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Abstract: Fine-resolution land cover (LC) products are critical for studies of urban planning, global
climate change, the Earth’s energy balance, and the geochemical cycle as fundamental geospatial data
products. It is important and urgent to evaluate the performance of the updated global land cover
maps. In this study, three widely used LC maps with 30 m spatial resolution (FROM-GLC30-2020,
GLC_FCS30, and GlobeLand30) published around 2020 were evaluated in terms of their degree of
consistency and accuracy metrics. First, we compared their similarities and difference in the area
ratio and spatial patterns over different land cover types. Second, the sample and response protocol
was proposed and validation samples were collected. Based on this, the overall accuracy, producer’s
accuracy, and user’s accuracy were analyzed. The results revealed that: (1) the consistent areas of
the three maps accounted for 65.96% of the total area and that two maps exceeded 75% of it. (2) The
dominant land cover types, bare land and grassland, were the most consistent land cover types across
the three products. In contrast, the spatial inconsistency of the wetland, shrubland, and built-up areas
were relatively high, with the disagreement mainly occurring in the heterogeneous regions. (3) The
overall accuracy of the GLC_FCS30 map was the highest with a value of 87.07%, which was followed
by GlobeLand30 (85.69%) and FROM-GLC30 (83.49%). Overall, all three of the LC maps were found
to be consistent and have a good performance in classification in the arid regions, but their ability to
accurately classify specific types varied.

Keywords: land cover map; consistency analysis; accuracy assessment; error matrix; northwestern
China

1. Introduction

Global land cover (LC) products used by the scientific community, international or-
ganizations, and the government sector are critical to the understanding of global climate
change [1], land cover change [2], environmental pollution [3], food security [4], ecological
conservation, and the coordination of actions aiming to achieve the sustainable develop-
ment goals (SDGs) [5]. Meanwhile, the Global LC data are vital information sources for
studying the complex interactions between the human activities and the global changes [6].

The first satellite-based global LC map dates to the 1990s [7]. Since then, with the
improvement of satellite techniques and computer facilities, various global/regional land
cover maps with different resolutions based on specific classification schemes have been
developed and released. Several types of LC maps with a relatively coarse resolution at the
1000 and 300 m scales [8–13] are available. While the coarser resolution global LC maps
have provided valuable information for various related applications, some studies [14,15]
pointed out that these products cannot meet the requirement of accuracy in regions with
heterogeneous landscapes, which calls for there to be a finer resolution and more accurate
data in these areas.

Recently, due to the free availability of finer resolution remotely sensed imagery from
the constellations of Landsat and Sentinel, finer resolution maps were produced, such as:
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(1) FROM30, the Finer Resolution Observation and Monitoring Global LC dataset based
on Landsat images, which has a 30 m resolution [16], (2) Globeland30, the global land
cover dataset from National Geomatics Center of China from 2000/2010, which has a 30 m
resolution [17], (3) GLC_FCS30, the global land cover product with a fine classification
system that works at 30 m using time-series Landsat imagery from 2015, which has a 30 m
resolution [18,19], (4) FROM-GLC10, the Finer Resolution Observation and Monitoring
Global LC dataset based on Landsat images, which has a 10 m resolution [20], (5) ESA
WorldCover10, a new baseline global land cover product at a 10 m resolution based on
Sentinel-1 and -2 data from the European Space Agency (ESA) from 2020, which has a 10 m
resolution [21,22], and (6) ESRI10, the New 2020 Global Land Cover Map from Esri [23]. In
contrast to the 10 m resolution LC, the 30 m resolution global LC maps such as GlobeLand30,
GLC_FCS30, and FROM30 are commonly used in many fields because of their long time
series and robustness in land cover mapping [17,18,24–26].

However, the LC maps mentioned above are classified from multi-source remote
sensed data using different classification methods and classification schemes and there must
be incompatibility and uncertainties among these datasets. The quality of the LC products is
an extensive issue that may relate to a variety of their properties and the property of interest
is the thematic classification accuracy. Therefore, the methods proposed for assessing the
thematic performance of the LC data that are commonly used are: (1) a comparison analysis
of statistical or spatial consistency with existing LC maps or government statistical data [27]
and (2) quantifying the accuracies through error metrics, including the overall accuracy
(OA), user’s accuracy (UA), and product’s accuracy (PA) derived from an error matrix
constructed by a reference dataset [28].

Most of the studies are focused on the performance of classifications, that is, the
accuracy assessment of the LC maps [29]. Seven global LC datasets with resolutions
ranging from 30 to 1000 m over China were assessed by the error matrix method [30]. Over
Europe, an accuracy assessment of three 30 m LC products circa 2015 was conducted using
the LUCAS reference dataset and the overall accuracy varied from 65.3 to 84.33% [27].
Tsendbazar et al. (2018) generated a validation dataset including 3617 sample sites in Africa
based on stratified sampling via the Geo-Wiki platform and validated the newly released
100 m resolution LC products from the Copernicus Global Land Service (CGLS-LC100). On
a global scale, the producer of GlobeLand30 first developed an online validation system,
GLCVal, and it provided an accuracy assessment of GlobeLand30 for about 20 countries
(regions) [24].

