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Abstract: Optimal RWIS network can be defined as an RWIS configuration where the total number
of stations (RWIS density) are determined based on a well-established guideline and the locations
are allocated systematically assuming that it will provide the maximum monitoring coverage of the
network. This paper examines and quantifies the benefit of an optimized RWIS network and how
these benefits impact traffic safety. The methodological framework presented herein builds upon our
previous efforts in RWIS location-allocation, where the kriging variance is used as a performance
indicator for monitoring coverage. In this study, the network coverage index (NCI) parameter is
proposed to gauge RWIS network performance and quantitatively evaluate its impact on traffic
safety. The findings of this study reveal a strong dependency between the NCI and the RWIS network
configuration. In terms of traffic safety, the relationship between NCI and safety effectiveness can be
expressed as a polynomial function, where the two are proportional to one another. In the state of
Iowa, an RWIS network with 80% monitoring coverage (NCI = 0.8) can reduce additional 40 collisions
per site annually compared to a network without RWIS stations. Based on the findings obtained in
this study, road agencies and RWIS planners can now be assisted with conceptualizing the capabilities
of an optimized RWIS network, which will help them increase monitoring coverage, and in the
process, gain a quantitative understanding on its potential impact on traffic safety.

Keywords: Road Weather Information System (RWIS); impact assessment; optimal RWIS network;
safety evaluation; ordinary kriging; error variance

1. Introduction and Background

According to a recent study by the Federal Highway Administration (FHWA), adverse
weather condition causes about 21% of all road collisions every year in the U.S. [1]. Statistics
shows that, over 1.5 million road accidents, 0.8 million injuries, and 7000 fatalities occur
annually in the U.S. due to adverse weather [2]. In its northern neighbor—Canada, every
year, about 3000 deaths result from weather-related road crashes, and over 1 in 135 people
experience driving-related injuries [3]. According to the Ontario Road Safety Annual
Reports, poor road surface condition leads to 17 percent increase in vehicle crashes over
the last 16 years [4]. As a result, winter-related road incidents have become a significant
concern for many jurisdictions. Among many strategies that exist to meet this objective,
one approach is to provide better road conditions through more efficient maintenance
operations. This method would require maintenance personnel to thoroughly understand
both weather and road conditions on their road network, which can be done through one
of the most critical pieces of highway intelligent transportation systems (ITS) infrastructure
called Road Weather Information Systems (RWIS).

RWIS consist of a group of sensors that monitors road weather and surface conditions
along the road network. Information regarding the road weather and surface condition
are collected, processed and disseminated by the collaboration of advanced sensors. The
collected information is used by road maintenance authorities to make timely operative
decisions aimed at improving traffic safety and mobility before, during, and after inclement
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weather events. Additionally, RWIS provides travelers with better information via RWIS-
connected dynamic message signs to help them make more informed travel decisions,
which can reduce weather-related crashes and injuries [5,6]. Despite their usefulness and
numerous benefits, a few limitations associated with RWIS stations have been identified
thereby hindering their distribution. The most significant limitation is the installation
cost. Depending on the type and number of sensors equipped, the cost could be as high as
$100,000 U.S. dollars per station [7,8]. Considering the limited budget for RWIS deployment
and the random nature of road weather fluctuations, RWIS stations must be implemented
strategically to ensure optimal monitoring coverage under varying circumstances to ensure
both mobility and safety.

Due to the importance of RWIS infrastructure, numerous studies have been conducted
to establish a siting guideline for RWIS installation. An extensive research was conducted
by the U.S. Federal Highway Administration (FHWA) in 2005, where they analyzed existing
information and conducted interviews with several state Department of Transportations
(DOTs). According to this study, based on the knowledge and experience of field operators,
30 to 50 km (20 to 30 miles) of spacing is recommended between RWIS stations [8]. As the
recommended guidelines were based on experts’ opinion and prior experiences, several
researches were conducted to identify a more systematic way to quantify the spatial
coverage of RWIS data and optimal placement of RWIS stations [2,9–13].

