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Abstract: On-road vehicle emissions play a crucial role in affecting air quality and human exposure,
particularly in megacities. In the absence of comprehensive traffic monitoring networks with the
general lack of intelligent transportation systems (ITSs) and big-data-driven, high-performance-
computing (HPC) platforms, it remains challenging to constrain on-road vehicle emissions and
capture their hotspots. Here, we established an intelligent modelling and visualization system driven
by ITS traffic data for real-world, on-road vehicle emissions. Based on the HPC platform (named “City
Brain”) and an agile Web Geographic Information System (WebGISs), this system can map real-time
(hourly), hyperfine (10~1000 m) vehicle emissions (e.g., PM2.5, NOx, CO, and HC) and associated
traffic states (e.g., vehicle-specific categories and traffic fluxes) over the Xiaoshan District in Hangzhou.
Our results show sharp variations in on-road vehicle emissions on small scales, which even fluctuated
up to 31.2 times within adjacent road links. Frequent and widespread emission hotspots were also
exposed. Over custom spatiotemporal scopes, we virtually investigated and visualized the impacts of
traffic control policies on the traffic states and on-road vehicle emissions. Such results have important
implications for how traffic control policies should be optimized. Integrating this system with
chemical transport models and air quality measurements would bridge the technical gap between air
pollutant emissions, concentrations, and human exposure.

Keywords: big-data intelligent system; on-road vehicle emissions; traffic monitoring; hyperfine
modelling; real-time visualization

1. Introduction

With the simultaneous growth of urban scales and vehicle ownerships, on-road ve-
hicles have the potential to overtake industrial and residential sectors as the dominant
emission source in megacities [1–4]. For instance, urban on-road vehicles account for more
than 30% of NOx emissions globally and contribute up to 25% of PM2.5 concentrations in
China [5–7]. Therefore, the reliable assessment of on-road vehicle emissions is central to air
pollution control and human exposure evaluation, which is conducive to the sustainable
development of the social environment [8,9]. The vehicle emission inventory can be a
valuable tool, as it can well reflect the close link between environmental impact and traffic
flow [10]. However, estimating traffic emissions is a very complex process that requires
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large amounts of data on emissions-producing activities (e.g., vehicle travelled distance,
vehicle type, and operating conditions) and a deep understanding of emission rates [11,12].
With the continuous improvement of the spatiotemporal resolution of road vehicle emis-
sions assessments by current urban pollution control policies, it is essential to accurately
quantify real-world road vehicle emissions due to changes in actual traffic characteristics.
Therefore, the reliability of activity data and emission factors is a crucial element in the
quantification of road vehicle emissions and the quality of emissions inventories. Previous
studies have shown that vehicle emissions under actual driving conditions are affected by
a variety of factors, including vehicle characteristics (such as vehicle type, age, emission
control devices, and operating conditions), urban road types and conditions, fuel type, and
environmental conditions (e.g., temperatures and humidity) and traffic conditions [13,14].
Therefore, real-world, on-road vehicle emissions remain largely uncertain in traditional
bottom-up emission inventories. The main concern is that road traffic states (e.g., traffic
fluxes, road conditions, and vehicle type) can change drastically over a short distance
(1~10 km) for a short time (hourly). The traditional inventory of on-road vehicle emis-
sions is established based on historical data on a macro scale. The key concern is that
routine frameworks generally rely on spatially coarse proxies (e.g., 1 × 1~25 × 25 km2) and
temporally static retrospectives (e.g., a historical year or month) [15–17], focusing on the
characteristics or average levels of vehicle emissions, and thus the variations of spatiotem-
poral vehicle emissions are seldom considered. In addition, due to the limited resolution of
vehicle emission calculations [18], they cannot capture on-road vehicle emission hotspots
and drivers.

To date, various monitoring systems that can record real-world traffic situations have
made significant progress [19–22]. These techniques mainly involve floating cars (e.g.,
OBD-instrumented diesel trucks and GPS-equipped probe taxis), navigation maps (e.g.,
Google Map), and on-road video surveillance, each of which has distinct advantages and
disadvantages [23–27]. For instance, an individual GPS-instrumented floating car accurately
records its speeds and trajectories along with its static information (e.g., its vehicle category).
Their fleets enable us to extrapolate surrounding traffic states. Nevertheless, in contrast to
real-world fleets, they remain scarce and thus incapable of revealing hyperfine gradients
(10 m~1 km) of on-road vehicle emissions [28–30]. Better yet, open-access maps (such as the
Google and Baidu Maps) can provide more representative spatiotemporal maps of on-road
vehicle emissions. Technically, they treat trajectories of mobile phones as spatiotemporal
surrogates of traffic fluxes and, on this basis, establish hierarchical traffic congestion indexes.
Despite this, vehicle-specific information remains unavailable, including vehicle-specific
speeds and categories. In order to address this issue, a recent study [31] developed a
full-sample enumeration approach (with 19 billion trajectories) via the BeiDou Navigation
System to construct a big-data-driven vehicle emission inventory, which, however, was
only suitable for trucks. Each technology has distinct advantages and disadvantages, and
no source alone can achieve the high-resolution demand for quantifying road vehicle
emissions. The solution is to use a more comprehensive road traffic system to obtain
sufficient real-time traffic data to support hyperfine-resolution emission inventory and the
development of a real-time road vehicle emission system.

Real-world traffic monitoring (e.g., on-road video surveillance and radio frequency
identifications) can offer a valuable opportunity to recognize instantaneous and heteroge-
neous vehicle-specific states [32–35]. Through the mutual complementation of different
data sources, the specific traffic status information of the vehicle can be obtained in real-
time. Nevertheless, the output data come from independent facilities with distinct formats;
thus, multi-source data is incompatible mutually. Subsequently, they are incompatible with
the existing model frameworks of the on-road vehicle emissions (e.g., the fleet-specific
MOVES) [36–38]. More importantly, the resulting database is projected to be of big data,
thus leading to huge computational burdens [31,39–41]. For instance, the Data Through-
put in a single hour might frequently exceed 200 MB and fluctuate violently. It should
be noted that those facilities freshly achieved full coverage only in a few developed re-
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gions due to vast expenses [42]. Collectively, the unique path towards real-world on-road,
vehicle-specific emissions is given by all-around traffic monitoring coupled with a big-
data-driven ITS and HPC platform [38,43,44]. This systematic framework requires various
intelligent techniques (e.g., image recognition) to interconnect and transfer those big and
incompatible data. It is a unique opportunity to construct a hyperfine-resolution, on-road
vehicle emission model. Besides, real-time data analyses would further maximize the bene-
fit. Web Geographic Information Systems (WebGISs) [45] provide the efficient handling,
visualization, and manipulation of geographic and geospatial information.