Parts of the studies have concentrated on specific classes that dominated or played an
important role in a specific area, such as cropland, forest, or waterbody areas. Zhang et al. (2022)
implemented a comparison analysis and an accuracy assessment for six 30 m resolution cropland
products based on more than 30,000 ground truth points collected in a visual interpretation
study in China [31,32]. Lu et al. [33] compared five global cropland datasets circa 2010 in China
and they concluded that the GlobeLand30 is better than the other four products are in terms of
the accuracies of the cropland area and spatial location. Xing et al. [34] explored the accuracy,
consistency, and discrepancies of eight widely used forest datasets in Myanmar and analyzed
the factors influencing the spatial consistency from the aspects of terrain and climate.

The latest version of FROM-GLC30 was released in 2018 and the newest version of
GlobeLand30 and GLC_FCS30 were both released in 2020. For a short time, since the
release of these 30 m resolution LC map datasets, the performance of these LC datasets
has still been insufficient. Therefore, it is urgent to conduct the comparative analysis and
accuracy assessment of the latest LC maps. The landscapes in arid areas are complex
and diverse and some of the literature studies have reported low accuracies [30,32]. The
ecological environment is fragile due to a shortage of water resources. With the increase in
the population, the continuous development of the oasis in the arid regions has resulted
in severe ecological and environmental problems, such as water shortages, vegetation
degradation, desertification, and salinization [33–35]. However, a few comparative analyses
and accuracy assessments of 30 m LC products in arid regions have been conducted.
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Therefore, it is very essential to assess the accuracy and spatial consistency of different LC
maps in arid areas.

Overall, there are still research gaps in the current evaluation works: (1) the local
performance cannot be represented by the global accuracy due to the spatial inconsistency
of the LC, particularly in an arid area. A global estimation for the entire map may be
inappropriate for the sub-regions for the same reason, the baseline samples used by the map
producers will not be large enough for regional and class-specific accuracy estimates [36]
and (2) there is a lack of consistency in analyses among the different LC maps. Compared
to many previous studies dedicated to the validation of existing LC maps, a few attempts
have been performed to conduct spatial and statistical consistency analyses and (3) the
absence of some issues determined the accuracy.

The present paper aimed to compare and validate three widely used global LC maps
in arid land over Northwest China, including FROM30, GLC_FCS30, and GlobeLand30,
in the terms of areal similarity, spatial consistency, and qualitative accuracy through error
matrices. The study results can guide future improvements of LC mapping. Moreover, they
also provide advice for users to select the best LC map in arid regions.

2. Materials and Methodology
2.1. Study Area

The study area belongs to the northwest of China, located between longitudes
73◦20′–111◦7′ E and latitudes 31◦30′–49◦10′ N, with a total area of 3.08 × 106 km2. North-
western China, including the Shaanxi Province, Ningxia Hui Autonomous Region, Gansu
Province, Qinghai Province, and Xinjiang Uygur Autonomous Region (Shaanxi, Ningxia,
Qinghai, Gansu, and Xinjiang for short), covers a vast area characterized by mountain
ranges, plateaus, and basins with varied landforms, as shown in Figure 1. Northwestern
China is characterized by a dry climate, which results in a harsh ecological environment,
very low vegetation coverage, and very small amount of water vapor evaporation. The
annual precipitation here is below 400 mm, or even less than 50 mm in the desert, which
occupies a large proportion of the area [37]. The rivers are mainly supplied by snow melt
water in the mountainous areas and belongs to internal rivers. Due to the variety of land-
forms, the LC types in this region are complex and diverse, the most widely distributed
types being desert, grassland, and cropland.

2.2. The 30 m Global LC Datasets

In the present study, three widely used LC maps that are available freely were chosen
for evaluation and analysis. These are the Finer Resolution Observation and Monitoring
Global LC datasets based on Landsat images in 2017 (abbr. FROM), available at: http://
data.ess.tsinghua.edu.cn [16], Global land cover datasets in 2020 from National Geomatics
Center of China (abbr. Globe), available at: www.globallandcover.com [17], and global land
cover product with fine classification system at 30m using time-series Landsat imagery in
2020, (abbr. FCS) available at: https://doi.org/10.5281/zenodo.3986872 [18,19]. All three
of the datasets were downloaded in May 2022.

