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Abstract: The problem regarding the optimal siting and sizing of photovoltaic (PV) generation units
in electrical distribution networks with monopolar direct current (DC) operation technology was
addressed in this research by proposing a two-stage convex optimization (TSCO) approach. In
the first stage, the exact mixed-integer nonlinear programming (MINLP) formulation was relaxed
via mixed-integer linear programming, defining the nodes where the PV generation units must be
placed. In the second stage, the optimal power flow problem associated with PV sizing was solved
by approximating the exact nonlinear component of the MINLP model into a second-order cone
programming equivalent. The main contribution of this research is the use of two approximations
to efficiently solve the studied problem, by taking advantage of convex optimization models. The
numerical results in the monopolar DC version of the IEEE 33-bus grid demonstrate the effectiveness
of the proposed approach when compared to multiple combinatorial optimization methods. Two
evaluations were conducted, to confirm the efficiency of the proposed optimization model. The first
evaluation considered the IEEE 33-bus grid without current limitations in all distribution branches,
to later compare it to different metaheuristic approaches (discrete versions of the Chu and Beasley
genetic algorithm, the vortex search algorithm, and the generalized normal distribution optimizer);
the second simulation included the thermal current limits in the model’s optimization. The numerical
results showed that when the maximum point power tracking was not regarded as a decision-
making criterion, the expected annual investment and operating costs exhibited better performances,
i.e., additional reductions of about USD 100,000 in the simulation cases compared to the scenarios
involving maximum power point tracking.

Keywords: annual operating costs minimization; two-stage optimization approach; mixed-integer
convex optimization; photovoltaic generation; monopolar DC networks

1. Introduction

Electrical energy generation is a costly process (both economically and environmen-
tally) that increasingly consumes our natural resources [1–3]. In line with sustainable
development goals, worldwide efforts are being made towards an energy transition from
fossil sources to renewable and clean energy markets [4–6]. In the electrical sector, one of
the main aspects of the energy transition is the use of medium- and large-scale renewable
generation systems (mainly photovoltaic and wind sources) combined with energy storage
systems, to replace—to the greatest possible extent—the participation of thermal sources
(fossil-based sources) in the energy supply chain for all users of electrical energy [7–10].

Electrical distribution is one of the sectors of the electricity supply chain that is also
undergoing constant change, as multiple governments and regulatory policies have driven
the massive integration of renewable energy resources in these systems [11]. The main
idea is to transform conventional passive distribution networks with unidirectional power
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flows into active distribution grids with a high participation of renewable energy resources,
aiming to reduce the carbon footprint of conventional power systems at the medium- and
low-voltage levels [12].

This research aims to contribute to the energy transition by proposing an optimization
methodology to determine the best possible location and size of photovoltaic (PV) genera-
tion plants in direct current (DC) distribution networks with monopolar configurations. In
the specialized literature, the optimal integration/operation of renewable energy plants in
medium- and low-voltage grids has been widely studied. Some of the recent advances in
this topic are presented below.

The authors of [13] presented an efficient technique for operating PV systems while
considering the maximum power tracking point, in order to improve the efficiency, stability,
and reliability of these generators. An adaptive neural fuzzy interference system was
proposed, to design the maximum power tracking, given its fast tracking speed at reaching
steady state and low oscillation. A standalone network with a large historical dataset was
used to validate the proposed methodology via MATLAB/Simulink.

The work by [11] presented a pre-feasibility analysis regarding the integration of
small-scale renewable energy resources based on wind and PV power under Colombian
Law 1715. The authors explored the residential benefit of using renewable energy resources
for self-energy supply as a function of the economic conditions of each residential user
(using economic strata to classify all end users). Numerical validations demonstrated that
investments could not be amortized during the lifetime of small wind turbines in any strata;
however, investments in small PV plants could be amortized in between 6.2 and 8.7 years.
In addition, for strata 4 to 6 (i.e., middle- to high-class income), these investments could be
recovered in the fourth year of operation.

The authors of [14] applied the Jaya optimization algorithm, to locate and size PV
plants in medium-voltage distribution networks. The numerical results in the IEEE 33-
bus grid, regarding nodal location and PV sizing, yielded better results with regard to
minimizing power losses and improving voltage profiles against well-known optimizers,
such as genetic algorithms and particle swarm optimization, among others.

In [15], a two-stage optimization approach was proposed, to locate renewable genera-
tion sources and energy storage systems in medium- and low-voltage distribution networks.
In the first stage, the simulated annealing optimization method defined the nodes where
the batteries and renewable energy resources needed to be located. In the slave stage,
a convex optimization strategy was proposed, to determine the size of the renewables
and batteries, in order to minimize investment and operating costs during the planning
period. Numerical results in different test feeders, with between 11 and 230 nodes, demon-
strated the effectiveness of the linearized convex model when compared to second-order
cone formulations.

The authors of [16] applied the generalized normal distribution optimizer, to determine
the optimal location and sizing of PV generation sources in monopolar DC distribution
networks via a master-slave optimization strategy. In the slave stage, the successive
approximations power flow method was implemented, to evaluate the multi-period optimal
power flow problem, aiming to define the annual operating costs of the grid, i.e., the energy
production costs in the slack node, and the maintenance and operating costs of the PV
plants. The master stage determined the PV location and sizes, using a discrete–continuous
codification. The numerical results in the IEEE 33- and IEEE 69-bus grids demonstrated the
effectiveness of the proposed optimization approach.

