and treatment processes.

Currently, governments focus on improving road network sustainability and pavement
quality to provide a high level of service for roadway users. Road networks need to be
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inspected and evaluated frequently by transport agencies to maintain the condition of
road pavement. The technologies and techniques used for road pavement assessment vary
according to several factors, including the road classification, traffic condition, monitoring
device, level of deterioration, and environmental condition [1].

Sustainability is maintained for any road pavement during any pandemic by applying
different planning, monitoring, assessment, prediction, and maintenance strategies after
considering all the applied restrictions. In the COVID-19 pandemic, the same strategies
have to be applied to keep the pavement in perfect condition. Pavement monitoring is the
first step in pavement management and evaluation systems, and the data from monitoring
reflect the condition and health status of road pavement surfaces [2,3]. However, outdoor
procedures such as monitoring and inspections need to be fast, accurate, and committed to
the imposed restrictions, such as social distancing [4].

On the other hand, predicting the pavement condition has a significant role in identify-
ing the pavement health status and detecting and classifying the distress type, severity, and
quantity [5]. The accuracy of pavement condition predictions depends mainly on selecting
appropriate prediction models and data sizes and types [6]. This study used a support
vector machine (SVM) model to detect and classify pavement defects on local roads based
on vibration signals conducted by an accelerometer sensor. The accuracy of the prediction
model is a significant factor for future treatment and maintenance actions for pavement
surfaces. Preprocessing steps must be applied to prepare the data for building the predic-
tion models, and include filtering, labelling, and feature extraction [7,8]. All preprocessing
methods are necessary for noise-cancelling raw data. This study applied a high-pass filter
to raw vibration signals to ensure the data were smoothed.

This research introduces a safe pavement-monitoring system using an e-bike to eval-
uate and predict pavement degradation (see Figure 1). An accelerometer sensor and a
line-scan camera were used to collect the pavement vibration data during the e-bike’s
movement. This paper is structured as follows: the next section presents the literature
review; it is followed by the explanation of the data in Section 3; after that, the results
are presented and discussed in Section 4; finally, in Section 5, the conclusion and future
research direction are given.
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Figure 1. The research structure of the proposed system.

2. Literature Review

Levels of road service and pavement efficiency are among the most significant elements
of transportation sustainability. Therefore, regular inspections and frequent monitoring are
necessary to maintain high-quality road pavement to provide more comfort and safety for
roadway users [9] while also reducing fuel consumption and vehicle maintenance costs [10].
However, some conditions may arise and affect the sustainability of road monitoring and,
subsequently, periodic maintenance. Consequently, some deterioration and distress appear
on the surface of pavements, such as cracking, patching, rutting, etc. Usually, the neglect
of road maintenance and periodic monitoring causes damage to appear on the pavement
surface [11]. Some unplanned cases of neglect, such as the COVID-19 pandemic, may cause
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postponements or delays to the monitoring and periodic maintenance of road pavements;
thus, some types of deformations such as corrugation, cracking, and potholes may appear
despite a decrease in road-use levels [12]. This happened at different road spots after
around two years of lockdowns in most countries because of the COVID-19 pandemic [12].

During the COVID-19 pandemic, one of the obstacles that prevented fieldwork was
the requirement of providing safe social distancing between the monitors themselves and
other community members [13]. Hence, some field inspection requests faced rejection from
governments or health organizations under the requirements of the pandemic restrictions
in order to protect workers and prevent the widespread of coronavirus among the moni-
tors [14]. Researchers have revealed that any epidemic could change the sustainability of
the transportation system by increasing travel and operation costs, changing travel needs,
and decreasing revenues [14].

In the past, precisely before the coronavirus pandemic, a significant revolution was
produced in pavement monitoring systems by using high-quality devices to measure the
condition of pavement surfaces [1,15]. To clarify, for the walk-and-look inspection method,
at least two expert inspectors need to complete the rating of any local road surface, and
the same monitor numbers are required when evaluating the pavement condition using
a car or van [16,17]. Thus, working as a team is required to effectively complete the
monitoring work.

Unfortunately, this method cannot be utilized in the presence of a severe epidemic
that requires mandatory social distancing, such as COVID-19. Therefore, we needed to
develop a safe pavement monitoring system that could satisfy the required social dis-
tancing requirements in accordance with the restrictions imposed by the World Health
Organization [18].