As a leading developed region in China, the Xiaoshan District in Hangzhou is facing
serious air pollution, especially with surface O3 continually exceeding the air quality
standard in the summertime; it is mainly caused by the emission of mobile sources [46].
Moreover, the Xiaoshan District has also become a pioneer of digital government reform. A
key achievement is that traffic monitoring has seemingly become ubiquitous since 2017.
More than this, a breaking-through development is a big-data-driven, intelligent HPC
system (named “City Brain”) [47], full of ripe artificial intelligence algorithms. Initially, it
was designed for tackling the digital reform of government affairs. Here, it is applied to
store, fuse, and transfer comprehensive traffic monitoring data, even with incompatible
accesses (due to distinct formats and multiple sources). In this study, we used it to build
a bottom-up road vehicle emission calculation model to calculate single-vehicle-specific
emissions over each fine-scale (10 m–1 km) road link. The objectives of this study are: (1) to
conduct application research of high-temporal and spatial resolution and a visualization
for urban road vehicle emissions based on comprehensive traffic data and a bottom-up
road vehicle emission calculation model; (2) to visualize significant real-time variations
in hyperfine on-road vehicle emissions and analyse the corresponding drivers (such as
traffic fluxes and vehicle-specific speed) with an agile WebGIS system; and (3) to efficiently
validate the benefits of traffic control strategies. Note that such strategies could be precisely
designed for specific road segments and vehicle types via our hyperfine system. Therefore,
this big-data-driven intelligent modelling and visualization system can serve as an effective
and efficient tool for urban on-road vehicle emission management.

2. Materials and Methods
2.1. System Framework

This work aimed to develop and implement a big-data-driven intelligent modelling
and visualization system for real-world, on-road vehicle emissions. As illustrated in
Figure 1, we built up this system based on a classic Browser/Server (B/S) architecture [48]
with four tiers, i.e., the perceptive, data, server, and presentation layers. The last three
layers were erected on the “City Brain”. The first layer consisted of comprehensive traffic
monitoring, which was the foundation of the whole system. After that, the data layer
mainly relied on the MySQL database [49] supported by the Relational Database Service
(RDS) [50] on-board the “City Brain”. Due to its high performance (e.g., large volume
and high flexibility), it took responsibility for the storage and transmission of the big
spatiotemporal data, including both the input and output data from other layers. On this
basis, the server layer implemented an ITS that could interconnect and operate diverse
traffic data from incompatible sources. A hyperfine model for on-road vehicle emissions
served as the core of this system. This layer also received the user requests to invoke the
information in the data layer, accessed the WebGIS application in the presentation layer, and
performed corresponding feedbacks. The WebGIS engine can assemble the comprehensive
spatiotemporal data analysis when the server receives user requests. In addition, the Elastic
Compute Service (ECS) [51] onboard the “City Brain” accounted for basic operations, such
as spatiotemporal data analyses, data sharing, and permission settings.
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lying on this HPC framework, we could virtually investigate and visualize the conse-
quences of traffic control strategies over the custom spatiotemporal scopes. 

  

Figure 1. The framework of the big-data-driven intelligent modelling and visualization system
for real-world, on-road vehicle emissions. This system based is on a classic Browser/Server (B/S)
architecture with four tiers, i.e., the perceptive layer, data layer, server layer, and presentation layer.
The last three layers were erected on the “City Brain”.

Between the server and presentation layers, the Ajax (Asynchronous JavaScript and
XML) technology made asynchronous HTTP requests without reloading client applica-
tions [52]. Moreover, cascading style sheets (CSS) technologies were applied to improve user
experiences, such as optimizing the interface layout and increasing the response speed [53].
Considering the big data feature of this system, we applied an agile WebGL-powered frame-
work (AntV L7) [54] for large-scale geospatial data visualization and rendering. Hence,
the presentation interface can display GIS applications through the B/S architecture and
share spatial information resources, thus breaking the limitations of traditional operational
methods.

Consequently, this system can map real-time or historical vehicle-specific emissions
(i.e., PM2.5, NOx, HC, and CO) and associated traffic states (i.e., traffic fluxes, vehicle-
specific images, categories, and speed) from the perspective of spatial (e.g., road links) and
temporal (e.g., hourly) dimensions. On this basis, they can be zoomed in and visualized via
button selection. Furthermore, the spatiotemporal analysis, such as the top five roads (e.g.,
in terms of on-road vehicle emissions), was also highlighted. More importantly, relying
on this HPC framework, we could virtually investigate and visualize the consequences of
traffic control strategies over the custom spatiotemporal scopes.



Sustainability 2022, 14, 5434 5 of 22

2.2. Real-World Data Collection

The Xiaoshan District is situated in Hangzhou, Zhejiang Province, China (Figure 2).
From its GDP (i.e., CNY 200 billion) perspective, it ranked fifth among districts in Hangzhou
in 2019. Within its limited geographical extent (i.e., 1417.8 km2), there was roughly
1953.7 km of road networks. In this context, the Xiaoshan District emerged as a vital
urban transportation hub in Zhejiang Province. This indicates that air quality in urban
microenvironment is significantly affected by fine-scale, on-road vehicle emissions.
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Figure 2. All-around traffic monitoring network. (a) The location of the Xiaoshan District in China.
(b) Spatial distributions of traffic monitoring sites (dot). Correspondingly, all road links are divided
into three types, including residential streets, arterial roads, and highways. (c) Each site includes
radar velocimeters and surveillance cameras. Map data © 2021, AntV L7.

It should be highlighted that all-around traffic monitoring allowed us to collect vehicle-
specific data (Figure 2). Specifically, video surveillance and radar velocimeters measure
vehicle-specific images and speed, respectively. First, in theory, traffic fluxes and vehicle-
specific categories significantly affect the on-road vehicle emission [26,31]. In particular,
traffic congestion and high-duty vehicles generally result in emission hotspots. To this end,
all-around traffic video surveillances were applied to enable vehicle-specific identifications.
From 1 January to 31 December 2021, we established an extensive database of more than
2400 million records. Vehicle-specific categories, licence plates, and fluxes could be identi-
fied via intelligent techniques (e.g., image recognition). We defined six vehicle categories,
including HDTs (heavy-duty trucks), MDTs (middle-duty trucks), LDTs (light-duty trucks),
HDVs (heavy-duty vehicles), MDVs (middle-duty vehicles), and LDVs (light-duty vehicles).
It should be noted that these monitoring data were obtained from distinct video facilities,
and thus were mutually incompatible. They were further required to be fused spatially and
temporally. Detailed information is described in Section 2.3.

Another key driver is vehicle-specific speed, which is of great significance for arrang-
ing on-road vehicle emission factors [26]. Along with traffic video surveillance, radar
velocimeters were utilized to measure vehicle-specific speed concurrently. All these data
were updated in a timely manner (i.e., hourly) and stored in the historical database. More-
over, the vehicle-specific emission factors and road information were relatively static
without being updated in real-time. The former was obtained from the vehicle I/M (vehicle
Inspect/Maintenance) dataset in the Xiaoshan district [55]. The latter came from the Gaode
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Map, divided into 1393 road segments (Figure 2). The spatial resolutions were inconsistent
(i.e., 10~1000 m) across road segments, adaptive to the gaps between sets of traffic monitor-
ing. On this basis, all these road links were grouped into three types: residential streets,
arterial roads, and highways. Collectively, we achieved a hyperfine map of comprehensive
traffic states over the Xiaoshan District, involving vehicle-specific images, speeds, and
categories, traffic fluxes, and road segments.