The FROM V2017 is the latest product of FROM_GLC30 data series with 30 m resolu-
tion global LC maps. In this study, we selected the FROM released in 2018 for evaluation
and conducted a consistency analysis and accuracy assessment based on 10 first-level
types. The Globe V2020 is a successor to the previous versions named GlobeLand30 V2000
and GlobeLand30 V2010, which was released in 2020 [17]. It uses a classification system
containing 10 first-level types. The accuracy evaluation of Globe was conducted by the
producer, the overall accuracy of Globe data was 85.72%, and the Kappa coefficient was
0.82 [18].

http://data.ess.tsinghua.edu.cn
http://data.ess.tsinghua.edu.cn
www.globallandcover.com
https://doi.org/10.5281/zenodo.3986872
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FCS30 V2020 is successor to GLC_FCS30-2015, combining with 2019–2020 time series
remote sensed data, such as Landsat multispectral images, sentinel SAR data, global the-
matic auxiliary dataset, and interpreted training samples [19]. It adopted the classification
system that consists of nine first-level types and 30 s-level types [19]. The GLC_FCS-2015
was validated using 44,043 validation samples and reported an overall accuracy of 82.5%
and a Kappa coefficient of 0.784 for the level-0 validation system (9 basic land cover types).
The main parameters of the three LC maps are listed in Table 1.

Table 1. Main parameters of the three 30 m LC maps.

LC Maps First-Level
LC Types Time Reported OA Method Satellite Production

Institution

FROM 10 2017 72.76% Random Forest Landsat
TM/ETM+/OLI

Tsinghua
University

Globe 10 2020 80.3% POK (pixels,
objects, knowledge)

Landsat TM/ETM+,
HJ-1 A/B, GF-1

National
Geomatics

Center of China

FCS 9 2020 81.4% Local random
forest

Landsat
TM/ETM+/OLI,
Sentinel-1 SAR

Chinese
Academy of

science

2.3. Harmonization of the Classification Systems

The basic processing method mainly included raster data clipping, projection trans-
formation, and harmonization of classification schemes among the different LC maps.
The coordinates of LC maps were unified to WGS84 coordinate and Universal Transverse
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Mercator projection. There were significant discrepancies among the classification schemes
adopted by the three LC maps. FROM and FCS had a two-level hierarchical classification
scheme with 10 and 9 first-level types, respectively. Globe had 10 basic land cover types,
which were the same as the first-level classification system used in FROM.

In the comparative evaluation of the different LC products, it was essential to unify the
discrepant classification schemes into the same classification scheme to reduce errors. Based
on the user manuals of the three 30 m LC products [16,18,25], a merged classification scheme
with nine major LC types, including cropland, forest, grassland, shrubland, wetland, water,
built-up, bare land, and permanent snow/ice was designed (Table 2). The most classes
could be directly assessed to merged types. In particular, the types of tundra in the FROM
and Globe were merged into shrubland and the types in FCS second-level were combined
into FCS first-level according to the producer’s hierarchical classification system [18]. In
addition, the cloud cover pixels occupied a small proportion in the FROM map and thus
were ignored.

Table 2. The grouped classification scheme and its response to the original classification schemes.

Merged
Type Code FROM Code of

FROM Globe Code of
Globe FCS Code of FCS Legend RGB

Values

Cropland 1 Cropland 10 Cropland 10 Cropland 10, 11, 12, 20 162, 255, 115

Forest 2 Forest 20 Forest 20 Forest 50, 60, 61, 62, 70, 71,
72, 80, 81, 82, 90 38, 115, 0

Grassland 3 Grassland 30 Grassland 30 Grassland 130 76, 230, 0

Shrubland 4 Shrubland
Tundra

40
70

Shrubl and
Tundra

40
70 Shrubland 120, 121, 122 112,168,0

Wetland 5 Wetland 50 Wetland 50 Wetlands 180 0, 220, 130
Water 6 Water 60 Water 60 Waterbody 210 0, 92, 255

Built-up 7 Built-up 80 Impervious
surfaces 80 Impervious

surfaces 190 197, 0, 255

Bare land 8 Bare land 90 Bare land 90 Bare
areas

140, 150, 152, 153,
200, 201, 202 255, 170, 0

Permanent
Snow/Ice 9 Snow/Ice 100 Snow/Ice 100

Permanent
ice and
snow

220 0, 255, 197

The reclassified datasets using the merging scheme in Table 2 of (a) FROM, (b) Globe,
and (c) FCS are displayed in Figure 2.

2.4. Consistency Analysis

To present a rounded analysis between the three 30 m newly released LC products, the
consistency analysis from two aspects (area-based consistency and pixel-based consistency)
was conducted. The area-based consistency analysis points out the area similarity of the
types. The pixel-based consistency focused on the consistency of LC maps at the locations.
Although the presented time of FROM is 3 years ahead of that for Globe and FCS of 2020,
some studies have concluded that the LC changes that occurred over this time interval
were almost negligible compared to the classification error in the LC products [18].
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2.4.1. Area-Based Consistency for LC Products

The area-based consistency focused on the difference in aerial proportions of each
LC type between different LC maps. The areas of each LC type in different maps were
compared, which could visually demonstrate the consistency and diversity of different
LC products.