Additional literature approaches regarding the optimal integration (location/sizing
and operation) of PV plants in electrical distribution networks include the following
optimization methods: particle swarm optimization [17,18]; the water cycle algorithm [19];
the gravitational search algorithm [20]; the vortex search algorithm [21]; the crow search
algorithm [22], and a mixed-integer programming approximation [23], among others.

Considering the literature, this research contributes to the following aspects: (i) a new
two-stage optimization methodology that defines the nodes where the PV plants must be
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located, via a mixed-integer linear programming formulation based on simplifying the
branch power flow model; in this first stage, the binary component of the exact mixed-
integer linear programming (MINLP) model that defines the optimal PV plant placement
and sizing problem is solved; (ii) once the binary part of the MINLP model has been solved,
the resulting nonlinear programming model is transformed into its second-order cone
programming equivalent, to define the optimal size of the PV plants at the nodes where
they were previously located. This stage considers the possibility of operating the PV plants
with maximum power point tracking or free hourly dispatch, with a high impact on the
final numerical results.

The numerical results in the monopolar version of the IEEE 33-bus grid confirmed the
effectiveness of the proposed two-stage convex optimization approach, in comparison to
the solutions reported by the generalized normal distribution system optimizer, the Chu
and Beasley genetic algorithm, and the vortex search algorithm [16], respectively. In this
research, no uncertainties were considered in the PV generation and demand profiles, i.e.,
these data were assumed to be constant input parameters. However, for future research, the
stochastic behavior of these variables could be considered [21]. In addition, the proposed
two-stage convex optimization approach only applies to purely radial distribution networks.
This is because the second-order cone programming model, based on the branch power
flow formulation, was developed for radial distribution networks [24]. However, it can be
considered an opportunity for research to propose an alternative approximated formulation
approach that allows viewing radial and meshed grids, to maintain the convexity of the
solution space. An important area of interest for future works would be to consider
the demand and generation of variable curves throughout the planning period, to better
approximate the net profits expected by the utility company. In the specialized literature,
some authors have proposed applying stochastic optimization methods, to deal with
generation and demand uncertainties, and these can be consulted in [25,26].

The remainder of this document is organized as follows. Section 2 presents the exact
MINLP formulation of the problem regarding the optimal placement and sizing of PV
sources in monopolar DC distribution networks. Section 3 describes the proposed two-
stage optimization methodology, which is based on a mixed-integer linear programming
approximation to determine the nodes where the PV sources must be located in the first
optimization stage, while the second stage reformulates the nonlinear programming model,
regarding the hourly optimal power flow, as a second-order conic programming model.
Section 4 shows the main characteristics of the test feeder under analysis, which corresponds
to the monopolar DC version of the IEEE 33-bus grid. Section 5 presents the main numerical
results of the proposed two-stage optimization method, in comparison to combinatorial
optimization methods, and their complete analysis and discussion. Finally, Section 6 lists
the main conclusions of this research, and some possible future works.

2. Mathematical Formulation

The problem regarding the optimal design of PV systems in electrical networks is a
challenging task in the areas of electrical analysis and optimization, given that:

i. The electrical network itself is modeled as a set of nonlinear non-convex equations
associated with Kirchhoff’s laws applied to electrical circuits with constant power
terminals (i.e., nonlinear loads);

ii. The integration of a group of shunt devices (renewable generation or batteries) intro-
duces binary decision variables that transform the solution space into that of a disjoint
optimization problem, i.e., a problem with a mixed-integer solution space.

The complete optimization model that represents the optimal siting (binary) and sizing
(nonlinear and continuous) problems for PV generation units in monopolar DC distribution
networks is detailed below.
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2.1. Objective Function

The main objective of integrating dispersed generation in electrical networks is to
minimize the annual grid operating costs: these costs can comprise multiple components,
such as energy purchasing, the maintenance of PV plants, and energy losses. This research
employed an objective function associated with energy purchasing and maintenance. The
mathematical structure of the objective function is defined in Equations (1)–(3) [15,27].

Acost = D1 + D2, (1)

D1 = CkWhT
(

ta

1− (1 + ta)−Nt

)(
∑

h∈H
∑

i∈N
Pcg

0i,h∆h

)(
∑
t∈T

(
1 + te

1 + ta

)t
)

(2)

D2 = Cpv

(
ta

1− (1 + ta)−Nt

)(
∑

i∈N
Ppv

i

)
+ CO&MT

(
∑

h∈H
∑

i∈N
Ppv

i,h ∆h

)
. (3)

In Equation (1), the component Acost describes the expected annual operating costs of
the network, which are the sum of the components D1 and D2 (see Equations (2) and (3)),
with the former term being the expected energy purchasing costs at the terminals of the
substation, and the latter being the expected maintenance and operating costs of the PV
generation units. In addition, CkWh corresponds to the average value of a kilowatt of
power generated in the substation bus; T is a constant associated with the number of
days in a year; ta is the expected return rate of the investments made by the distribution
company; Nt is the number of years in the planning period; Pcg

0i,h corresponds to the power
generation at the slack node (substation bus), which is defined as the power flowing from
the substation (node 0) to any node i interconnected with it; ∆h represents the time variation
regarding the daily operation intervals (1 h); te means the expected rate of increasing the
energy generation costs per year of operation; Cpv denotes a parameter associated with the
investment costs in a kWp of PV-based power; Ppv

i is the expected size of a PV generation
installed at node i, which generates Ppv

i,h per period of analysis; and CO&M represents
the maintenance and operating costs coefficient per kWh of energy generated by a PV
generation unit. In addition,H is the set that contains all the periods in the daily operating
scenario, and N is the set associated with the number of nodes of the monopolar DC
network under analysis.