In a GIS-based study conducted by Kwon and Fu (2013), a framework for RWIS net-
work location evaluation was presented, where the variability of the surface temperature
(VST), mean surface temperature (MST), and snow water equivalent (SWE) were considered
alongside topographical location attributes. The output of this study revealed the feasibil-
ity of developing a systematic process for RWIS installation using an integrated location
criterion by capturing multiple variables [14]. Similarly, in a more recent study conducted
by Kwon et al. (2017), RWIS network location optimization was performed through an
innovative geostatistical analysis technique—kriging. Optimization was formulated as
a Nonlinear Integer Programming (NIP) problem to maximize the monitoring capability
while minimizing the spatially averaged kriging variance of hazardous road surface condi-
tions. The RWIS data used in this study were taken from the state of Minnesota, U.S., to
evaluate the effectiveness of the current RWIS location setting and make recommendations
for future network expansion. Although the method developed contributed to delineating
RWIS locations, it only dealt with a spatial domain without considering inherent temporal
variations of road weather parameters, making their location solutions less conclusive [15].
Hence, Kwon and Fu (2017) further extended their previous work to investigate the de-
pendency of optimal RWIS spacing of a region on the spatiotemporal variability of road
weather conditions and corresponding topographical characteristics of the region. A group
of case studies were conducted by the authors using data from three U.S. states (Iowa, Utah,
and Minnesota) and one Canadian province (Ontario) [16]. Although the output of this
research entails that the number of RWIS stations required for a region would depend on
the topographic settings, they did not provide a systematic method for regions with limited
or no RWIS information.

Considering the resurgent need to build a systematic and generalized RWIS network
planning guideline, our previous efforts have developed a comprehensive and transferable
methodological framework to optimize the design of a regional RWIS network by incorpo-
rating the use of multiple RWIS variables for improved spatiotemporal inference [17–19].
Two crucial network planning questions were answered through that research: (i) how
many RWIS stations are needed in a region with varying environments to provide sufficient
coverage over space and time? And (ii) where should these stations be located to provide
adequate monitoring coverage of a given region? In other words, the optimal density and
location of RWIS stations were determined to provide the maximum monitoring coverage
for a region. During the problem formulation, it was assumed that the optimal RWIS
network provides the maximum coverage of the region under investigation. Geostatistical
approaches were implemented to determine the optimum number of RWIS stations across
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several topographic and weather zones covering 14 U.S. States. In the subsequent step, a
methodological framework was developed to determine the optimal RWIS locations by
considering the spatiotemporal characteristics of critical RWIS variables.

Although the generalized guideline developed in our previous studies provides a solid
foundation for RWIS network planning, no prior efforts have been made to examine and
quantify the benefits of an optimally situated RWIS network. While developing the optimal
RWIS location solution, it was implicitly assumed that each solution set is associated with a
unique spatial configuration tied to an objective function value or sum of kriging variance
that represents RWIS’ monitoring capability. The solution set associated with the lowest
objective function value (lowest kriging variance) would be considered the solution with
the highest network coverage and thus assumed to be most beneficial [19]. Based on this
presumption that network coverage is a vital parameter for determining the goodness of
an RWIS configuration, there is a resurgent need to extend this effort by investigating if it
could also be used to explain its impact on traffic safety—a worthwhile attempt that has
never been made in existing literature pertaining to quantifying the safety benefits of RWIS
location solutions.

Therefore, the primary objectives of this study are: (a) to investigate the relationship
between a newly created measure called network coverage index (NCI) and network
configuration of RWIS, and (b) quantitatively assess the impact of NCI on the transportation
system based on collision reduction potential. The findings of this research will provide
a clearer understanding of the benefit of an optimal RWIS solution and its impact on the
transportation system.

The remainder of the paper is organized as follows. The next section presents the
methodological approach used to meet the research objective, followed by a description
of the study area and data used. Next, the results obtained are analyzed in detail with
discussion. This is succeeded by the Section 5, which highlights the key findings and
provides recommendations for future research.