2.4.2. Pixel-Based Consistency

The pixel-based consistency concerned the spatial (in)consistency for each LC type and
the spatial superposition method was employed to obtain the pixel-based consistency. The
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overall similarity coefficient (OS) and the class similarity coefficient (CS) between different
products were calculated using Equations (1) and (2) [21,27]:

OS =
∑n

1 XYii
M

× 100% (1)

CSi =
XYii

(Xi + Yi)/2
× 100% (2)

where Xi is the number of pixels of the i-th LC type in map X, Yi is the number of pixels of
the i-th LC type in map Y, XYii is the number of pixels of the i-th LC type in both X and Y,
and n is the number of classes used to calculate the overall spatial agreement, here nine,
and M is the total number of pixels in the study area. Equation (2) is also applicable to the
consistent operation of three or more layers.

The superposition results between two LC products presented a binary structure:
inconsistent and consistent (Figure 3a) and provided a ternary or multivariate structure
among three or more LC products as well (Figure 3b). In this study, no more than three
LC products were overlaid, so there were three levels as follows in descending order: (1)
consistent: the classes of the three LC products were same at a given pixel; (2) basically
consistent: any two LC products had the same type at a given pixel; and (3) inconsistent:
all the three LC maps had different types at a specific pixel (Figure 3).
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2.5. Quantifying the Accuracy Using the Samples

The confusion matrix is widely used in accuracy assessments of LC maps. Prior to this,
the sampling issues, the response scheme, and analysis should be considered [28,38–41].

2.5.1. Sampling Design

The sampling design tradeoff between the cost and statistical rigor in accuracy as-
sessment and a specific number of samples were collected. In this paper, we adopted
the stratified random sampling method and the stratification was nine, based on the
classification scheme. The sample points were randomly assigned to the map through a
computer program.

The accuracy assessment requires an adequate number of samples per classification
type in order to guarantee the evaluation is a statistically valid assessment [42]. However,
collecting samples is expensive, requiring that the sample size be kept to a minimum to be
affordable. In our study area, the area covered by wetland, water, and permanent snow/ice
was very small. According to the recommendation that a minimum of 50 samples for each
class should be collected [28], the sample size for each type therefore was bigger than 50.
Thus, in total, 5676 samples were collected for the accuracy assessment (Figure 4). The
sample size of each LC type was directly proportional to the area occupied by this type,
which is shown in parentheses in Figure 4.
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2.5.2. Response Scheme

The reference LC labels were obtained from Google Earth images, which are available
freely online. Since the projection used by Google Earth is a Web Mercator projection, the
sample datasets were re-projected into the Web Mercator projection.

The experienced interpreters assigned class labels to the sample points. After two
rounds of visual image interpretation, the dubiously labeled samples in two rounds were
verified by the project leader, who was typically an expert in photo interpretation, to
minimize errors in the response step. In this step, the ancillary data, such as course
resolution images, the digital elevation model, and images from other sources, could be
used to assist in image interpretation.

The following principles were followed in interpreting samples. To balance the the-
matic accuracy with the positional accuracy and adapt the resolution gap between the
LC maps and Google Earth images, a cluster of pixels centered on a sampling point (a
30 m × 30 m pixel square) was comprehensively identified for a single sample unit using
the majority method [43]. Second, for the sake of minimizing errors caused by the time dif-
ference when obtaining images, the fine images from 2020 were the main priority. Thirdly,
multiple independent interpretations were used.

2.5.3. Accuracy Measures Form Confusion Matrix

The overall accuracy (OA), producer’s accuracy (PA), user’s accuracy (UA), and Kappa
coefficients were calculated to show the accuracy of three LC products [27,44]. The formulae
for calculating each indicator are as follows:

OA =
(
∑k

i=1 nii

)
/n2 (3)

PAj=
nii
n+i

(4)

UAi=
nii
ni+

(5)
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Kappa=
n ∑r

i=1 nii −∑r
i=1(ni+n+i)

n2 −∑r
i=1(ni+n+i)

(6)

where nii is the correctly classified pixel number of type i, n is the total pixel number in the
study area, n+i is total pixel number of type i in the map (data to be verified), ni+ is the total
pixel number of type j in the reference data (truth data), and r is the number of rows in
confusion matrix.

3. Results
3.1. Area-Based Comparison

We first compared the area of nine classes of all maps and noted that the nine classes
were aggregated from FCS and Globe according to the harmonization scheme of the
classification systems in Table 2. As shown in Table 3, the classes were arranged as bare
land, grassland, cropland, forest, permanent snow/ice, water, shrubland, built-up, and
wetland, respectively, according to the mean size of areas in three LC maps. The top four
classes over 100 thousand km2 were bare land, grassland, cropland, and forest, of which
the average areas of three LC maps were 1,594,650.04 km2, 889,891.30 km2, 255,090.60 km2,
and 185,566.96 km2, respectively. The bare land covered 51.74% area of this region, which
constituted the primary geographical landscape of this region.