Remark 1. Note that the mathematical structure of the objective function in (1) is a linear com-
bination of components (2) and (3), which have a convex structure, as both are linear functions of
the decision variables Pcg

0i,h, Ppv
i , and Ppv

i . This objective function property was used to propose
the two-stage optimization approach to locating and sizing PV generation units in monopolar
DC networks.

2.2. Set of Constraints

Multiple technical constraints regarding Kirchhoff’s laws must be satisfied, in order
to ensure the optimal operation of the monopolar DC network after inserting the PV
generation units.

The power equilibrium constraint corresponds to applying Kirchhoff’s first law while
using a power structure. This equality constraint is defined in (4) [28]. Note that, in order
to obtain the power balance constraint in (4), the branch power flow formulation for direct
current networks is employed; further details can be consulted in [29].

Pij,h − Riji2ij,h ∑
k:(jk)∈L

Pjk,h = Pd
j,h − Ppv

j,h ,
{
∀j ∈ N , j 6= slack,

∀h ∈ H

}
, (4)

where Pij,h (Pjk,h) denotes the power flowing from node i (j) to node j (k) per period h;
Rij corresponds to the resistive parameter associated with the conductor assigned to the
route ij; iij,h represents the current flow in the route ij at each period; and Pd

j,h is the



Sustainability 2023, 15, 8093 5 of 17

power demanded at node j in the period h. Note that L is the set that defines the routes
(distribution lines) in the studied test feeder.

To associate the power balance constraint in (4) with the variation in the voltage
variables, the voltage drop in each distribution line is represented as a function of its
resistance and the power flow, as defined in (5) [24]:

v2
j,h = v2

i,h − 2RijPij,h + R2
iji

2
ij,h, {∀ij ∈ L, ∀h ∈ H}, (5)

where vj,h (vi,h) is the voltage variable at node j (i) per period of analysis.
To relate voltage variables per node to the current variables, Tellegen’s second theorem

is applied, as presented in (6) [29]:

Pij,h = vi,hiij,h, {∀ij ∈ L, ∀h ∈ H}. (6)

To determine the expected size of the PV generation plant to be connected at node i,
the following binary constraint is implemented [30]:

zjPmin
pv ≤ Ppv

j ≤ zjPmax
pv , {∀j ∈ N}, (7)

where zj is the binary variable that allows for defining whether the PV generator is located
at node j (zj = 1) or not (zj = 0), and Pmin

pv and Pmax
pv represent the minimum and maximum

sizes allowed for the PV generation units.
The following inequality constraint is added to the optimization model, in order to

determine the hourly expected power generation by each PV source integrated into the
monopolar DC network [21]:

0 ≤ Ppv
j,h ≤ Gpv

h Ppv
j , {∀j ∈ N , ∀h ∈ H}, (8)

where Gpv
h denotes the expected profile of the energy generation curve for the PV generation

plants, which is provided as a prediction by the distribution company [31,32].
To ensure that the voltage profiles in all the network nodes fulfill the regulatory

policies, the optimization model includes the box-type constraint (9). According to this
constraint, the voltage magnitudes must be between their minimum and maximum values
(i.e., vmin and vmax) [15]:

vmin ≤ vj,h ≤ vmax, {∀j ∈ N , ∀h ∈ H}. (9)

To protect the distribution branches, with regard to their thermal current limitations,
box-type constraint (10) ensures that the current flowing through each distribution line is
within its limits [30]:

−imax
ij ≤ iij,h ≤ imax

ij , {∀ij ∈ L, ∀h ∈ H}, (10)

where imax
ij is the thermal bound associated with the conductor connected in the ijth route.

Finally, the maximum number of PV generators available for installation (i.e., Nmax
pv ) is

set as an inequality constraint in (11). In addition, the binary nature of the decision variable
is ratified in (12) [21]:

∑
j∈N

zj ≤ Nmax
pv , (11)

zj ∈ (0, 1), {∀i ∈ N}. (12)

Remark 2. Note that, in Set (4)–(12), most constraints (66.67%) define a mixed-integer convex
solution space, as is the case in (8)–(12); however, three non-convex constraints must be analyzed
and redefined, to reach a complete convex optimization model, i.e., (4)–(6).
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Due to constraints (4)–(6), the complete optimization model (1)–(12) belongs to the
family of MINLP formulations, which implies that there are still challenges regarding its
optimal solution: this constitutes the contribution of this research, as it proposes a new
approximated solution strategy based on two convex approximations, in order to provide
an efficient solution to the exact MINLP model with regard to the siting and sizing of
PV generation units in monopolar DC networks. In addition, it is essential to highlight
that, as for the solution space, this research assumed that it is possible to install a set of
PV generation units in each node without considering any physical constraint regarding
the physical area available for these installations: this is a typical assumption for locating
dispersed generation units in electrical networks, given that it is the worst possible scenario,
as it exhibits the largest possible dimensions of the solution space [33].