2.3. Real-Time Data Fusion

Comprehensive traffic states, including vehicle-specific categories, speeds, emission
factors, and road segments, should be interconnected spatiotemporally (Figure 3). Generally,
the standardized data quality controls were completed on respective devices in advance.
Yet, vehicle-specific records came from various devices, the links between which should
be identified. First, on-road video surveillance offered vehicle-specific images, including
vehicle-specific license plates, categories, and fluxes. The I/M dataset would be responsible
for double-checking the identification of the vehicle-specific categories according to the
license plates. Subsequently, such vehicles would fall into two classes: non-registered
vehicles and registered ones. Their emission factors were calculated based on the I/M
dataset. Yet, the emission factors of the latter were speed-dependent and vehicle-category-
specific, while those of the former were averaged based on vehicle-specific categories
(Figure S1). Second, both radar velocimeters and video surveillances were in motion
concurrently. We can thus apply time recorders to synchronize the monitoring for fluxes,
license plates, vehicle-specific categories, and speed. Third, the static road information
was independent of the real-time traffic states. Road links can serve as reliable bridges
between them and interconnect vehicle-specific and road-specific information spatially
and temporally. The resulting extensive database can be transferred into the subsequent
bottom-up emission model and Web GIS interface. The total Data Throughput exceeds
300,000 records and 200 MB per hour.

Sustainability 2022, 14, x FOR PEER REVIEW 6 of 22 
 

without being updated in real-time. The former was obtained from the vehicle I/M (vehi-
cle Inspect/Maintenance) dataset in the Xiaoshan district [55]. The latter came from the 
Gaode Map, divided into 1393 road segments (Figure 2). The spatial resolutions were in-
consistent (i.e., 10~1000 m) across road segments, adaptive to the gaps between sets of 
traffic monitoring. On this basis, all these road links were grouped into three types: resi-
dential streets, arterial roads, and highways. Collectively, we achieved a hyperfine map 
of comprehensive traffic states over the Xiaoshan District, involving vehicle-specific im-
ages, speeds, and categories, traffic fluxes, and road segments. 

2.3. Real-Time Data Fusion 
Comprehensive traffic states, including vehicle-specific categories, speeds, emission 

factors, and road segments, should be interconnected spatiotemporally (Figure 3). Gener-
ally, the standardized data quality controls were completed on respective devices in ad-
vance. Yet, vehicle-specific records came from various devices, the links between which 
should be identified. First, on-road video surveillance offered vehicle-specific images, in-
cluding vehicle-specific license plates, categories, and fluxes. The I/M dataset would be 
responsible for double-checking the identification of the vehicle-specific categories ac-
cording to the license plates. Subsequently, such vehicles would fall into two classes: non-
registered vehicles and registered ones. Their emission factors were calculated based on 
the I/M dataset. Yet, the emission factors of the latter were speed-dependent and vehicle-
category-specific, while those of the former were averaged based on vehicle-specific cate-
gories (Figure S1). Second, both radar velocimeters and video surveillances were in mo-
tion concurrently. We can thus apply time recorders to synchronize the monitoring for 
fluxes, license plates, vehicle-specific categories, and speed. Third, the static road infor-
mation was independent of the real-time traffic states. Road links can serve as reliable 
bridges between them and interconnect vehicle-specific and road-specific information 
spatially and temporally. The resulting extensive database can be transferred into the sub-
sequent bottom-up emission model and Web GIS interface. The total Data Throughput 
exceeds 300,000 records and 200 MB per hour. 

 
Figure 3. Data fusion. Vehicle-specific records come from diverse devices, the links between which 
are highlighted. Figure 3. Data fusion. Vehicle-specific records come from diverse devices, the links between which
are highlighted.



Sustainability 2022, 14, 5434 7 of 22

2.4. Model Framework for On-Road Vehicle Emissions

We applied a hyperfine model framework to estimate real-world, on-road vehicle
emissions (i.e., primary PM2.5, carbon monoxide (CO), hydrocarbon (HC), and nitrogen
oxides (NOx)). Compared to most of the current bottom-up on-road vehicle emission
model frameworks, our design was sufficiently elaborate in terms of vehicles, road, space,
and time. Figure 1 presents a theoretical flow diagram of the hyperfine on-road vehicle
emission model. Overall, the results relied on an ensemble estimate of vehicle-specific
speeds, categories, fluxes, emission factors, and road segments [10,25,26]

EFc,j,l = ∑
t

EFc,j(v)× TFc,h,l (1)

Eh,j,l = EFc,j,l × Ll (2)

where h and l represent the temporal (i.e., hour) and spatial (i.e., road segment) dimensions,
respectively. For a given spatiotemporal dimension, EFc,j,l denotes the emission intensity
of the pollutant j (g km−1 h−1).

Relying on the real-time HPC platform, our outcomes can map significant variations in
the on-road vehicle emissions. On this basis, a real-time diagnosis algorithm was generated
by comparing the emissions of all road links and vehicles and tracking their spatiotemporal
evolution. Consequently, the road links and vehicle categories with high emissions were
screened out and identified as key elements. More importantly, with the aid of the vehicle-
road links, we can illustrate the contributions of different vehicle categories to different
road links. This especially offered precise targets for on-road vehicle emission control
strategies.

2.5. “Distance–Decay” Relationship of Hotspot Region

In theory, a comprehensive traffic profile is the basis for estimating hotspot emissions.
To analyse the determinants of emission hotspot patterns, we applied an emission–distance
relationship E(d) that might be faithfully replicated by the three-parameter unconstrained
exponential model as follows:

E(d) = α + β exp(−3d/k) (3)

where there are four parameters in this equation: the background emission (α); the length
to the hotspot (d, m); the slope boosted by the hotspot emissions (β); and the convergence
coefficient (k), which governs the spatial scale over the emission relaxed to background
emission (α). In principle, the sum (α + β) would converge to 1.0, which suggests that the
sums of the background emissions and associated increments would reflect the emission
levels of the hotspots. We modelled the decay of on-road vehicle emissions, traffic fluxes,
and vehicle categories from indicative hotspots outwards on annual weekdays and single
hours of weekdays. Among them, annual data were used to prove the rationality of the
model. Because annual and single-hour data types are homologous, we used single-hour
data fitting to analyse the distance decay characteristics of real-time hotspots emission. The
magnitudes of α and β reflected the amplitude of decay from hotspots at the hourly scale.

2.6. Traffic Control Strategies

Over the Xiaoshan district, routine traffic control policies were implemented to mit-
igate air pollution. A representative measure was on-road vehicle license restrictions,
routinely operated during two typical periods, i.e., from 7:00 to 9:00 and from 16:30 to
18:30 on weekdays, so-called the morning and evening rush hours. In theory, such kinds of
policies would substantially alter on-road vehicle emissions by affecting traffic states (e.g.,
traffic fluxes and vehicle-specific speed). Yet, the influences were still elusive.