Table 3. The area of nine classes of the three LC products (unit: km2).

Classes Code FROM Percentage
in FROM FCS Percentage

in FCS Globe Percentage
in Globe Mean Percentage

in Mean

Cropland 1 216,212.68 7.02% 261,122.23 8.47% 287,936.88 9.34% 255,090.60 8.28%
Forest 2 181,001.87 5.87% 204,152.61 6.63% 171,546.38 5.57% 185,566.96 6.02%

Grassland 3 747,045.07 24.24% 953,984.49 30.96% 968,644.33 31.43% 889,891.30 28.88%
Shrubland 4 82,94.93 0.27% 57,296.97 1.86% 25,127.08 0.82% 30,239.66 0.98%
Wetland 5 6733.39 0.22% 8236.69 0.27% 15,379.13 0.50% 10,116.41 0.33%

Water 6 41,828.73 1.36% 29,426.57 0.95% 33,459.26 1.09% 34,904.85 1.13%
Built-up 7 28,424.48 0.92% 19,117.23 0.62% 26,492.52 0.86% 24,678.08 0.80%

Bare land 8 1,800,097.44 58.42% 1,481,606.52 48.08% 1,502,246.16 48.75% 1,594,650.04 51.74%
Permanent
Snow/Ice 9 51,870.21 1.68% 66,525.08 2.16% 51,768.55 1.68% 56,721.28 1.84%

The comparison of area for each LC type among the FROM, FCS, and Globe are
shown in Table 3. The results showed that the aerial consistency for cropland, forest, and
grassland among all three maps was relatively high. The consistency for water, build-up,
and permanent snow/ice were moderate. However, no LC type had the same area in the
three LC maps. Meanwhile, the area of several types varied substantially. The consistencies
for shrubland and wetland were low. The shrubland area of FCS was almost six times that
of FROM, twice that of Globe. In addition, the wetland area of Globe was more than twice
that of FROM and FCS.

For the superposition results of the two maps, the consistency of different LC types
significantly varied. For forest areas, the FROM and Globe had almost the same area,
both accounted for about 5.6% of the study area. The same situation occurred in the
snow/ice class. The area of snow/ice in FROM and Globe were 51,870.21 and 51,768.55 km2,
respectively, where both accounted for 1.68% of the total. The FROM and Globe were highly
identical in grassland areas, the areas of which were 953,984.49 km2 and 968,644.33 km2. In
other classes, the consistency of the two maps was relatively low.

3.2. Pixel-Based Comparison

Based on the spatial superposition of different LC maps, the pixel-based consistency for
overall and each LC type between two or three maps was revealed in visually mapped and
quantitative expression. First, the overall similarity coefficient (OS) and the class similarity
coefficient (CS) between different products were calculated using Equations (1) and (2)
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(Table 4). The OS between FROM and FCS was 76.29%, equaling that between FROM and
Globe of 76.95%. The OS between FCS and Globe was the smallest, with a value of 75.23%.
It can be concluded that about 75% of pixels have identical map labels between any two LC
maps. As expected, the OS among three LC maps of 65.96% was lower than that between
the two maps, which meant that the LC types of 65.96% of the area were precisely the same.

Table 4. Overall similarity coefficient (OS) (%) and individual class similarity (CS) (%) coefficient
among different maps.

LC Maps OS CScrop CSForest CSGrassland CSShrubland CSWetland CSWater CSBuilt-up CSBareland CSsnow/ice

Three Maps 65.96% 60.49% 69.94% 52.02% 0.26% 2.05% 69.68% 19.95% 76.93% 52.05%
FROM vs. FCS 76.29% 73.97% 82.12% 65.21% 6.96% 6.87% 72.81% 26.96% 84.65% 63.28%

FROM vs. Globe 76.95% 69.74% 77.77% 66.34% 1.27% 8.45% 70.43% 24.16% 86.15% 63.48%
FCS vs. Globe 75.23% 71.37% 74.00% 68.77% 2.01% 7.57% 80.09% 49.15% 83.81% 57.65%

On the LC type level, by calculating the class similarity coefficient among all three
products, the CS values of cropland, forest, water, and bare land were above 60%, which
means over 60% of the pixels corresponded to each other in space. The bare land had the
highest CS value of 76.93%. Only half of the grassland and snow/ice areas in the three
maps were entirely consistent with a CS value close to 50%. In contrast, the lowest value
of CS for shrubland and wetland (0.26% and 2.05%, respectively) demonstrated that the
shrubland and wetland hardly overlapped on the three maps. The built-up class also had a
low consistency, of which the CS was about 20%.