3. Proposed Two-Stage Optimization Methodology

This section presents the proposed two-stage optimization approach to locating and
sizing PV generators in monopolar DC networks, with the purpose of minimizing the
expected annual operating costs. The first stage corresponds to a relaxation of the optimiza-
tion model, by neglecting the effect of the voltage profile, in order to obtain a mixed-integer
linear programming model that allows for identifying the set of nodes where the PV sources
must be located. The second stage uses a mixed-integer conic approximation, to determine
the expected size of the PV generators, while considering the binary variables to be fixed.

3.1. Node Selection for the PV Generation Units

To obtain a mixed-integer convex approach that allowed for selecting the set of nodes
where the PV generators needed to be installed, this study used an auxiliary variable
associated with the current square value, i.e., lij,h = i2ij,h. With this auxiliary variable, the
power balance constraint (4) took the following form:

Pij,h − Rijlij,h ∑
k:(jk)∈L

Pjk,h = Pd
j,h − Ppv

j,h ,


∀j ∈ N

j 6= slack
∀h ∈ H

. (13)

Remark 3. To obtain a simplified convex model that allowed for determining the set of nodes where
the PV generation units needed be located, it was assumed that the voltage variations were minimal
with respect to the reference value, which implied that vi,h ≈ vj,h ≈ 1. With this assumption, the
contribution of the equality constraint (5) to the optimization model could be neglected.

In light of the above-presented considerations on the current variable, a new term was
added to the objective function, with the aim of emulating the effect of energy losses during
the operation of the PV plants of a monopolar DC network. Note that, according to (6),
P2

ij,h ≈ i2ij,h = lij,h, which implied that a component considering the effect of the energy
losses could be added to the costs of said losses, as follows:

min zapprox = Acosts + CkWhT ∑
h∈H

∑
ij∈L

Rijlij,h∆h. (14)

Note that the relaxed optimization model used to identify the set of nodes where the
PV generation sources needed be installed took the form presented in (15).
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Obj. Func.:

min zapprox = Acosts + CkWhT ∑
h∈H

∑
ij∈L

Rijlij,h∆h.

Subject to:

Pij,h − Rijlij,h ∑
k:(jk)∈L

Pjk,h = Pd
j,h − Ppv

j,h ,


∀j ∈ N ,

j 6= slack,
∀h ∈ H

,

Pij,h = lij,h, {∀ij ∈ L, ∀h ∈ H}
zjPmin

pv ≤ Ppv
j ≤ zjPmax

pv , {∀j ∈ N}, (15)

0 ≤ Ppv
j,h ≤ Gpv

h Ppv
j , {∀j ∈ N , ∀h ∈ H},(

vmin
)2
≤ uj,h ≤ (vmax)2, {∀j ∈ N , ∀h ∈ H},

−
(

imin
ij

)2
≤ lij,h ≤

(
imax
ij

)2
, {∀ij ∈ L, ∀h ∈ H},

∑
j∈N

zj ≤ Nmax
pv ,

zj ∈ (0, 1), {∀i ∈ N}.

The main characteristic of the optimization model (15) is that it belongs to the family
of mixed-integer linear programming, which implies that with the branch and cut approach
it is possible to obtain its optimal solution [34]. Finally, the result of interest in this model
was the set of nodes where the PV plants must be placed (i.e., zj), which was set as an input
vector for the second stage, with regard to the optimization model that would define the
set of PV plants.

3.2. Calculating the Size of the PV Generation Units

Once the mixed-integer linear programming model (15) had been solved, the loca-
tion of the PV generators was contained in the variable zj, which was considered as an
input parameter in this optimization stage. To determine the expected size of the PV
plants, the optimization model (1)–(12) was rewritten as a second-order cone programming
model [24]. To obtain the conic model, this research introduced an additional auxiliary
variable regarding voltages (i.e., uj,h = v2

j,h), which allowed redefining for constraint (5)
as (16):

uj,h = ui,h − 2RijPij,h + R2
ijiij,h, {∀ij ∈ L, ∀h ∈ H}, (16)

which was an affine constraint, in terms of the new auxiliary variables ui,h, uj,h, and lij,h.
Now, the only non-convex constraint in the optimization model (1)–(12) corresponded

to the definition of the power flow for each branch, i.e., Equation (6); however, this equation
could be convexified via a conic representation.