Here we integrated the hyperfine map of on-road vehicle emissions with an agile
WebGIS engine. On this basis, we can picture the impacts of traffic control measures on
on-road vehicle emission reductions. We designed four traffic control scenarios with a major
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focus on traffic fluxes and fleet composition. The main concern was to investigate how to
implement traffic control policies spatially and temporally (Table 1). Note that we virtually
implemented those policies during a morning rush hour (8:00, Local time) to maximize
their influences. First, the weekday scenario (S1) forbade particular vehicles according to
the tail numbers of license plates. This scenario focused only on the residential and arterial
roads and the morning and evening rush hours. Table 1 summarizes the detailed rules.
Second, on the basis of the S1 scenario, the even–odd scenario (S2) applied the even–odd
rule and thus halved traffic fluxes. This scenario was obviously more stringent than the
weekday scenario (S1). Third, both non-registered and registered trucks were forbidden
over the highways (S3). Fourth, we combined the S2 and S3 scenarios to achieve the strictest
control on all vehicles (S4). Such a scenario was actually implemented over the Xiaoshan
district during the G20 summit in 2016 [56–58].

Table 1. Traffic control policies.

Scenario Strategy Vehicle Category Spatiotemporal Scale

S1

Vehicles with particular tail
numbers of license plates are

forbidden. Specifically, the
prohibited tail numbers were 1
and 9 on Monday, 2 and 8 on

Tuesday, 3 and 7 on Wednesday,
4 and 6 on Thursday, and 5 and

0 on Friday.

All

Over residential and arterial
roads during morning and
evening rush hours from

Monday to Friday

S2
Vehicles with even and odd tail

numbers of license plates are
alternately prohibited.

All

Over residential and arterial
roads during morning and
evening rush hours from

Monday to Friday

S3 HDVs and HDTs are forbidden HDVs and HDTs Over highways all day long

S4 All vehicles follow the
even–odd rule. All Over all roads all day long

3. System Application
3.1. Map of Traffic Characteristics and Hotspots

This system, mainly supported by comprehensive traffic monitoring, ITS, WebGIS, and
the bottom-up emission model, provided an unprecedented hyperfine map of urban traffic
states in a timely manner (i.e., hourly), including vehicle-specific speed, categories, and
traffic fluxes (Figures 4 and 5 and Supplementary File). For instance, regarding the traffic
fluxes, the colours of the links evolved from green to red, indicating a gradual increase in
traffic fluxes from less than 30/h to more than 100/h. For instance, on 28 December 2021,
we found that spatial distributions of traffic states were extraordinarily heterogeneous.
First, as expected, the vast majority of traffic fluxes were centred on residential and arterial
roads (Figure 4b). Figure 4c presents corresponding hyperfine-resolution variations in
a representative 1 km2 zone. Therein, the hourly traffic flows fluctuated significantly
(>25.8 times). Such large fluctuations remained even within individual streets, with an
average of more than eight times. An expected finding was the frequent and widespread
presence of acute geographical “traffic hotspots” across the traffic monitoring dataset. We
treated individual road links or a cluster with traffic flows exceeding the district’s average
level as hotspots. Through the imaging analysis coupled with all-round video surveillance,
Figure 5 presents plausible drivers for some indicative hotspots. We found that traffic
congestion played a key role in shaping such hotspots, which, however, were caused by a
variety of factors, including high traffic volumes on key arterial or residential roads or road
constructions. Further information on the technique for identifying hotspots is given in
Supplementary Information.
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district and (c) three indicative urban zones. The rest subgraphs are similar, but (d,e) and (f,g) are 

Figure 4. A hyperfine map of traffic fluxes via all-around traffic monitoring on 28 December 2021.
(a) The whole map is first pictured. (b) Hourly (12:00, Local Time) traffic fluxes over the Xiaoshan
district and (c) three indicative urban zones. The rest subgraphs are similar, but (d,e) and (f,g) are
for the morning (8:00) rush hour and the hourly traffic fluxes of HDVs and HDTs, respectively. Red
circles refer to traffic hotspots in Airport Road, Shixin North Road, Jiansheer Road, and Xiaohang
Road. Map data © 2021, AntV L7.
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Figure 5. Imagery analyses for illustrative traffic hotspots. The hotspot locations are presented in
Figure 3. The common drivers of traffic hotspots are (a,b) heavy traffic fluxes, (c) road constructions,
(d,e) morning and afternoon traffic rushes, and (f) heavy traffic fluxes of LDVs and MDVs.

Second, it is worth noting that, on weekdays, the daily averages of traffic fluxes were
comparable to those on weekends (Figure S2). Despite this, there was a noticeable difference
in hourly variation patterns between weekdays and weekends. It was clear that the morning
and evening rush hours had a significant impact on the diurnal traffic fluxes on weekdays, with
two maxima at 08:00 and 17:00. Our findings show that, during these periods when the traffic
congestion was further exacerbated (Figure 5), the widespread hotspots were geographically
stable but quantitatively more conspicuous (Figures 4d,e and S3). By comparison, on weekends,
there was a smaller range of traffic fluctuations, and the morning peak arrived two hours
later (Figure S2). Specifically, the traffic flux peaks on weekends were roughly 80% of
those on weekdays, while their hotspots were also variable, indicating more random
trips (Figure S3). Therefore, the hyperfine-resolution patterns of traffic hotspots were
significantly heterogeneous, and it was necessary to track them in real-time over the entire
district.

Third, the spatial and temporal connections between traffic fluxes and speeds were
shown to be substantial. Figure S2 presents that vehicle-specific speeds fluctuated dramatically
throughout the day as a result of the varying traffic fluxes. As expected, vehicle-specific speeds
were at the lowest level during the peak periods of traffic fluxes. Moreover, those peaks and
valleys simultaneously shifted from weekdays to weekends. Spatially, traffic flux hotspots
may have determined speed hotspots (Figure S4). Vehicle categories, on the other hand, were
unaffected by traffic fluxes. After the morning rush hour, their diurnal changes were stable in
regardless of the kind of roads (Figures 4 and S2). Yet the HDVs and HDTs reached their peaks
in the early morning hours (i.e., from 1:00 to 5:00). Additionally, the spatial distributions of
vehicle categories were especially noteworthy (Figures 4f,g and S5). LDVs, MDVs, LDTs,
and MDTs mainly occupied the residential streets and arterial roads, while other kinds
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of vehicles (i.e., HDTs and HDVs) frequently appeared over the highways. We found the
spatial distributions of HDVs and HDTs, the hotspots of which scattered extensively. A
unique driver can be related to their large traffic fluxes, which were confirmed via video
surveillance. Therefore, the fleet composition can also affect on-road vehicle emission
distributions substantially, especially on small scales.