The pixel-based consistency between the two maps for different LC types was con-
sistent with the similarity of the three maps shown above. The bare land had the highest
consistency, in which the CSs of FROM vs. FCS, FROM vs. Globe, and FCS vs. Globe
reached 84.65%, 86.1, and 83.81%, respectively. The second highest consistency was found
in forest and water LC types, of which the CS ranged from 72 to 82%. The CS calculated
from two maps for shrubland and wetland was less than 7%.

By comparing the OS and CS of different pairwise maps, the consistency between
different maps varied substantially. For cropland, forest, and shrub land classes, the FROM
and FCS had high consistencies, of which CS was higher than that of FROM vs. Globe and
FCS vs. Globe. Similarly, the FCS and Globe were relatively more consistent in grassland,
water, and built-up classes than the other two combinations, such as FROM vs. FCS and
FCS vs. Globe. The combination of FROM and Globe only showed the highest spatial
similarity in the bare land class, with a CS of 86.15%, which was also the highest value in
all the combinations of different LC maps.

3.3. Spatial Distribution of Consistency

The spatial distributions of consistency between FROM, FCS, and Globe using the
spatial superposition method showed spatial homogeneity (Figure 5). Figure 5a shows
that the consistent areas were mainly located in the Tarim Basin, Junggar Basin, and Hexi
Corridor Area in the west part of the study area, where bare land dominated the land cover.
The consistent regions accounted for 65.96% (Table 4). The basically consistent areas, where
two of three LC maps were consistent in space, mainly located in the southern and northern
margins of the Tarim Basin, the Qilian Mountains, and the Loess Plateau. The basically
consistent regions have high spatial heterogeneities and the LC types in these regions were
complex, of which the area accounted for 30.58%.
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The inconsistent area of the three maps was scattered on the edge of different types of
land, accounting for a small area of 3.45%. The (in)consistent spatial distribution pattern
between FROM and FCS (Figure 5b), FROM and Globe (Figure 5c), and FCS and Globe
(Figure 5d) was similar to that of the three maps’ superposition. Compared to the consis-
tency of FROM vs. FCS and FCS vs. Globe, the consistency between FROM and Globe was
higher, especially in the northwestern part of the study region.

3.4. Visual Comparison between Maps and Ground Surface

With the assistance of Google Earth’s high-resolution images, the typical details of
(in)consistency of different LC types were displayed on a large scale (Figure 6). Comparing
the LC maps’ labels and the “ground truth” shown by the Google Earth image, three ways
were proposed to establish the relationship between maps and actual surface conditions.
(1) In most cases, all three LC products could correctly represent the actual situation of
the earth’s surface. As shown in Figure 6a, the bare land in three LC maps was correctly
classified. (2) At least one of the maps could correctly represent the LC type. The FROM
and FCS had a high spatial consistency and the spatial distributions of the forest were
the same (Figure 6b). The Globe correctly classified the photovoltaic power plant as an
impervious surface, while the other two LC maps failed (Figure 6c). (3) Three map types
were consistent, but none of them correctly represented the actual ground LC type. In
Figure 6d, for example, the LC types from three maps were all cropland, but the Google
Earth image in 2020 showed that it was grassland. However, there are time gaps between
the Google Earth images and LC maps and the possibility of converting grassland into
farmland or farmland into grassland was ruled out due to the impossibility of completing
the conversion in a very short time (the longest time may be three years from 2017 to 2020).
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3.5. Accuracy Measures Based on Error Matrix

The three confusion matrices corresponding to the LC maps were calculated using
the validation dataset. The values of OA, UA, and PA are provided in Table 5. The table
concludes that the overall accuracy of the FCS map was the highest, with a value of 87.07%.
This was followed by Globe, with an OA of 85.69%. The overall accuracy of the FROM
product was the lowest at 83.49%.

Table 5. Accuracy measures were derived from confusion matrices of three LC maps.

Products FROM FCS Globe
Classes PA UA PA UA PA UA

Cropland 74.07% 86.68% 89.74% 87.45% 88.62% 78.64%
Forest 92.05% 91.14% 91.25% 92.47% 79.72% 87.36%

Grassland 70.78% 87.43% 79.94% 93.82% 83.12% 84.63%
Shrubland 64.00% 91.43% 84.00% 66.22% 64.00% 62.75%
Wetland 55.77% 80.56% 80.77% 85.71% 94.23% 73.13%

Water 98.11% 80% 96.23% 94.64% 90.57% 87.27%
Built-up 64.62% 56.76% 83.08% 90.00% 86.15% 70.89%

Bare land 96.89% 80.25% 91.99% 97.66% 89.32% 89.91%
Permanent Snow/Ice 72.41% 77.78% 91.38% 94.83% 65.52% 70.37%