Lemma 1. The product of the voltage and current variables in constraint (6) can be represented as
a conic equivalent, which can be relaxed as follows:∥∥∥∥ 2Pij,h

lij,h − vi,h

∥∥∥∥ ≤ lij,h + vi,h, {∀ij ∈ L, ∀h ∈ H}, (17)

where ‖x‖ represents the l2-norm applied to the vector x.
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Proof. Equation (6) can be squared on both sides, as follows:

P2
ij,h = v2

i,hi2ij,h, {∀ij ∈ L, ∀h ∈ H};

P2
ij,h = ui,hlij,h, {∀ij ∈ L, ∀h ∈ H}. (18)

Now, the right-hand side of Equation (18) can be represented as a hyperbolic constraint,
with the form (18):

P2
ij,h = ui,hlij,h =

1
4

(
ui,h + lij,h

)2
− 1

4

(
ui,h − lij,h

)2
,
{
∀ij ∈ L,
∀h ∈ H

}
4P2

ij,h +
(

ui,h − lij,h
)2

=
(

ui,h + lij,h
)2

,
{
∀ij ∈ L,
∀h ∈ H

}
. (19)

Note that Equation (19) defines a circumference with radius ui,h + lij,h, i.e., it can also
be represented as (20):√

4P2
ij,h +

(
ui,h − lij,h

)2
= ui,h + lij,h,

{
∀ij ∈ L,
∀h ∈ H

}
, (20)

where the left-hand side of (20) can be represented through an l2-norm. Finally, if the
equality symbol is relaxed through a lower equal symbol, then constraints (17) and (20) are
completely equivalent, and the proof is completed [29].

Now, considering the possibility of relaxing the power definition in (6) with (17), the
optimization model (1)–(12) becomes a second-order cone programming model, with the
structure (21):

Obj. Func.:

min zapprox = Acosts + CkWhT ∑
h∈H

∑
ij∈L

Rijlij,h∆h.

Subject to:

Pij,h − Rijlij,h ∑
k:(jk)∈L

Pjk,h = Pd
j,h − Ppv

j,h ,


∀j ∈ N ,

j 6= slack,
∀h ∈ H

,

uj,h = ui,h − 2RijPij,h + R2
ijiij,h, {∀ij ∈ L, ∀h ∈ H},∥∥∥∥ 2Pij

lij,h − vi,h

∥∥∥∥ ≤ lij,h + vi,h, {∀ij ∈ L, ∀h ∈ H},

zjPmin
pv ≤ Ppv

j ≤ zjPmax
pv , {∀j ∈ N}, (21)

0 ≤ Ppv
j,h ≤ Gpv

h Ppv
j , {∀j ∈ N , ∀h ∈ H},

−
(

imin
ij

)2
≤ lij,h ≤

(
imax
ij

)2
, {∀ij ∈ L, ∀h ∈ H},

∑
j∈N

zj ≤ Nmax
pv ,

zj ∈ (0, 1), {∀i ∈ N}.

Remark 4. Note that, in the optimization model (21), the value of the binary variables zj was
known, as these were obtained after solving the mixed-integer linear programming model (16).
In addition, the objective function maintained the component associated with the expected costs
of energy losses, given that this factor was essential to ensuring an adequate convergence of the
second-order cone programming model (21), as demonstrated by the authors of [24].
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3.3. Summary of the Solution Methodology

To summarize the main aspects of the solution methodology, Algorithm 1 presents all
of the steps required to solve the problem regarding the optimal placement and sizing of PV
generation units in monopolar DC networks via the proposed two-stage solution approach.

Algorithm 1: General implementation of the proposed two-stage optimization
approach.

Data: Obtain the monopolar DC network parameters:
1. Define the slack voltage magnitude as vi,h = 1.0 pu;
2. Elaborate the optimization model (15) in the CVX programming environment
of MATLAB;

3. Solve the mixed-integer linear programming model (15), using the Gurobi
solver;

4. Extract the set of nodes where the PV generation units must be installed, i.e., the
values of zj;

5. Elaborate the optimization model (21) in the CVX programming environment of
MATLAB;

6. Set the values of the binary variables zj as inputs for the optimization
model (21);

7. Solve the second-order cone programming model (21), using the Gurobi solver.
Result: Report the nodes and sizes assigned for the PV generation units.

It is important to note that, in light of the numerical results obtained after implement-
ing the two-stage optimization approach in Algorithm 1, the final size of the PV generation
units was reviewed and improved, using the General Algebraic Modeling System (GAMS)
software [35].

4. Test Feeder Characteristics

To validate the proposed two-stage optimization methodology, the monopolar DC
version of the IEEE 33-bus grid was used as a test feeder. This is a radial distribution
network composed of 33 nodes and 32 distribution branches, which is operated with
a voltage magnitude of 12,660 V at the terminals of the substation bus. The schematic
connections between the nodes of this test feeder are presented in Figure 1.
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Figure 1. Grid topology of the IEEE 33-bus network.

The parametric information of this test feeder is listed in Table 1.
To parameterize the calculation of the objective function (see Equations (2) and (3))

the information reported in Table 2 was employed.
A typical curve for the metropolitan area of Medellín (Colombia) was considered,

to evaluate the average daily behavior of the PV generation units. Figure 2 depicts this
expected per-unit generation curve. Information regarding solar radiation, irradiance, and
temperature were collected from a year’s worth of analysis in the NASA database. This
information was processed, with the purpose of obtaining the average behavior for the
metropolitan area of Medellín, considering the efficient use of PV modules, in order to
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obtain the expected generation profile reported in Figure 2. For more details regarding the
characterization of these demand and solar curves, please refer to [36].

Table 1. Parametric information of the IEEE 33-bus grid for monopolar DC studies.