3.2. Real-Time, On-Road Vehicle Emissions

This system produced a real-time map of on-road vehicle emissions, in which widespread
emission hotspots were also identified (Figures 6 and S6). Such patterns were distinct
from previous maps that can only capture the emissions in downtown areas, which were
noticeably higher than those in suburbs. This was mostly related to the spatial distributions
of vehicle categories and traffic states (Figures 5 and S4). In particular, high traffic fluxes
and low speeds downtown typically led to substantial on-road vehicle emissions hotspots
(Figures S14 and S15). It is worth noting that towards the edge of the district, such a
phenomenon was not consistent. In contrast, on-road vehicle emissions in residential
streets considerably outstripped (>474.2%) those on the neighbouring roads. The spatial
patterns of various vehicle categories might explain this discrepancy (Figures 4 and S5).
For example, emissions from HDTs and HDVs on a residential street (i.e., the Ningdong
Road) contributed 86.2%, far higher than those (8.4%) in its neighbouring arterial roads
(the Shixin North–Jianshe Fourth Roads).
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first pictured. (b) Hourly (12:00, Local time) on-road vehicle NOx emissions over the whole district 
and (c) three indicative urban zones. The rest subgraphs are similar, but (d,e), (f,g), and (h,i) are for 
the morning (8:00) rush hour, the emissions of HDTs and HDVs on local time (12:00), and the 

Figure 6. Real-time, on-road vehicle emissions on 28 December 2021. (a) The whole system map is
first pictured. (b) Hourly (12:00, Local time) on-road vehicle NOx emissions over the whole district
and (c) three indicative urban zones. The rest subgraphs are similar, but (d,e), (f,g), and (h,i) are
for the morning (8:00) rush hour, the emissions of HDTs and HDVs on local time (12:00), and the
morning (8:00) rush hours of HDTs and HDVs, respectively. “Road Emission Ranking” displays the
five highest road links of specific pollutants in road emissions, and “On-road Vehicle Emission Data”
is the specific emission information of each road link. Map data © 2021, AntV L7.
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Relying on the classified roads, Table 2 summarizes the hourly emissions of primary
PM2.5, NOx, CO, and HC. The top five roads (i.e., Chenhui Road–East of Chaohui Primary
School, Tonghui North Road–Hongda Road north, Airport City Avenue–Liqun River bridge
west, Airport City Avenue–Minhe Road East, and Tonghui North–Hongda Road east) were
also highlighted. We noted that emissions in highways, residential streets, and arterial
roads increased in sequence. The primary reason for this sequence was the distinction
between vehicle categories on different kinds of roads (Table S1). Taking the hourly NOx
emissions (by Equation (1)) as an example, we found that they are 168.2 g/km, 102.2 g/km,
and 126.7 g/km on highways, residential streets, and arterial roads, respectively. It should
be noted that highways were of 3.7% of total traffic flows, while contributing 5.6% of total
emissions.

Table 2. The summary of on-road vehicle emissions on 28 December 2021.

Road Type Road
Length

Vehicle
Category

Emission (g)/Emission Intensity (g/km)

CO HC NOx PM2.5

Highways 11.1 km
HDVs and

HDTs 113.5/10.2 83.3/7.5 1300.2/116.8 61.1/5.5

Total 2381.1/213.9 247.4/22.2 1872.2/168.2 77.0/6.9

Arterial
roads 63.5 km

HDVs and
HDTs 348.7/5.5 257.6/4.1 3988.2/62.8 187.3/3.0

Total 16,398.9/258.4 1419.1/22.4 8039.3/126.7 299.9/4.7

Residential
streets 232.0 km

HDVs and
HDTs 1308.0/5.6 978.5/4.2 14,891.9/64.2 698.5/3.0

Total 36,085.2/155.5 3501.2/15.1 23,703.0/102.2 944.4/4.1

Figure S7 shows that it was roughly consistent throughout the day when it came to
on-road vehicle emission patterns of primary PM2.5, NOx, HC, and CO.

From the temporal perspective, it was roughly consistent throughout the day when
it came to on-road vehicle emission patterns of CO, HC, NOx, and PM2.5 (Figure S7).
Specifically, there was roughly 76.8% of daily NOx emissions during the daytime. In
addition to this, the NOx emissions fluctuated during the daytime, but were typically stable
throughout the various roads. There were, however, noticeable variations in the emissions
between weekdays and weekends. As expected, the morning and evening rush hours on
weekdays would also lead to peaks of on-road vehicle emissions. On the weekends, though,
such trends were difficult to discern.

3.3. Map of Emission Hotpots and Drivers

Figure 6 depicts the hotspots of on-road vehicle emissions on major road intersections.
Where two major arterial highways (North Shixin and Jiansheer Roads) intersect, the
maximum of hourly average emissions appeared (Figure 4). From the spatial perspective,
these emission hotspots varied significantly across various roads. For instance, hotspots in
two arterial roads (i.e., the Hongda and Tonghui North Roads) emitted almost the same
amount of pollutants as those in two residential streets (i.e., Jinji and Mingxing Roads),
respectively (i.e., arterial roads vs. residential streets: 448.6 g/km vs. 251.1 g/km for
CO; 41.3 g/km vs. 23.5 g/km for HC; 276.3 g/km vs. 161.3 g/km for NOx; and 10.6
vs. 6.2 g/km for PM2.5). However, residential streets had much lower hotspot emissions
than highways and arterial roads. Specifically, hotspot emissions from the arterial roads
(highways) outstripped those from residential roads by 1.8 (1.5) times for CO, 1.8 (2.1) times
for HC, 1.7 (3.0) times for NOx, and 1.7 (3.2) times for primary PM2.5.

Besides, we paid particular attention to highways, in which emission hotspots were
widespread and sometimes intensive (Figure 6). For instance, our emission estimates
for a highway (i.e., the Airport Road) were consistently higher (1.4~2 times) than those
for its neighbouring residential streets (i.e., the Yangfan Road) (Figure S8). The diurnal
emission hotspots, on the other hand, were steady, geographically (Figure S9). In contrast,
their emission magnitude fluctuated diurnally and between weekdays and weekends
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(Figure S10). As expected, the higher emission intensities generally occurred at 08:00
and 17:00.

Generally, such hotspots spanned between 100 and 200 m over the urban zones with
varying emissions. Figure 7 shows that the annual hourly average emissions typically
followed “distance–decay” relationships outward from the hotspot centres. The results
reflected the hourly emission ratios (normalized at the hourly emissions of the hotspots)
from hotspots outwards based on the distance (d). In addition, the ratios of the average
traffic fluxes and vehicle category proportions were calculated in the same way. Overall,
such relationships were the most sensitive for NOx and PM2.5. The annual data reflect
that the locations of the hotspot areas were relatively fixed in the year. As shown in
Figures 3, 5 and 6, we found that the traffic fluxes largely shaped the spatial emission
hotspot patterns over the arterial and residential roads. Additionally, the specific vehicle
category proportions (i.e., HDVs and HDTs) also played an important role.
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Moreover, Figure 8 shows the decay patterns of the hourly emissions over urban
zones on 28 December 2021. The results reflected a similar pattern to the average data,
but we found that there existed variations in some pollutant decay patterns, indicating
that road emission hotspots were not fixed consistently, and there existed spatial offsets in
the short term. Meanwhile, according to the boxplot analysis of road traffic and pollutant
emission data for selected hotspots in the Xiaoshan District in 2021 (Figures S12 and S13),
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the highway hotspot data are most consistent with the pattern. This is because there is only
one highway in the Xiaoshan District, and its traffic activities have a high stability. Arterial
roads and residential roads may be affected by various factors and are more sensitive to
the disturbance of hotspots, but in general, they also show the corresponding pattern.
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The traffic flows and emissions on highways were likewise relevant to the “distance–
decay” functions, although the vehicle-specific categories kept stable therein (Figure 7).
This demonstrates that traffic flows were crucial in shaping the spatial patterns of emission
hotspots along the highways. Collectively, not only traffic fluxes but also specific particular
vehicle categories (i.e., HDTs and HDVs) played a key role in boosting emission hotspots.