OA 83.49% 87.07% 85.69%
Kappa 0.757 0.824 0.793

The classification accuracies for the cropland, forest, grassland, water, and bare land
types were high in all three maps. For water and bare land in particular, the UA and PA for
these LC types were in the range of 80–98.11%. The three products had low accuracy mea-
sures values for shrubland, wetland, and built-up, indicating that severe misclassification
and confusion of these three LC types occurred. The classification errors for shrub land
were mainly because of confusion with grassland, forest, and wetland.
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FCS had a high UA of 91.43% and a relatively low producer’s accuracy of 64% for
wetland, demonstrating that some areas of wetland were missed by FCS. In addition,
the classification accuracies of wetland and permanent snow/ice varied greatly. Using
permanent snow/ice for example, the accuracies ranged from 62.75 to 91.43%. The accuracy
of the FROM products was not ideal, mainly because of the misclassification of bare
land as grassland because of the difficulty in accurately distinguishing between bare land
and grassland.

In summary, the accuracy measures demonstrated that the FCS map had the highest
OA value of 87.07%, followed by Globe and FROM in sequence. Regarding the level of LC
type, bare land, and water had high accuracies, with PA and UA values above 80%. It is
worth noting that the PA and UA for shrub land, wetland, and built-up were low, indicating
that the commission error and omission error of these LC types were serious. These low
accuracy types should be given more attention in future to improve the classification
accuracy for LC producers. For LC users, it is vital to understand the merits and demerits of
the LC products, especially the limitation existing in the LC products and the performance
of specific LC type of interest.

4. Discussion

An accuracy assessment is essential for thematic classification from remote sensing
imagery [41]. In this paper, we compared three 30 m resolution LC maps, FROM, FCS, and
Globe circa 2020, in Northwest China. First, the spatial consistencies between these three
maps were conducted using area- and pixel-based comparisons. The results showed that
65.96% of the pixels on the three maps had identical classification labels. Regarding the LC
types, the bare land, cropland, forest, and water were consistent in space. Secondly, the
accuracy measures, including OA, PA, and UA, were obtained from error matrices using a
validation dataset. The FCS product had the highest overall accuracy within the territory
of northwestern China (87.07%), followed by Globe (85.69%) and FROM (84.39%). For the
future accuracy assessment and global LC mapping, it is recommended that more attention
is paid to the experiences and lessons from previous studies. Several aspects that deserve
further research in the future are discussed below.

4.1. The Limitations in Accuracy Assessment

Although the evaluation was performed as accurately as possible, there are still some
limitations. (1) There exist discrepancies among the classification schemes. Despite the fact
that a harmonization of the classification schemes was conducted at the beginning of the
consistency analysis and accuracy assessment, some of the apparent confusion may be a
function of failures in the classification system. For example, the tundra in the classification
schemes of FROM and Globe were merged into shrubland in the grouped classification
scheme used for consistency and accuracy analysis. (2) Changes occurred between the
date of the remotely sensed imagery acquiring and the date of the reference data collection.
LC change can have a profound effect on accuracy assessment results. Crop harvesting,
natural disasters, and urban construction can cause the LCs to change in the period between
capturing the remotely sensed data and collecting the reference data [28]. (3) Mistakes in
labeling reference data should be minimized, since mistakes cannot be completely avoided.
Thus, much attention should be paid on the collection of reference data.

4.2. Patterns of Misclassification Errors

The overall accuracy of Globe data in Globe was 85.72% [18] and that of FCS30 was
82.5% [19]. In Northwest China, the overall accuracy of Globe and FCS were 85.69% and
87.07, respectively, slightly higher than that in Globe. The patterns of misclassification errors
for LC maps in the arid region of China circa 2020 are summarized below. (1) The vegetation
types are difficult to distinguish due to the similarity of their spectral characteristics. The
confusions between grassland, shrubland, and cropland by their surrounding vegetation
are common. (2) Small fragment, such as scattered rural settlements and small patches of
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forest, stand a good chance of being omitted and identified as dominant classes in their
surroundings. Therefore, (3) another related problem arises, when some dominant classes
are overestimated because of commission errors, such as a village included in cropland
or grassland, low coverage grassland, and shrub land in bare land. (4) The season of the
image acquisition for mapping affects the classification accuracy. Classification confusion
caused by time differences are observed, such as bare land being confused for permanent
snow/ice and cropland in the non-growing season being identified as bare land. (5) The
misclassification often occurs in areas with high spatial heterogeneity [45]. The probability
of misclassification in the transition zone of plant distribution or the area around the
building is much higher than that in the other homogeneous areas.

4.3. The Influence of Typical LC Products’ Accuracy on Studies in the Arid Region

In the context of global climate change and increasing human activities, the arid
region faces serious ecological problems, including land desertification, soil salinization,
groundwater decline, natural vegetation degeneration, and permanent snow/ice melting
in high elevations [35,46]. Therefore, the LC types of vegetation, imperious surface, water,
wetland, bare land, and permanent snow/ice in this region are critical reference data for
sustainable development in the arid region.