2. Methodology
2.1. Overview of Research Procedures

The first phase of this study was the database development by aggregating and
integrating various data sets into GIS. Two datasets were developed, one to determine the
NCI (a more detailed description is to follow) and another to evaluate safety.

After extracting the RWIS station data, a quality check was performed using the fol-
lowing steps: data completeness test, reasonable range test, and a neighborhood value
comparison. Following this, detrending was performed with respect to time using Gener-
alized additive model (GAM) [20,21], followed by geostatistical analysis. Spatiotemporal
analysis was performed by constructing empirical semivariograms from the processed
data, which optimizes parameter estimations for unsampled locations and captures the
possible autocorrelation associated with the RWIS variables. Joint semivariogram models
were then developed by combining spatial and temporal semivariograms to evaluate the
spatiotemporal variability of RWIS measurements [19]. Based on parameters obtained from
the joint semivariogram, kriging interpolation was used to estimate values at unsampled
locations and their estimation error or kriging variance. Kriging variance was then utilized
to determine the NCI for respective RWIS networks. The procedure was repeated for each
set of RWIS configurations to investigate its impact on the NCI.

In terms of safety evaluation, 12 years (2008 to 2019) of inclement winter weather
collision data were extracted, among which collisions due to poor road surface conditions
were isolated for safety evaluation. Additionally, only major network roads, i.e., Interstate,
State, and U.S. highways were considered due to maintenance departments prioritizing
major roads for treatment. RWIS stations included in the safety evaluation were selected
based on three review criteria: (a) data review to ensure that sufficient before and after
period collision data were available, (b) geometry review to ensure that no major design nor
construction activities occurred near the RWIS stations, and (c) operation review to ensure
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that minimal operation gaps were present in the data. The processed data were employed
to calibrate the safety performance functions (SPFs) and yearly calibration functions (YCFs).
Next, Empirical Bayes (E.B.) analysis was applied to determine the collision reduction
associated with each of the selected RWIS stations [22].

Upon processing the data, the impact of NCI on collision reduction was assessed in
order to evaluate the goodness of the RWIS location solutions. Research procedures for this
study are summarized in Figure 1.
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2.2. Determination of Network Coverage Index (NCI)

The network coverage index (NCI) was used to rate the monitoring capabilities of
a defined RWIS configuration for a specific region. It is a surrogate measure that ranges
between 0 and 1, where 0 represents no monitoring coverage, and 1 represents complete
network coverage.

Determining NCI requires the use of kriging, which is a widely used geostatistical
technique that provides the best linear unbiased estimate (BLUE) for variables that vary
over space [23]. The weighted average of the observed data was used in kriging to predict
values at unsampled locations, where the weights were determined based on the separation
distance between the sampled points and unsampled locations. Kriging provides estimates
at unknown locations along with estimation errors by quantifying the spatial variability
over the area of interest [24]. Ordinary Kriging (OK) is a form of kriging that assumes the
mean to be unknown but constant over each local neighborhood [24,25]. OK estimation
variance for an estimation location, x0 can be defined by the following equation:

σ2
OK(x0) = g′G−1g (1)

where, G is the semivariance matrix between the observations and g is the semivariance matrix
between observations and unsampled points. The equations of G and g are given below:
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G =



γ(x1, x1) γ(x2, x1) . . . γ(xk, x1) 1

γ(x1, x2) γ(x2, x2) . . . γ(xk, x2) 1

. . .

γ(x1, xk) γ(x2, xk) . . . γ(xk, xk) 1

1 1 . . . 1 0


and g = [γ(x0, x1) γ(x0, x2) . . . γ(x0, xk) 1]′ (2)

Here, xi (i = 1, 2, . . . , k) is the sampling site of a sample subset of size k, where
k = number of RWIS stations. γ

(
xi, xj

)
is the semivariance between sampling site i and j.