Node i Node j Rij (Ω) Pj
(kW) Iij (A) Node i Node j Rij (Ω) Pj

(kW) Iij (A)

1 2 0.0922 100 320 17 18 0.7320 90 20
2 3 0.4930 90 280 2 19 0.1640 90 30
3 4 0.3660 120 195 19 20 1.5042 90 25
4 5 0.3811 60 195 20 21 0.4095 90 20
5 6 0.8190 60 195 21 22 0.7089 90 20
6 7 0.1872 200 95 3 23 0.4512 90 85
7 8 1.7114 200 85 23 24 0.8980 420 70
8 9 1.0300 60 70 24 25 0.8960 420 40
9 10 1.0400 60 55 6 26 0.2030 60 85
10 11 0.1966 45 55 26 27 0.2842 60 85
11 12 0.3744 60 55 27 28 1.0590 60 70
12 13 1.4680 60 40 28 29 0.8042 120 70
13 14 0.5416 120 40 29 30 0.5075 200 55
14 15 0.5910 60 25 30 31 0.9744 150 40
15 16 0.7463 60 20 31 32 0.3105 210 25
16 17 1.2860 60 20 32 33 0.3410 60 20

Table 2. Constant parameters regarding the objective function’s parameterization.

Parameter Value Unit Parameter Value Unit

CkWh 0.1390 US$/kWh T 365 days
ta 10 % te 2 %
y 20 years ∆h 1 h

CPV 1036.49 US$/kWp CO&M 0.0019 US$/kWh
Ppv,max

i 2400 kW ppv,min
i 0 kW

Nava
pv 3 – ∆V ±10 %
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Figure 2. Average behavior of the demand and generation curves for Medellín, Colombia.

5. Numerical Results and Discussion

The numerical implementation of the proposed two-stage methodology was carried
out in the MATLAB programming environment (version R2021b), running the 64-bit
version of Microsoft Windows. Hardware-wise, an Intel(R) Core(TM) i7–7700HQ CPU
2.80 GHz processor and 24 GB of RAM were used. To solve the proposed mixed-integer
linear programming and the second-order cone programming models, the CVX convex
disciplined tool of MATLAB was used, in addition to its Gurobi solver.

Two simulation scenarios were considered, to validate the effectiveness of the proposed
two-stage optimization model:
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i. No thermal limitations in all of the distribution branches in the monopolar DC version
of the IEEE 33-bus grid [16];

ii. The inclusion of the current limitations associated with the conductor sizes assigned
to the IEEE 33-bus grid, as defined by the authors of [30].

5.1. Results for the IEEE 33-Bus Grid without Current Limitations

In this subsection, the numerical results obtained by the proposed two-stage approach
are compared to three combinatorial optimization methods available in the current litera-
ture [16,37]. These correspond to the discrete-continuous versions of the Chu and Beasley
genetic algorithm (DCCBGA), the vortex search algorithm (DCVSA), and the generalized
normal distribution optimizer (DCGNDO). For all these combinatorial optimizers, a popu-
lation size of 10 individuals, 1000 iterations, and 100 repetitions were implemented. Note
that the proposed method is labeled as a two-stage convex optimizer (TSCO).

Table 3 presents the numerical results for this simulation scenario, considering two
possible operation cases for the PV generation units. The first case considers the operation
of the PV plants with maximum power point tracking, as proposed by the authors of [16].
The second approach considers the possibility of generating power without following the
expected generation curve, i.e., the PV plants are optimally dispatched in each period.
Note that the main idea of these simulation scenarios is to define the best strategy for in-
stalling and operating PV plants in electrical networks as a function of the energy resources
available, and the dispatch strategy applicable to PV systems [13].

Table 3. Evaluation of the comparison methods and the proposed two-stage optimization approach
in the monopolar DC version of the IEEE 33-bus grid without thermal constraints.

Method Site (Node)/Size (kW) Acost (USD/Year)

Bench. case – 3,644,043.01

CBGA
{

11(1162.95), 14(943.48), 31(1482.75)
}

2,662,724.82

DCVSA
{

9(580.31), 15(1291.37), 31(1715.59)
}

2,662,425.32

GNDO
{

10(974.26), 16(920.22), 31(1692.51)
}

2,662,371.59

TSCO (fixed curve)
{

10(974.26), 16(920.22), 31(1692.51)
}

2,662,371.59

TSCO (variable curve)
{

12(1571.78), 24(1676.86), 30(1745.29)
}

2,561,788.19

The results in Table 3 show that:

i. The proposed TSCO approach finds the same numerical solution as the GNDO ap-
proach, which confirms that, for the DC version of the IEEE 33-bus grid without
thermal limitations in the distribution lines, the best set of nodes to locate PV sources
are 10, 16, and 31, with sizes of 974.26, 920.22, and 1692 kW, respectively. This is the
best solution for the simulation case where the PV plants follow the maximum point
power tracking curve, i.e., they generate the total power available in their terminals
though implementing an efficient operation technique [18];

ii. The DCCBGA and DCVSA are stuck in locally optimal solutions with respect to the
DCGNDO and the proposed TSCO approach. The additional gains reached by these
methods are USD 353.23/year and USD 53.73/year, respectively. However, by com-
paring the TSCO approach against the benchmark case (operation of the PV network
without installed PV generation), it can be observed that the expected reduction in the
grid operating costs is USD 981,671.42/year, i.e., a significant reduction in the energy
investments of the distribution company, with the main advantage that the inclusion
of renewables also reduces the carbon footprint.

iii. The most important finding in Table 3 lies in the comparison between the case in-
volving maximum power point tracking and the optimal dispatch operation scenario.
Note that the difference between both cases is about USD 100,583.4/year, which cor-
responds to an additional gain that can be obtained if each PV source is efficiently
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dispatched in each period. The average energy generation of the PV plants with a
fixed curve is about 23,633.04 kWh/day, whereas, in the variable generation scenario,
27,976.143 kWh/day are produced on average. This result confirms that the efficient
operation of PV plants allows for better exploitation of the renewable generation
resources available, in comparison to the maximum power point tracking scenario.