3.4. Impacts of Traffic Control Scenarios

As expected, each scenario significantly altered the traffic states spatiotemporally. The
first two scenarios aimed to reduce the traffic flows, while the last two ones took into
account not only traffic flows but also vehicle categories (Table 1). As a result of Table 3, the
first scenario (S1) had no discernible impact on the traffic fluxes, only reducing the traffic
fluxes by 3.3%. The second scenario (S2) achieved more reductions of traffic flows (8.3%).
In the third scenario (S3), the fleet composition was thoroughly altered. The last scenario
(S4) realized the largest reductions of the traffic flows (53.3%).
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Table 3. Impacts of traffic control policies in custom spatiotemporal scopes.

Scenario Traffic Fluxes
Reduction

On-Road Vehicle Emissions Reduction

CO NO HC PM2.5

S1 3.3% 3.4% 2.7% 3.1% 2.3%
S2 8.3% 8.5% 6.8% 7.7% 5.6%
S3 3.7% 4.8% 69.4% 33.7% 79.3%
S4 53.3% 53.3% 54.1% 53.6% 54.3%

As a result of Figure 9 and Figure S11, the S1 scenario, the hourly (8:00) emission levels
dropped by the modest portions (2.3% for primary PM2.5, 2.7% for NOx, 3.1% for HC, and
3.4% for CO). By comparison, more decreases were achieved over the urban zones (i.e.,
the residential streets and arterial roads) (5.6% for primary PM2.5, 6.8% for NOx, 7.7% for
HC, and 8.5% for CO) in the S2 scenario. In parallel, the S3 scenario reduced a significant
portion (4.8~79.3%) of on-road vehicle emissions over the highways. As a consequence, the
S4 scenario realized the largest emission reductions (i.e., 54.3% for primary PM2.5, 54.1%
for NOx, 53.6% for HC, and 53.3% for CO). On this basis, as shown in the Figure 9 (S4), the
emission hotspots mostly disappeared. It should be noted that, if such scenarios came true,
additional traffic states, such as vehicle-specific speeds, would also be altered. Hence, we
need to conduct more realistic studies in order to better simulate the feedback associated
with traffic conditions.
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The traffic control policies were applied during a morning rush hour (8:00, Local time) to maximize
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4. Conclusions

This paper described a system that establishes and visualizes real-time, hyper-fine,
real-world, on-road vehicle emission distributions. Our results achieved an unprecedented
temporal (i.e., hourly) and spatial resolution (i.e., 10 m~1 km, one to three orders higher
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than ever before). A key technical prerequisite is the comprehensive interconnections
between the ITS and ubiquitous traffic monitoring over the Xiaoshan District. As a result,
this system reveals frequent and widespread on-road vehicle emission hotspots. Around
them, significant variabilities (up to 8~15 times) are exposed and attributed to large traffic
fluxes and distinctive vehicle categories. This system also allows us to simulate the benefits
of traffic control policies. We confirm that the most serious traffic control policy could
achieve far more than 50% of emission reductions.

In this system, the traffic states, including vehicle-specific categories and speeds, are
measured in real-time. By comparison, the vehicle-specific emission factors derived from
the I/M dataset are of higher uncertainties [59]. Additionally, fuel-dependent differences
are not taken into account when determining the emission factors. For instance, HDVs and
HDTs are presumed to run on diesel fuel, whereas other vehicle types run on gasoline. In
addition, the aging impacts of vehicles were overlooked. These hypotheses are supported
by earlier research [26,60]. In the future, near-road emission monitoring might be used to
reduce these errors. More than this, low-cost sensors such as those on taxis and mobile
phones might drastically reduce the expenses of collecting data and thus widely expand
our system.

Overall, the operational application of this system could reform the study of road
vehicle emissions. Once our system is linked to a full CTM, real-time, hyper-fine, real-
world air quality emulations would also become possible. By combining CTM output and
data from near-road air quality managements, a high resolution of air quality response
to emissions becomes possible. This could help investigate the complex response of air
quality to anthropogenic emissions and even address exposure misclassification. Such
results may have additional sociological implications, including for future urban planning
and sustainable development.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/su14095434/s1.

Author Contributions: S.Y. and P.L. conceived and designed the research. L.W. (Lu Wang), X.C.,
Y.X., L.J. and J.Y. performed system developments. L.W. (Lu Wang), X.C., Y.X., L.J., J.Y., T.H., L.W.
(Liqiang Wang), Y.Z., M.L., Z.L., Z.S. and Y.J. conducted data analysis. W.L. and X.Z. contributed
to scientific discussions. S.Y. and P.L. wrote and revised the manuscript. All authors have read and
agreed to the published version of the manuscript.

Funding: This study was supported by the National Natural Science Foundation of China (No. 42175084,
21577126, and 41561144004), the Department of Science and Technology of China (No. 2018YFC0213506
and 2018YFC0213503), and the National Research Program for Key Issues in Air Pollution Control in
China (No. DQGG0107). Pengfei Li was supported by the National Natural Science Foundation of China
(No. 22006030), the Initiation Fund for Introducing Talents of Hebei Agricultural University (412201904),
and the Hebei Youth Top Fund (BJ2020032).

Data Availability Statement: All measurements and model results are available upon request.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Liang, X.; Zhang, S.; Wu, Y.; Xing, J.; He, X.; Zhang, K.M.; Wang, S.; Hao, J. Air quality and health benefits from fleet electrification

in China. Nat. Sustain. 2019, 2, 962–971. [CrossRef]
2. Wang, L.; Chen, X.; Zhang, Y.; Li, M.; Li, P.; Jiang, L.; Xia, Y.; Li, Z.; Li, J.; Wang, L.; et al. Switching to electric vehicles can lead to

significant reductions of PM2.5 and NO2 across China. One Earth 2021, 4, 1037–1048. [CrossRef]
3. Zhang, Q.; Zheng, Y.; Tong, D.; Shao, M.; Wang, S.; Zhang, Y.; Xu, X.; Wang, J.; He, H.; Liu, W.; et al. Drivers of Improved PM2.5 Air