Semivariance values were calculated by constructing empirical semivariograms from
RWIS measurements. A semivariogram depicts the spatial autocorrelation between mea-
sured data points. It is a statistic that determines the similarity between two measurements
as a function of separation distance [26]. Semivariance values are calculated by taking
the average squared differences between two measured data points in a spatial domain
separated by a defined lag distance. The general equation of semivariance estimation is
presented in Equation (3).

γ(h) =
1

2n(h)

n(h)

∑
i=1

[z(xi + h)− z(xi)]
2 (3)

Here, γ(h) is the estimated semivariance; z(xi + h) and z(xi) are two measurements
taken at location xi and (xi + h) separated by a lag distance h.

Since RWIS measurements (i.e., road weather variables) vary over both space and
time, spatiotemporal semivariogram models are employed in this study. Both spatial
and temporal autocorrelation associated with the RWIS variables are well captured in
spatiotemporal modeling that optimizes parameter estimations for unknown locations.
A set of variables, z in a spatiotemporal field can be defined as a combination of spatial
domain (S) and temporal domain (T): z = {z(s, t)|s ε S, t ε T}. The general equation of a
random field Z can be defined as: zi = Z(s, t), i = 1, 2, 3, . . . .. n× T. Here, n = number
of sampled locations and T = number of points in time. The most common formula for
spatiotemporal semivariance estimation is shown in Equation (4).

γ(hs, ht) =
1

2n(hs, ht)

n(hs ,ht)

∑
k=1

[z(sk, tk)− z(sk + hs, tk + ht)]
2 (4)

Here, γ(hs, ht) is the estimated semivariance, n(hs, ht) is the total number of pairs
in the random field, z(sk, tk) is the observation at location sk and temporal point tk,
z(sk + hs, tk + ht) is another observation at location (sk + hs) and temporal point (tk + ht).
The observations pairs are separated by a user-defined spatial lag (hs) and temporal lag
(ht) [18,27–29]. Spatial and temporal semivariograms can be combined using spatiotem-
poral anisotropy to estimate the joint semivariogram that can preserve both spatial and
temporal effect. The joint semivariogram models developed in our previous effort are
adopted in this study for conducting kriging interpolation [19].

Based on the formulation shown in Equation (1), we can drive NCI using estimation
error (kriging variance) under the assumption that a higher estimation error represents an
increased need for an RWIS station. Since the optimization is aimed at finding locations
that minimize total estimation error, this would mean the optimal RWIS network provides
the best monitoring coverage because it has the lowest estimation error. Therefore, the
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kriging variance is inversely proportional to NCI, and the estimation error can be translated
into NCI using the following equation.

NCI =
K

Kriging variance
(5)

Here, K = Proportional factor. The value of K is sensitive to the regional attributes and
can be established by determining the kriging variance at optimal conditions.

2.3. Safety Evaluation of RWIS Network

The collision reduction factor or the percent reduction in collisions was estimated
in our previous efforts using the state-of-the-art before-and-after Empirical Bayes (E.B.)
method [22]. E.B. accounts for the Regression-to-the-Mean (RTM) artifact by incorpo-
rating two separate pieces of information; (i) the collision history of the treatment sites
and (ii) their predicted collision frequencies obtained from the Safety Performance Func-
tion (SPF)s. The ratio of the observed and expected number of collisions in the post-
implementation period is the collision reduction factor of the countermeasure. Generally,
two clues are used in EB method. The first one is the collisions that have already occurred
at the treatment site and the second one is a set of reference sites that are similar to the
treatment sites, so that it can represent the scenario as to what would have happened at
the treatment site if the treatment not been implemented. Here, the treatment sites can be
described as the sites that are within the influence region of RWIS station and the reference
sites are those that are outside the influence of any RWIS station. Data from reference sites
are used for local calibration of SPF and YCF. The overall process was divided into three
steps. First, the expected collision frequency in the before period was estimated using the
following equations.