Although cropland covers less than 5% of the total area, it feeds the people in this
region. Detailed and precise information about the cropland distribution is fundamental
for agricultural planning and food security evaluation. Continuous population growth [35]
and changes in dietary structure [47] have resulted in an increase in the demand for
cropland. As a result, large volumes of water are used for agriculture, while the shortage of
ecological water downstream leads to serious ecological problems. The performance of LC
maps are important for policymakers to develop long-term plans to achieve sustainable
development [5]. The accuracies of these three maps are sufficient to provide auxiliary data
for related studies on cropland in the arid regions. The UA values of FROM, FCS, and
Globe were 86.68%, 87.45%, and 78.64%, respectively.

Water resources are essential for the survival of the ecosystem and also human society
in the arid regions [48]. Therefore, the change in the water area is of substantial significance
for the tradeoff between the utilization of water resources and ecological conservation. It
was found in this study that the FROM, FCS, and Globe maps had an excellent perfor-
mance in depicting water bodies. The UA of the three maps were 80%, 94.6%, and 87.2%,
respectively.

Vegetation ensures the stability of an ecosystem and protects residents from deserti-
fication [49,50]. The vegetation in arid regions regulates the local microclimate in these
regions [51]. The vegetation change had significant effects on the surface temperature,
surface energy flux, precipitation [46], and even on the intensity of the oasis effect [37,46].
Thus, accurately delineating the vegetation boundary and its changes in arid regions is
of great significance for multidisciplinary applications. In this assessment, the accuracies
for four types of vegetation of the FROM, FCS, and Globe maps were low and varied,
especially for grassland, shrubland, and wetland. The UA values of vegetation classes are
not high; the lowest value for wetland is only 55.7%. Ambiguity exists between vegetation
classes on the margins of classes. The most significant confusion in error matrices persists
between forest with shrubland, shrubland with grassland, and forest with grassland. The
accuracy of the vegetation types should be improved to provide reliable data for the studies
on climate change, microclimate, oasis development, and surface hydrological variables in
arid regions.

In general, users with different application objectives have different requirements
for the LC maps [27]. In addition to the overall accuracy assessment of the maps, the
thematic accuracy assessment for specific applications is significant for users to facilitate
the choice of the most suitable maps. This requires future map producing and map accuracy
evaluation, not only to provide overall accuracy, but also to provide thematic accuracy of
important categories.
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4.4. Reasons for the Inconsistency between the Different Products

The inconsistency between FROM, FCS, and Globe was due to differences in their train-
ing samples, classification systems, remote sensed datasets, and classification algorithms.
Difference in classification systems is one of the main factors introducing inconsistency
between different LC maps. Such substantial differences that exist between the classifi-
cation criteria for the same land cover type is the most important issue in global maps
production [27]. For instance, there are 10 LC types in FROM and Globe and nine in
FCS, not to mention the differences in the definition of land cover types. The different
remote sensing datasets and classification algorithms used also affect the consistency be-
tween different products. Specifically, the FROM was classified from 9000 scenes f Landsat
imagery based on random forest algorithms [16]. The Globe was constructed using the
“pixel-object-knowledge” classification strategy together with human experience based
on Landsat images and HJ-1A/B images. [17]. The FCS was classified on Landsat multi-
spectral images, sentinel SAR data, and global thematic auxiliary datasets through local
random forest method [19].

5. Conclusions

Fine-resolution land cover (LC) products are critical for studies of national food
security, urban planning and design, global environmental change, earth’s energy balance,
and the geochemical cycle as a fundamental geospatial data product. The performance and
accuracy of LC products are necessary for users when choosing appropriate LC products
for a specific application. A spatial consistency analysis and accuracy assessment based
on error matrices were performed for three 30 m resolution global LC maps that cover
Northwest China circa 2020.

Regarding the area of nine LC types, bare land covered 51.74% area of this region,
which constituted the primary geographical landscape, followed by grassland accounting
for 28.88%, cropland accounting for 8.28%, and forest accounting for 6.02%. The area
occupied by other LC types was less than 2% and the smallest wetland accounted for
only 0.33%.

The consistency analysis showed that the OS among three LC maps was 65.96%,
which meant that 65.96% of the pixels on three maps had identical classification labels.
The OS between any two of the three LC maps was more than 75%. Regarding the LC
types, the bare land, cropland, forest, and water were consistent in space, their CS values
exceeding 60%. In summary, the consistent areas accounted for 65.96% of the total study
area. The basically consistent areas accounted for 30.58% of the total area. The inconsistent
regions scattered on the edges of different LC types and accounted for 3.45% of the total
area. The accuracy measures demonstrated that the FCS product had the highest overall
accuracy within the territory of northwestern China (87.07%), followed by Globe (85.69%)
and FROM (84.39%).
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