The proposed method for monitoring local roads using electric bicycles provides an
opportunity for transport agencies and governments to conduct periodic monitoring of
road pavements and determine the type and severity of their deterioration [2]. An e-bike
was used as a pavement-monitoring vehicle to evaluate the pavement condition while
moving over a road section (Katto et al. [19], Shtayat et al. [20,21], and Cafiso et al. [9]).
They used an accelerometer sensor or smartphones fixed on the handlebar or rear basket to
measure the vibrations of the vehicle chassis during movement over the pavement. The
measured vibration signals revealed the condition of the pavement’s deterioration in terms
of severity and location. The vibration signals’ fluctuations indicate potential distress on the
road pavement [22]. Shtayat et al. [20] revealed that the level of the fluctuations changed
according to the severity of distress. Moreover, a camera or mobile camera was used during
the vehicle’s movement to match the vibration signals and record video regarding distress
type, severity, quantity, and location. In this research, an accelerometer sensor and line-scan
camera are used to identify the level of deterioration on a local road by measuring the
vibration signals from an e-bike chassis. Additionally, a matching was made to confirm the
conducted data with the observation results.

Predicting pavement performance is another way of measuring the efficiency of using
the vibration-based method a pavement monitoring technique. To clarify, the accuracy of
the prediction models depends mainly on the quality of the conducted data. Moreover,
distress detection and classification are the main items in forecasting the pavement’s health
status [23]. Many previous studies developed different prediction models to correctly and
accurately analyse the condition of road pavement, including support vector machines
(SVMs) [23], linear regression (LR) [24], a decision tree (DT) [25], a random forest (RF) [26],
and neural networks (NNs) [27]. Prediction models provide a clear vision of the road
pavement’s current and future health status. Moreover, by the prediction models, the
researchers can detect distress and classify it according to its type and severity [28]. In this
study, detection and classification processes were applied to identify the type, severity,
and location of distress using the support vector machine model (SVM). SVM is a super-
vised machine learning algorithm that uses wide-range and dimensional data space for
classification and regression analysis. It has been widely used for detecting, classifying,
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and forecasting the performance of vibrations [5]. Two main preprocessing steps must be
applied to prepare the vibration data for building the prediction model, including data
labelling and feature extraction [26]. Data labelling is a process focused on identifying the
start and end points of the fluctuated signals that may represent potential distress [29]. The
process aims to identify the possible anomalies on the pavement from signals and classify
them into windows that include the entire length of distress. At the same time, feature
extraction is a process that focuses on extracting the targeted spikes from labelled windows.

3. Data Section

In this study, we used an e-bike as a monitoring vehicle to measure the vibration
data when moving over a road segment. The selected local road named “Argyle Street”
is a one-way local road located in Fitzroy, Melbourne, Australia. We visually inspected
about 150 m of the chosen road to identify the quantity and quality of pavement distress
(see Figure 2). The visual inspection revealed many forms of pavement distress spread
along the selected road segment, such as patches and alligator and longitudinal cracks (see
Figure 3). These defects cause discomfort for roadway users during their daily activities
(Shtayat et al., 2020) [1]. We performed the data collection of this study in 2021 during the
COVID-19 pandemic restrictions. We considered all health precautions and requirements,
such as social distancing, wearing a mask, and sterilizing the devices. We started the data
collection procedure by calibrating the devices by moving on an ideal pavement to identify
the engine noise and normal vehicle chassis vibration. Figure 2 shows the site location of
the study.
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Figure 3. The inspected pavement distresses: (a) alligator cracks, (b) patches, and (c) longitudinal
cracks.

3.1. Data Collection Using E-Bike

In this study, we used an electric bicycle model delivery bike as a monitoring vehicle.
Additionally, we used a triaxial acceleration sensor (model PCB 356B18) to collect the three
axes’ vibration signals (x, y, and z) at a frequency of 5000 Hz from the e-bike while it was
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moving on the selected local road segment. We fixed the sensor on the top handlebar
using double-sided tape. At the same time, we set the line-scan camera (model Basler
racer—raL4096-24gm) on the back basket with a 45 angle toward the ground for clear and
wide vision. We used the recorded video to match the distress type, severity, and location.
Moreover, we selected the travel speed of the e-bike to be 10 km/h (the speed limit of the
road is 40 km/h). The selected travel speed allowed the driver to drive over the distress
spots without the need to perform sudden braking or deceleration. Figure 4 shows the
measured vibration data using the accelerometer sensor.
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Figure 4. Vibration signals recorded from an e-bike using an accelerometer sensor.