To illustrate the positive effect of the variable generation curve on the PV plants,
Figure 3 presents a comparative generation curve for the substation bus, regarding the
benchmark case and the solutions found by the TSCO approach.
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Figure 3. Power generation in the slack source for the benchmark and TSCO solutions.

The behavior of the slack generation in Figure 3 shows that: (i) in the benchmark case,
the generation output in the slack source follows the aggregated demand generation curve
at its terminals (see Figure 2), in conjunction with the total grid power losses; (ii) when the
PV generation plants are installed while considering the fixed generation curve scenario, it
is noted that, for the period of highest power generation (period 14), the slack generation
is zero, unlike the remaining generation periods; and (iii), when the efficient dispatch of
PV plants is considered, from period 11 to period 16, the slack generation is zero, which
implies that it is indeed possible to maximize the benefit of renewables in monopolar DC
networks by this approach. This significant reduction in slack generation is obtained when
the PV sources are dispatched without considering the maximum power point, and it shows
that, in the studied problem, extracting the total available energy is not always the most
economical solution, as the largest sizes regarding renewables allow for better support of
power in several periods, which does not occur with maximum power tracking operation.

Note that, in the benchmark case, the slack source generates about 61.5561 MWh/day.
In the maximum power point tracking scenario, this generation is reduced to 37.3198 MWh/day,
whereas, for the variable generation case, the slack source reports a value of about
32.8487 MWh/day. In addition, it is important to observe that the generation variations in
the slack source appear only in the periods with an influence of the PV generation units
(periods 7 to 20); in the remaining periods, all three curves are overlapped, as the only
available generation source is the slack node. This situation is a clear opportunity for future
works to explore the possibility of simultaneously installing energy storage systems to
maximize the utilization of renewable generation.

5.2. Results for the IEEE 33-Bus Grid with Current Limitations

This simulation scenario evaluates the effect of considering the current limitations
of all the distribution branches on the node location and size selection of PV plants. To
demonstrate the effectiveness of the proposed TSCO approach, the exact MINLP model
was solved in the GAMS software, and the results were compared for the fixed and variable
generation outputs, i.e., the maximum power point tracking scenario and the efficient
dispatch of PV sources per period of analysis.
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Table 4 compares the GAMS and TSCO results. Note that, in the GAMS software, the
BONMIN solver was used to solve the exact MINLP Model (1)–(12) [35].

Table 4. Numerical results for the IEEE 33-bus grid while considering current limitations

Method Site (Node)/Size (kW) Acost (USD/Year)

Bench. case – 3,644,043.01

GAMS (fixed curve)
{

8(1986.84), 30(391.67), 31(939.54)
}

2,726,761.65

GAMS (variable curve)
{

18(482.58), 25(1293.96), 28(2363.82)
}

2,739,382.36

TSCO (fixed curve)
{

10(1327.10), 24(868.21), 30(1326.67)
}

2,664,816.29

TSCO (variable curve)
{

12(1571.78), 24(1676.86), 30(1745.29)
}

2,561,788.19

The results in Table 4 show that:

i. The implementation of the MINLP model via the BONMIN solver and the GAMS
software evidenced that, due to the non-convexities of this optimization model, the
solutions reached were only local optima. In the case of the fixed generation curve, the
expected reduction concerning the benchmark case was about 25.1721%, and, in the
case of the variable curve, the reduction only reached a value of 24.8257%. Note that
these results are counter-intuitive, as a better numerical performance was expected
in the case of a variable generation curve; however, this can be explained by the
nonlinearities of the exact optimization problem, which causes solvers like BONMIN
to be stuck in a locally optimal solution.

ii. As expected, the solutions reached by the TSCO approach show that variable gener-
ation improved the benchmark case by about 29.6993%, while the fixed generation
curve reported an improvement of about 26.8719%. However, the main difference
between both solutions corresponded to the modification of one of the nodes, i.e.,
with regard to the fixed generation case, node 10 changed to node 12 in the variable
curve case. Note that the modification in the set of nodal locations was associated
with the sensitive behavior of the investment costs when PV generation worked with
maximum power point tracking, as compared to the variable operation scenario.

Finally, by comparing the numerical results in Tables 3 and 4 with respect to the
proposed TSCO approach, it is observed that the characteristics of the solution space
highly condition the numerical solutions, which implies that the addition of constraints or
their simplification will define the final solution. In this sense, more research is required,
regarding mixed-integer convex optimization tools to deal with problems pertaining to the
installation of renewable generation in electrical networks.