NExpected,B = w× NPredicted,B + (1− w)× NObserved,B (6)

w =
1

(1 + k× NPredicted,B)
(7)

where, NExpected,B is the expected collision frequency in the before-period, w is the weighted
adjustment factor between 0 to 1, NPredicted,B is the predicted collision frequency is the
before-period, NObserved,B is the observed collision frequency in the before-period, and k is
the negative binomial overdispersion parameter estimated from SPF. A weighted sum of
two separate pieces of information was used in this step. The predicted collisions for each
site in the before-period were calculated using the calibrated SPF equation. In contrast, the
observed collision frequencies come directly from the collected dataset. The equation of
SPF adopted for safety evaluation is shown below:

µ = e(β0)L(β1) ·V(β2) (8)

Using this equation, the collision frequency in the before-period (µ) can be predicted
using road length (L) and traffic volume (V). Here, β0, β1 and β2 are the regression parame-
ters. The calibrated SPFs were developed in our previous study for several RWIS stations
in Iowa [22]. Additionally, there are various confounding factors, such as improvements in
the roadway, general traffic safety trends, and changes in weather conditions that cannot be
captured by the SPFs. Therefore, Yearly Calibration Factors (YCFs) were also incorporated
into the safety evaluation process. YCF can be defined as the ratio between the sum of
observed collision frequencies and the sum of predicted collisions for the reference sites.

In the second step, the expected collision frequencies in the after period, NExpected,A
was calculated. The calibrated SPF equations were used to estimate an adjustment factor,
Adj, that captures the traffic volume variations during the before and after periods.

NExpected,A = NExpected,B × Adj (9)
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The last step involves estimating the effectiveness of the countermeasure. The safety
effectiveness or percent collision reduction due to countermeasure implementation was
estimated using the following equation. Note that an odds ratio was used to account for
potential bias.

Percent Collision Reduction = 100× (1−Odds Ratio) (10)

2.4. Impact Assessment of RWIS Network on Traffic Safety

After quantitatively measuring the impact of RWIS stations on traffic safety, the benefit
associated with an RWIS configuration can be evaluated by assessing NCI. By utilizing the
safety evaluation output, the collision reduction for each RWIS station can be calculated.
The values of NCI for a set of RWIS network configurations were then plotted against the
number of collision reduction for corresponding RWIS setup. Here, collision reduction was
used as a performance indicator of safety benefits. Higher number of collision reduction is
expected to be associated with an RWIS network of lower kriging variance, thus higher
NCI value.

3. Study Area and Data
3.1. Study Area

Iowa—the selected study area—is a flatland region consisting of rolling plains and
flat prairies, with altitudes ranging from 146 m to 509 m above sea level. This state was
categorized as a moderate-severe weather region [17] where the adverse winter negatively
impacts the transportation system. In regions like this, RWIS information plays a critical
role, where the information it provides increases the responsiveness of winter road mainte-
nance activity. The RWIS network of this state consists of 86 stations. Figure 2 represents
the distribution of RWIS stations along with the major road networks in Iowa.
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3.2. Data Description and Integration

The RWIS data used in this study was downloaded from Iowa State University’s web-
site (http://mesonet.agron.iastate.edu/RWIS/ (accessed on 30 November 2017)). Variables
that were recorded includes air and surface temperature, dew point temperature, visibility,
wind speed, road surface conditions, etc., collected at 15 to 20-min intervals. Winter season
data (October 2016 to March 2017) was processed based on the quality check procedures
discussed in the Section 2. Among these various RWIS measurements, road surface tem-
perature (RST) was considered to be the most critical as it has a significant influence on
the formation of ice and road surface friction, both of which are crucial factors for winter
road maintenance (WRM) operations [30]. Post-processing was done using the R statistical
package—version 3.2.5 [31,32] for the semivariogram analysis. Here, spatial and temporal
semivariograms were constructed by considering space and time attributes separately. The
output variograms (spatial and temporal) were then combined into a joint semivariogram
using spatiotemporal anisotropy parameters (StAni), allowing us to preserve both spatial
and temporal features. StAni represents the number of space units equivalent to one time
unit. In this study, joint semivariograms for a mid-winter month were utilized for kriging
variance determination. The continuity ranges of autocorrelation are presented in Figure 3.
The spatial range of the variable of interest (RST) was found to be around 20 km for the
month of January, while the temporal range was as approximately 21.5 h. The resultant
joint semivariogram range was found to be 17 km in this case, which is lower than the
spatial range. This finding makes intuitive sense since both spatial and temporal attributes
are preserved in the joint semivariogram. The readers are referred to our previous work for
a detailed investigation on joint semivariogram analysis for multiple weather variables [19].
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Figure 3. Spatial, temporal, and joint semivariogram parameters of RST for January 2017.