Figure 4 shows the results of the recorded vibrations displayed fluctuations in the
signals along the selected road segment. The unsteady spikes showed that the movement of
the e-bike was not completely comfortable due to defects and anomalies on the road surface.
Figure 4 shows the most significant fluctuation thresholds were more than −1.0 m/s2 and
1.0 m/s2, located at stations 20–25 m, 30–37 m, 43–47 m, 55–60 m, 70–76 m, 100–103 m,
105–108 m, and 128–133 m. After reviewing the recorded video and visual inspection
reports, we concluded these spots have high-severity pavement distress, including patches
and alligator cracks, while the other medium-level fluctuations between −0.5 m/s2 to
0.5 m/s2 represented minor pavement distress, such as longitudinal cracks. The data also
showed a few incompatible spikes due to the orientation axis of the accelerometer sensor
being a bit far from the centre axis of the e-bike. Figure 5 shows the captured images of the
distresses on the road pavement during the e-bike movement.
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3.2. Data Preprocessing Using Labelling Technique

Data labelling is a process used to match the recorded vibration signals with the
inspected distress in terms of the location, type, and severity. To clarify, the process aims
to manually compare and confirm the fluctuated signals with each distress location and
then identify the type and severity according to the recorded video and visual inspec-
tion. After the matching, we established manual windows for each potential distress.
Each window consists of the start and end point of each possible distress. Moreover, we
identified the length of each distress from the spikes on the signals. In this study, we
labelled various pavement defects in separate windows, including patches and alligator
and longitudinal cracks.

More simply, the process aims to determine the guaranteed start and end point from
unusual peaks representing the defects’ dimensions. In predicting pavement performance,
data labelling significantly advances the detection and classification process for pavement
distresses from a massive raw dataset. Table 1 shows the labelled data from vibration
signals. The table presents the boundaries of each pavement distress as identified by the
number of spikes and root mean squared error (RMSE). The low RMSE values indicate that
the proposed extraction method was reliable and accurate.

Table 1. A sample of the labelled data.

Distress (m) RMSE (m) Distress Length
(m)

Number of
Spikes Distress Type

5.1–7.22 0.11 2.12 22 Patch

9.76–12.34 0.13 2.58 27 Patch

22.69–24.85 0.1 2.16 23 Alligator crack

29.85–31.47 0.08 1.62 16 Alligator crack

33.96–35.11 0.14 1.15 12 Longitudinal crack

3.3. Prediction the Pavement Condition Using SVM

We developed a machine learning model to present the detection and classification
results of pavement distress based on the labelled vibration signals (training). Moreover,
we used the unlabelled data for testing the developed model. The developed model was
a binary model named support vector machine. The systematic of this binary prediction
model depends mainly on using the 0, 1 (yes or no) datasets. This study used SVM to detect
and classify pavement distress based on vibration data. The input of the prediction model
was the vibration data, while the outputs of the model were the distress types.

In this study, we considered three distress types in the SVM model, including patches
and alligator and longitudinal cracks. We identified all of the considered defects using
labelling processing. Regarding the datasets, we divided the development process of the
SVM into two main datasets, including 70% for training and 30 % for testing. Tables 2–4
show the developing results of the SVM model in detecting and classifying each type of
pavement distress.

Table 2. The detection and classification of patches using SVM.

Label/Distress Precision Recall F1-Score Support

Normal 0.97 0.95 0.96 33,547

Patches 0.96 0.96 0.96 2889

Accuracy 0.96

Weighted average 0.97 0.97 0.97
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Table 3. The detection and classification of alligator cracks using SVM.

Label/Distress Precision Recall F1-Score Support

Normal 0.97 0.99 0.98 33,547

Alligator cracks 0.95 0.94 0.94 1089

Accuracy 0.94

Weighted average 0.95 0.96 0.95

Table 4. The detection and classification of longitudinal cracks using SVM.

Label/Distress Precision Recall F1-Score Support

Normal 0.96 1.00 0.98 33,547

Longitudinal cracks 0.91 0.92 0.91 549

Accuracy 0.93

Weighted average 0.96 0.96 0.96

Tables 2–4 presented the worthiness of using the SVM model to detect and classify
pavement distresses. The SVM model showed excellent values in the detection and clas-
sification of the patches and alligator and longitudinal cracks. Moreover, the values of
precision for patches and alligator and longitudinal cracks showed acceptable values, with
about 96%, 95%, and 91%, respectively. In contrast, the recall metrics values were 96%,
94%, and 92% for the predicted distress, respectively. The F1 score values showed excellent
performance with about 96% for patches, 94% for alligator cracks, and 91% for longitudi-
nal cracks. These metrics values indicated that the SVM was significantly detected and
classified the distress types. The prediction of the patches provided higher accuracy with
about 96%, while the accuracy of prediction of the alligator cracks was about 94%. At the
same time, the lower detection and classification accuracy was 93% for longitudinal cracks.
Additionally, according to the tables above, the ability of the SVM model to identify the
no-distress state (normal) was high, with an average of about 97%.