6. Conclusions and Future Work

The problem regarding the optimal placement and sizing of PV generation units
in monopolar DC distribution networks was addressed in this research by proposing a
two-stage optimization methodology. The first stage relaxed the MINLP model into a
mixed-integer linear programming one, by approximating the voltage magnitudes and
neglecting the current flowing through the distribution branches. With this mixed-integer
linear programming model, the set of nodes to locate the PV sources are selected. The
second stage reduced the MINLP model to a nonlinear programming model that could
be rewritten as a second-order cone programming one, which defined the optimal size
of the PV generation units. Note that these solutions were also refined by solving the
exact MINLP model in the GAMS software, setting the binary variables regarding the
PV locations.

Two versions of the monopolar DC IEEE 33-bus were considered for numerical valida-
tions. The first model neglected the effect of the current bounds in the distribution branches,
while the second case considered these thermal limitations. The numerical results obtained
from these simulation scenarios showed that the optimal solution for both cases differed by
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about USD 2444.7/year, which confirms that including the current effect of the distribution
branches can affect the final solution of the problem, given the restrictions regarding branch
power flow limitations. This reduces the possible benefit of using large-scale PV systems in
some promising nodes, due to the thermal limitations associated with the conductors in
the vicinity of these nodes.

As for the free operation of PV generators in each period (i.e., operation without follow-
ing the maximum power point), significant reductions were observed with respect to the
maximum power point tracking case. These reductions were higher than USD 100, 583.40
per year of operation. This reduction in the final objective function demonstrated that the
best way to select the size and location of PV generation units in distribution networks is a
free power injection in the PV plants during each period, which is defined between zero
and the nominal power generation curve when compared to the maximum power point
tracking scenario. Note that the effective reduction in the objective function value for the
efficient operation scenario was obtained because the conventional generator’s time of use
was reduced by at least five hours (for the test feeder), which had a direct impact on the
total grid operating costs.

In future works, the following studies can be conducted:

i. Including, in the proposed optimization model, the set of necessary variables to
integrate battery energy storage systems. This, in its conventional formulation, cor-
responds to a group of linear (convex) constraints associated with the time coupling
between the stored energy and the power injection/absorption to/from the monopolar
DC network;

ii. A comparative analysis of different convex optimization with mixed-integer variables,
to solve the MINLP problem and compare their performances against that of the
proposed TSCO approach. Note that some mixed-integer convex formulations using
second-order cone programming theory can directly solve the problem regarding the
sizing and location of PV plants simultaneously (in one stage), which constitutes an
excellent opportunity to validate the effectiveness of the proposed TSCO approach,
especially in large-scale monopolar DC networks;

iii. Considering the demand and PV generation curves, including the uncertainties asso-
ciated with the stochastic nature of these variables and their effect on the final grid
operation plan, as well as some physical constraints associated with the space available
for the installation of PV sources, as there are some nodes where this is a limitation;

iv. The reformulation of the TSCO approach, using convex approximations that allow
for simultaneously dealing with radial and meshed distribution networks. These
reformulations can be based on the nodal voltage method and semi-definite program-
ming models.
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Nomenclature

Parameters
∆h Time variation regarding the daily operation intervals (hour).
CkWh Average value of a kilowatt of power generated in the substation bus (USD/Wh).

CO&M
Maintenance and operating costs coefficient per kWh of energy generated by a PV
generation unit (USD/Wh).

Cpv
Parameter associated with the investment costs in a kWp of PV-based power
(USD/Wp).

Gpv
h Profile of the energy generation curve for the PV generation plants (%).

imax
ij Thermal bound associated with the conductor connected in the ijth route (A).

Nt Number of years in the planning period (year).
Nmax

pv Maximum number of PV generators available for installation.
Pd

j,h Power demanded at node j in the period h (W).
Pmax

pv Maximum size allowed for the PV generation units (W).
Pmin

pv Minimum size allowed for the PV generation units (W).
Rij Resistive parameter associated with the conductor assigned to the route ij (Ω).
T Number of days in a year.
ta Return rate of the investments made by the distribution company (%).
te Rate of increasing the energy generation costs per year of operation (%).
vmax Maximum voltage magnitude allowed for each grid node (V).
vmin Minimum voltage magnitude allowed for each grid node (V).
Sets
H Set that contains all the periods in the daily operating scenario.
L Set that defines the routes (distribution lines) of the test feeder.
N Set associated with the number of nodes in the monopolar DC network.
Variables
Acost Expected annual operating costs of the network (USD).
D1 Energy purchasing costs at the terminals of the substation (USD).
D2 Maintenance and operating costs of the PV generation units (USD).
iij,h Current flow in the route ij in each period (A).

lij,h
Auxiliary variable that is associated with the square value of the current flow in the
route ij in each period (A2).

Pcg
0i,h Power generation at the slack node (substation bus) (W).

Ppv
i,h Power injection at node i at period h by a PV generation source (W).

Pij,h Power flowing from node i to node j per period h (W).
Pjk,h Power flowing from node j to node k per period h (W).
Ppv

i Size of a PV generation installed at node i (W).
zapprox Convex approximation of the objective function (USD).

ui,h
Auxiliary variable that defines the square value of the voltage variable at node i in
each period (V2).

uj,h
Auxiliary variable that defines the square value of the voltage variable at node j in
each period (V2).

vi,h Voltage variable at node i per period of analysis (V).
vj,h Voltage variable at node j per period of analysis (V).
zapprox Convex approximation of the objective function (USD).

zj
Binary variable that allows defining whether the PV generator is located at node
j (zj = 1) or not (zj = 0).
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