The parameters of the joint semivariogram were used in this study to evaluate the
impact of RWIS configurations on NCI. The state of Iowa was used as the experimental
boundary for determining the kriging variance. In addition, the major road network of
this state was used as a constraint as to where the kriging estimation will be conducted;
meaning that the observed RWIS measurements were used to estimate the unsampled
location that lies on the major road network of Iowa. State boundary and major road
network shapefiles were integrated within ArcGIS [33] to create a 5 km × 5 km grid surface
of unsampled locations for what the kriging estimations were generated for. Afterwards,
the variance was translated into NCI for the impact assessment of the RWIS network. The
following section discusses the findings of the analysis.

http://mesonet.agron.iastate.edu/RWIS/
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4. Results and Discussion

This study focuses on quantifying the benefit of optimal RWIS network by evaluating
the collision reduction potential of various RWIS configurations. In our previous study, the
methodological framework for determining the optimal RWIS network was based on the
concept that every location solution or RWIS configuration is associated with an objective
function value (kriging variance). The optimal location solution has the lowest objective
function value, and it is assumed to provide the maximum network monitoring coverage.
In this study, the RWIS network coverage index (NCI) was determined for a set of RWIS
configurations to establish a link (if it exits) between NCI and safety benefits. Kriging
estimation error was used here to determine the NCI, while percent collision reduction
was used as a performance indicator to quantify its benefit. The findings of this study are
described below:

4.1. Dependency of NCI on RWIS Configuration

The relationship between kriging variance and NCI can be derived from the concept
that NCI is inversely related to kriging variance. Hence, a proportional factor should be
introduced to construct the relationship as defined previously in Equation (5).

It was assumed that an optimal RWIS density provides full network coverage of Iowa
with an NCI value of 1. According to one of our previous studies, the optimal number
of RWIS stations for Iowa is 61 [18]. Hence, at best, ‘K’ in Equation (5) is equal to the
kriging variance associated with this optimal number, and the maximum number of RWIS
stations is capped at 61 because kriging variance cannot, or at least theoretically, go below
optimal. Kriging variance is calculated using the joint semivariogram model developed
in our previous study through a series of geostatistical analyses, where both spatial and
temporal aspects were preserved [19]. Here the estimation variance was determined for
an increasing number of RWIS stations. As the number of RWIS stations increases, the
monitoring capability is expected to improve. This phenomenon is represented in Figure 4
by the decrease in kriging variance as the number of stations increases.
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Figure 4. Plot of kriging variance for different number of RWIS stations.

From Figure 4, the value of kriging variance associated with the optimal scenario is
10.36—the number at which the greatest rate of change on kriging variance happens to
occur. At this point, the full monitoring coverage can be achieved with an NCI value of 1.
Thus, the proportional factor, K = 10.36 is used to update the equation as follow.

NCI =
10.36

Kriging Variance
(11)
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NCI values for different RWIS configurations can be achieved using Equation (11),
which changes Figure 4 to Figure 5. According to Figure 5, the monitoring coverage
increases as the number of RWIS stations increases. In contrast, the marginal benefit gained
with each additional RWIS decreases. The combination of these two effects results in the
graph being concave shaped.
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NCI and kriging variance for different RWIS configurations is presented in Figure 6 to
demonstrate how monitoring coverage changes with an increase in the number of stations.
An example of this is the difference between scenarios one and six. Only 30% (NCI = 0.3) of
optimal coverage could be provided as a result of having only five stations. By contrast,
due to the increase in the number of stations in scenario six, the coverage level increased to
70%. Furthermore, the scenario with 5 RWIS stations generated an estimation error of 34.29,
while a much smaller value (14.35) is obtained from the 30 stations scenario. It is clear from
the above discussion that the NCI strongly depends on the density of the RWIS network.
Thus, NCI is used in the subsequent section as a performance indicator to determine traffic
safety benefits.