4. Discussion

This study focused on introducing a safe pavement monitoring system that can be
used by researchers, transport agencies, and governments to accurately monitor road net-
work conditions under the highly imposed COVID-19 pandemic restrictions. The proposed
monitoring method aimed to provide a clear indication of the current health status of
pavement without the need for a fully prepared vehicle or using the traditional inspection
process, which involves many inspectors. This method showed that using an e-bike was
simple and provided reliable monitoring results. It also provided accurate outcomes (vibra-
tions) conducted from an accelerometer sensor. The overall results of pavement monitoring
showed that the accelerometer sensor has a significant contribution to successfully and
accurately evaluating the road pavement conditions. Moreover, the recorded vibration sig-
nals reflected the actual level of pavement deterioration and explained the quality (severity)
and quantity (number of distress spots and location) of pavement distress.

In Summary, using the SVM model to detect and classify the pavement distresses
presented high-efficiency results. The significance of working as a binary model provided
high-accuracy results in predicting three different distress types located at the selected
local road, including patches and alligator and longitudinal cracks. The prediction results
showed a significant contribution to predicting patches and alligator cracks; however,
we observed lower accuracy when predicting longitudinal cracks due to limitations in
data size. The fluctuation in the accuracy of the SVM to detect and classify the pavement
distresses depended on several factors, including the speed of the monitoring vehicle,
severity of pavement distress [2], the wheel width of the monitoring vehicle [30,31], and
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traffic conditions [1]. In the case of travel speed, the speed of 10 km/h is recommended by
Lekshmipathy et al. [32] to be used by e-bikes in pavement monitoring. On the other hand,
regarding the distress severity, medium and high severities provided more vibrations and
clear boundaries on vibration signals and, therefore, can be detected as potential distress
while labelling the data. Regarding the wheel width, the wider wheel provides a clear
tire stamp over distress and thus achieves the required measurement of the entire defect
size [33]. Moreover, traffic conditions significantly affect the accuracy of monitoring the
pavement condition. More clearly, with ongoing traffic, the driver needs to accelerate,
decelerate, and brake while driving, thus affecting the recorded vibration data. As a
result, in this study, the impact of traffic may be neglected, which is considered effective
when adopting the use of the e-bike as a health-safe monitoring vehicle under COVID-19
restrictions. Thus, the most accurate and significant measurement results are achieved on
empty roads in the event of a lockdown.

5. Conclusions

This research presents a safe, healthy, and reliable pavement monitoring system to
be used during the COVID-19 pandemic or any other health disaster under the highest
standards of sterilization. The proposed monitoring system focused on measuring the vibra-
tions of an e-bike chassis that reflected the comfort riding levels and pavement deformation
conditions on local road pavements. Moreover, the vibration signals were conducted from a
triaxial accelerometer sensor mounted on the middle of the e-bike handlebar. Furthermore,
a video camera was installed on the back basket to record a video of the ground during the
e-bike’s movement. The monitoring results showed that the test speed was suitable to be
used in further studies. The speed provided consistent vibration signals that reflected the
actual distress quantity and quality. Moreover, the mounting location at the top handlebar
was an appropriate position to mount the sensor; hence, the sensor can easily measure the
vibrations without any obstacles. Furthermore, the accelerometer sensor showed a signifi-
cant ability to measure a wide range of vibration data from the local road during vehicle
movement. Lastly, using a video camera to monitor the pavement condition effectively
matched and compared the signals with recorded video to ensure that each distress has
been measured and determined by conducted signals.

A preprocessing step, including data labelling, was used to manually identify the poten-
tial windows from vibration signals that contained unusual fluctuation peaks. The labelled
data was used for training the prediction model, while the unlabelled data was used for
testing the prediction model. A machine learning model named SVM was used to detect and
classify the pavement distresses based on high-frequency vibration data.

The results revealed that the SVM model successfully detected and classified three
pavement distress types, including patches and alligator and longitudinal cracks, with
high prediction accuracy. Moreover, the results of this research indicated that the proposed
monitoring method could be used for further studies, such as monitoring side-walks,
parking, and concrete track coverings. In addition, the study recommends using electric
vehicles or hybrid vehicles to minimize engine noise and vehicle chassis vibrations.
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