Quality in China from 2013 to 2017; National Academy of Sciences: Washington, DC, USA, 2019; Volume 116, pp. 24463–24469.
4. Xue, Y.; Cao, X.; Ai, Y.; Xu, K.; Zhang, Y. Primary Air Pollutants Emissions Variation Characteristics and Future Control Strategies

for Transportation Sector in Beijing, China. Sustainability 2020, 12, 4111. [CrossRef]
5. Gao, J.; Wang, K.; Wang, Y.; Liu, S.; Zhu, C.; Hao, J.; Liu, H.; Hua, S.; Tian, H. Temporal-spatial characteristics and source

apportionment of PM2.5 as well as its associated chemical species in the Beijing-Tianjin-Hebei region of China. Environ. Pollut.
2018, 233, 714–724. [CrossRef] [PubMed]

https://www.mdpi.com/article/10.3390/su14095434/s1
https://www.mdpi.com/article/10.3390/su14095434/s1
http://doi.org/10.1038/s41893-019-0398-8
http://doi.org/10.1016/j.oneear.2021.06.008
http://doi.org/10.3390/su12104111
http://doi.org/10.1016/j.envpol.2017.10.123
http://www.ncbi.nlm.nih.gov/pubmed/29126093


Sustainability 2022, 14, 5434 20 of 22

6. Ecology, M.O.; China, E.O.T.P. China Vehicle Environmental Management Annual Report; Ministry of Ecology and Environment of
the People’s Republic of China: Beijing, China, 2020.

7. Song, C.; Wu, L.; Xie, Y.; He, J.; Chen, X.; Wang, T.; Lin, Y.; Jin, T.; Wang, A.; Liu, Y.; et al. Air pollution in China: Status and
spatiotemporal variations. Environ. Pollut. 2017, 227, 334–347. [CrossRef] [PubMed]

8. Anenberg, S.C.; Miller, J.; Minjares, R.; Du, L.; Henze, D.K.; Lacey, F.; Malley, C.S.; Emberson, L.; Franco, V.; Klimont, Z.; et al.
Impacts and mitigation of excess diesel-related NOx emissions in 11 major vehicle markets. Nature 2017, 545, 467–471. [CrossRef]

9. Ogunkunle, O.; Ahmed, N.A. Overview of Biodiesel Combustion in Mitigating the Adverse Impacts of Engine Emissions on the
Sustainable Human–Environment Scenario. Sustainability 2021, 13, 5465. [CrossRef]

10. Zhang, S.; Wu, Y.; Huang, R.; Wang, J.; Yan, H.; Zheng, Y.; Hao, J. High-resolution simulation of link-level vehicle emissions
andconcentrations for air pollutants in a traffic-populated eastern Asian city. Atmos. Chem. Phys. 2016, 16, 9965–9981. [CrossRef]

11. Lyu, P.; Wang, P.S.; Liu, Y.; Wang, Y. Review of the studies on emission evaluation approaches for operating vehicles. J. Traffic
Transp. Eng. 2021, 8, 493–509. [CrossRef]

12. Mangones, S.C.; Jaramillo, P.; Fischbeck, P.; Rojas, N.Y. Development of a high-resolution traffic emission model: Lessons and key
insights from the case of Bogotá, Colombia. Environ. Pollut. 2019, 253, 552–559. [CrossRef]

13. Xue, H.; Jiang, S.; Liang, B. A study on the model of traffic flow and vehicle exhaust emission. Math. Probl. Eng. 2013, 2013,
736285. [CrossRef]

14. Agarwal, A.K.; Mustafi, N.N. Real-world automotive emissions: Monitoring methodologies, and control measures. Renew.
Sustain. Energy Rev. 2021, 137, 110624. [CrossRef]

15. Janssens-Maenhout, G.; Crippa, M.; Guizzardi, D.; Dentener, F.; Muntean, M.; Pouliot, G.; Keating, T.; Zhang, Q.; Kurokawa, J.;
Wankmüller, R.; et al. HTAP_v2.2: A mosaic of regional and global emission grid maps for 2008 and 2010 to study hemispheric
transport of air pollution. Atmos. Chem. Phys. 2015, 15, 11411–11432. [CrossRef]

16. Li, M.; Zhang, Q.; Kurokawa, J.; Woo, J.; He, K.; Lu, Z.; Ohara, T.; Song, Y.; Streets, D.G.; Carmichael, G.R.; et al. MIX: A mosaic
Asian anthropogenic emission inventory under the international collaboration framework of the MICS-Asia and HTAP. Atmos.
Chem. Phys. 2017, 17, 935–963. [CrossRef]

17. Zhang, S.; Wu, Y.; Liu, H.; Wu, X.; Zhou, Y.; Yao, Z.; Fu, L.; He, K.; Hao, J. Historical evaluation of vehicle emission control in
Guangzhou based on a multi-year emission inventory. Atmos. Environ. 2013, 76, 32–42. [CrossRef]

18. Lv, W.; Hu, Y.; Li, E.; Liu, H.; Pan, H.; Ji, S.; Hayat, T.; Alsaedi, A.; Ahmad, B. Evaluation of vehicle emission in Yunnan province
from 2003 to 2015. J. Clean. Prod. 2019, 207, 814–825. [CrossRef]

19. Gately, C.K.; Hutyra, L.R.; Peterson, S.; Sue Wing, I. Urban emissions hotspots: Quantifying vehicle congestion and air pollution
using mobile phone GPS data. Environ. Pollut. 2017, 229, 496–504. [CrossRef]

20. Gately, C.K.; Hutyra, L.R. Large Uncertainties in Urban-Scale Carbon Emissions. J. Geophys. Res. Atmos. 2017, 122, 242–260.
[CrossRef]

21. Jiang, L.; Xia, Y.; Wang, L.; Chen, X.; Ye, J.; Hou, T.; Wang, L.; Zhang, Y.; Li, M.; Li, Z.; et al. Hyperfine-resolution mapping of
on-road vehicle emissions with comprehensive traffic monitoring and an intelligent transportation system. Atmos. Chem. Phys.
2021, 21, 16985–17002. [CrossRef]

22. Jing, B.; Wu, L.; Mao, H.; Gong, S.; He, J.; Zou, C.; Song, G.; Li, X.; Wu, Z. Development of a vehicle emission inventory with
high temporal–spatial resolution based on NRT traffic data and its impact on air pollution in Beijing–Part 1: Development and
evaluation of vehicle emission inventory. Atmos. Chem. Phys. 2016, 16, 3161–3170. [CrossRef]

23. Liu, Y.; Ma, J.; Li, L.; Lin, X.; Xu, W.; Ding, H. A high temporal-spatial vehicle emission inventory based on detailed hourly traffic
data in a medium-sized city of China. Environ. Pollut. 2018, 236, 324–333. [CrossRef] [PubMed]

24. Wen, Y.; Zhang, S.; Zhang, J.; Bao, S.; Wu, X.; Yang, D.; Wu, Y. Mapping dynamic road emissions for a megacity by using
open-access traffic congestion index data. Appl. Energy 2020, 260, 114357. [CrossRef]

25. Wu, L.; Chang, M.; Wang, X.; Hang, J.; Zhang, J.; Wu, L.; Shao, M. Development of the Real-time On-road Emission (ROE v1.0)
model for street-scale air quality modeling based on dynamic traffic big data. Geosci. Model. Dev. 2020, 13, 23–40. [CrossRef]