4.2. Impact Assessment of Iowa’s RWIS Network

Our recent study examined the safety benefits of RWIS stations in Iowa using before-
and-after Empirical Bayes (E.B.) method [22]. This method requires collision data before
and after the implementation of the countermeasure. The study period was isolated
to 2008–2019 and according to the operation information of the RWIS stations of Iowa,
30 stations were implemented within the study period. The selected 30 stations were
filtered using a review criterion including data review, geometry review and operation
review as discussed previously. This study considered 2 years of only winter months, (i.e.,
November to March) of before implementation and after implementation periods in the
analysis. Thus, stations that did not meet this requirement for inadequate data sizes or
shorter operational period, were removed from the analysis. Secondly, geometric changes
near RWIS stations during the before and after period were reviewed to identify major
construction activities within the study period. Stations near major geometric changes were
removed from analysis as variations in road geometry can lead to unexpected changes in
collision behaviour. Lastly, operational issues associated with stations were identified by
assessing the frequency of data collection. Stations having issues with data collection was
considered to have negligible effect on WRM because of lack of information provided and
removed from the analysis. At the end of the review, 11 out of 30 stations were eliminated
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from analysis. Of the remaining stations, 7 stations along with associated service area and
treatment sites were selected and are presented in Figure 7.
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Effect of a countermeasure (RWIS station) can be assessed by observing the change in
collision frequency for a number of sites that are under the influence of that RWIS station.
Here, a 30 km radius around an RWIS station was assumed as the influence region and
accessible roads within this distance from the facility were considered its service area. For a
number of cases where multiple stations were implemented close to each other, the service
area under one station will overlap the service area of another station. Such stations were
also removed from the analysis to avoid selecting sites that could be under the influence
of another station. At this stage, 12 RWIS stations were eliminated from the analysis
because the influence regions for these stations were partially or completely overlapped
with another station. Hence, 7 stations were selected for the safety evaluation that has a
significant influence region with a reasonable number of sites.

After selection of the treatment sites, a group of reference sites were required for
the local calibration of SPF. Here, a set of desired reference sites were extracted along
with the site-specific information including road type and traffic volume. The site-specific
information was cross-checked with treatment sites and a group of reference sites was
selected that can represent all 7 treatment sites. The dataset from the reference sites were
then used for model calibration of SPF and YCF, which is a critical part of EB analysis. The
calibrated SPF equation is presented below:

µ = e(−10.4861)L(0.8246) ·V(0.2291) (12)
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The collision frequency predicted by SPF need to be adjusted using YCF to obtain
more accurate prediction. Using the calibrated SPF, YCFs for the study period (2008 to
2019) were determined. The values of YCF from 2008 to 2019 are: 1.865, 1.189, 1.490, 1.009,
0.795, 0.884, 1.089, 0.779, 0.913, 0.537, 0.669 and 0.976.

After the calibration of SPF and YCF, safety effectiveness of RWIS station was evalu-
ated. According to the analysis result, the collision reduction potential for an RWIS station
varies from 31.53% to 88.23%, with an average reduction of 65% in winter weather colli-
sions [22]. The number of collision reductions varies from 4.73 to 27.61, with an average
collision reduction value of 15. Since the total number of stations in each site ranges from 4
to 22, we can divide the number of collisions reduced by the number of stations to quantify
the safety benefit of an individual station—an average value of 1.06. Table 1 depicts the
collision reduction potential at different sites.

Table 1. Average Collision Reduction Calculation Based on Safety Evaluation of Selected RWIS Stations.

Station ID Collision
Reduction (%)

Number of Collision
Reduction Total Sites Collision

Reduction Per Site

RCCI4 59.49 5.4 7 0.7714

RCLI4 83.11 8.81 12 0.7342

RETI4 31.53 21.22 22 0.9645

RSOI4 83.8 4.73 4 1.1825

RAGI4 88.23 14.03 12 1.1692

RAII4 46.87 27.61 19 1.4532

RMYI4 63.35 22.93 20 1.1465

Average = 65.20 14.96 - 1.0602

By utilizing the average traffic safety benefit associated with RWIS stations, the col-
lision reduction potential for each of the RWIS configuration is determined and plotted
against the associated kriging variance as presented in Figure 8. According to Figure 8, error
variance, which is an indicator of monitoring capability has strong effect on traffic safety.
The dependency of collision reduction potential on kriging variance can be expressed with
a power function as it is associated with the highest R-square value while fitting with a
trendline. The relationship is presented in Equation (13). The output of this finding presents
strong evidence that optimal RWIS locations, which is associated with minimized kriging
variance, is able to provide superior transportation system (traffic safety) benefit.

Collision Reduction Potential =
7777.6

Kriging Variance2.059 (13)
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In the last step, the dependency of safety effectiveness of RWIS network on NCI was
determined by plotting it against the associated collision reduction potential (Figure 9).
The findings revealed that NCI is highly correlated with collision reduction. An RWIS
configuration with a higher NCI value was proven to be more effective for transportation
safety than an RWIS network with a lower NCI value. For example, an RWIS network with
80% network monitoring coverage provides 40 collision reduction per site per year.
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The dependency of collision reduction potential on NCI can be expressed as a polyno-
mial function in Equation (14) with a R-square value of 0.99. Here, polynomial function
was used to fit trendline as it is associated with the highest R-square value.

Collision Reduction Potential = 71.36 × NCI2 − 7.95 × NCI + 0.73 (14)

It is evident from the above findings that an RWIS location solution with lower
estimation error (higher NCI) will provide a significantly safer transportation network than
another solution with higher estimation error (lower NCI). This result in turn justifies the
previously developed location allocation strategy [19], where optimal RWIS location was
selected based on lowest estimation error. It is clearly apparent that the optimal location
solution is more beneficial in terms of safety effectiveness.

5. Conclusions and Recommendation

RWIS play a critical role in improving transportation safety, mobility, and winter road
maintenance operations. Acknowledging their significant operational and environmental
benefits, many North American transportation agencies have invested millions of dollars
in deploying RWIS stations to strengthen the monitoring coverage of winter road surface
conditions. To maximize the benefits of such systems, RWIS stations should be located
systematically at a specific number of selected locations, which is referred as the optimal
RWIS network. Our previous research provided a solid foundation for planning an optimal
RWIS network. However, the goodness of the RWIS locations has never been examined,
particularly the effect RWIS location solutions have on transportation safety. The key
findings of this study are:

• The Network coverage index (NCI), a measure of monitoring capability, is intensely
tied to the RWIS network configuration. A direct relationship between NCI and kriging
variance has also been established in this study.
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• Collision reduction potential of an RWIS network has been found to be proportional
to and highly correlated with NCI. An RWIS configuration having higher NCI has a
higher potential to reduce traffic collision, thus maximizing the safety effectiveness.

• The findings documented in this study concluded that the optimal RWIS locations,
that are associated with lowest kriging variance (highest NCI) maximizes the overall
benefit on transportation system.

Recommendations for future study are given below:

• Study area of this research includes only the state of Iowa, which is a flatland area.
Hence the benefit of optimal RWIS network should also be determined for other
regions including hilly and mountainous regions for a complete and conclusive output.

• In addition to the traffic safety benefit, transportation mobility and winter road mainte-
nance (WRM) benefits also need to be evaluated. One potential approach to determine
mobility benefit could be based on AADT (Annual Average Daily Traffic) for a prede-
fined coverage area before and after the installation of RWIS station. While the WRM
benefit can be determined based on the maintenance cost for before and after-period
of RWIS deployment.
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