26. Yang, D.; Zhang, S.; Niu, T.; Wang, Y.; Xu, H.; Zhang, K.M.; Wu, Y. High-resolution mapping of vehicle emissions of atmospheric
pollutants based on large-scale, real-world traffic datasets. Atmos. Chem. Phys. 2019, 19, 8831–8843. [CrossRef]

27. Yang, W.; Yu, C.; Yuan, W.; Wu, X.; Zhang, W.; Wang, X. High-resolution vehicle emission inventory and emission control policy
scenario analysis, a case in the Beijing-Tianjin-Hebei (BTH) region, China. J. Clean. Prod. 2018, 203, 530–539. [CrossRef]

28. Liu, J.; Han, K.; Chen, X.M.; Ong, G.P. Spatial-temporal inference of urban traffic emissions based on taxi trajectories and
multi-source urban data. Transp. Res. Part C Emerg. Technol. 2019, 106, 145–165. [CrossRef]

29. Song, X.; Guo, R.; Xia, T.; Guo, Z.; Long, Y.; Zhang, H.; Song, X.; Ryosuke, S. Mining urban sustainable performance: Millions of
GPS data reveal high-emission travel attraction in Tokyo. J. Clean. Prod. 2020, 242, 118396. [CrossRef]

30. Xia, C.; Xiang, M.; Fang, K.; Li, Y.; Ye, Y.; Shi, Z.; Liu, J. Spatial-temporal distribution of carbon emissions by daily travel and its
response to urban form: A case study of Hangzhou, China. J. Clean. Prod. 2020, 257, 120797. [CrossRef]

31. Deng, F.; Lv, Z.; Qi, L.; Wang, X.; Shi, M.; Liu, H. A big data approach to improving the vehicle emission inventory in China. Nat.
Commun. 2020, 11, 2801. [CrossRef]

32. Beaton, S.P.; Bishop, G.A.; Zhang, Y.; Stedman, D.H.; Ashbaugh, L.L.; Lawson, D.R. On-Road Vehicle Emissions: Regulations,
Costs, and Benefits. Science 1995, 268, 991–993. [CrossRef]

http://doi.org/10.1016/j.envpol.2017.04.075
http://www.ncbi.nlm.nih.gov/pubmed/28482313
http://doi.org/10.1038/nature22086
http://doi.org/10.3390/su13105465
http://doi.org/10.5194/acp-16-9965-2016
http://doi.org/10.1016/j.jtte.2021.07.004
http://doi.org/10.1016/j.envpol.2019.07.008
http://doi.org/10.1155/2013/736285
http://doi.org/10.1016/j.rser.2020.110624
http://doi.org/10.5194/acp-15-11411-2015
http://doi.org/10.5194/acp-17-935-2017
http://doi.org/10.1016/j.atmosenv.2012.11.047
http://doi.org/10.1016/j.jclepro.2018.09.227
http://doi.org/10.1016/j.envpol.2017.05.091
http://doi.org/10.1002/2017JD027359
http://doi.org/10.5194/acp-21-16985-2021
http://doi.org/10.5194/acp-16-3161-2016
http://doi.org/10.1016/j.envpol.2018.01.068
http://www.ncbi.nlm.nih.gov/pubmed/29414354
http://doi.org/10.1016/j.apenergy.2019.114357
http://doi.org/10.5194/gmd-13-23-2020
http://doi.org/10.5194/acp-19-8831-2019
http://doi.org/10.1016/j.jclepro.2018.08.256
http://doi.org/10.1016/j.trc.2019.07.005
http://doi.org/10.1016/j.jclepro.2019.118396
http://doi.org/10.1016/j.jclepro.2020.120797
http://doi.org/10.1038/s41467-020-16579-w
http://doi.org/10.1126/science.268.5213.991


Sustainability 2022, 14, 5434 21 of 22

33. Mcgaughey, G.R.; Desai, N.R.; Allen, D.T.; Seila, R.L.; Lonneman, W.A.; Fraser, M.P.; Harley, R.A.; Pollack, A.K.; Ivy, J.M.; Price,
J.H. Analysis of motor vehicle emissions in a Houston tunnel during the Texas Air Quality Study 2000. Atmos. Environ. 2004, 38,
3363–3372. [CrossRef]

34. Paul, J.; Malhotra, B.; Dale, S.; Qiang, M. RFID based vehicular networks for smart cities. In Proceedings of the 2013 IEEE 29th
International Conference on Data Engineering Workshops (ICDEW), Brisbane, Australia, 8–12 April 2013; pp. 120–127.

35. Song, J.; Zhao, C.; Lin, T.; Li, X.; Prishchepov, A.V. Spatio-temporal patterns of traffic-related air pollutant emissions in different
urban functional zones estimated by real-time video and deep learning technique. J. Clean. Prod. 2019, 238, 117881. [CrossRef]

36. Liu, B.; Frey, H.C. Variability in Light-Duty Gasoline Vehicle Emission Factors from Trip-Based Real-World Measurements.
Environ. Sci. Technol. 2015, 49, 12525–12534. [CrossRef] [PubMed]

37. Wu, Y.; Song, G.; Yu, L. Sensitive analysis of emission rates in MOVES for developing site-specific emission database. Transp. Res.
Part D Transp. Environ. 2014, 32, 193–206. [CrossRef]

38. Yang, Z.; Peng, J.; Wu, L.; Ma, C.; Zou, C.; Wei, N.; Zhang, Y.; Liu, Y.; Andre, M.; Li, D.; et al. Speed-guided intelligent
transportation system helps achieve low-carbon and green traffic: Evidence from real-world measurements. J. Clean. Prod. 2020,
268, 122230. [CrossRef]

39. Apte, J.S.; Messier, K.P.; Gani, S.; Brauer, M.; Kirchstetter, T.W.; Lunden, M.M.; Marshall, J.D.; Portier, C.J.; Vermeulen, R.C.H.;
Hamburg, S.P. High-Resolution Air Pollution Mapping with Google Street View Cars: Exploiting Big Data. Environ. Sci. Technol.
2017, 51, 6999–7008. [CrossRef]

40. Guo, L.; Dong, M.; Ota, K.; Li, Q.; Ye, T.; Wu, J.; Li, J. A Secure Mechanism for Big Data Collection in Large Scale Internet of
Vehicle. IEEE Internet Things J. 2017, 4, 601–610. [CrossRef]

41. Louhghalam, A.; Akbarian, M.; Ulm, F. Carbon management of infrastructure performance: Integrated big data analytics and
pavement-vehicle-interactions. J. Clean. Prod. 2017, 142, 956–964. [CrossRef]

42. Gately, C.K.; Hutyra, L.R.; Wing, I.S.; Brondfield, M.N. A Bottom up Approach to on-road CO2 Emissions Estimates: Improved
Spatial Accuracy and Applications for Regional Planning. Environ. Sci. Technol. 2013, 47, 2423–2430. [CrossRef]
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