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Abstract: To reduce distribution risk and improve the efficiency of medical materials delivery under
major public health emergencies, this paper introduces a drone routing problem with time windows.
A mixed-integer programming model is formulated considering contactless delivery, total travel
time, and customer service time windows. Utilizing Dantzig–Wolfe decomposition, the proposed
optimization model is converted into a path-based master problem and a pricing subproblem based
on an elementary shortest path problem with resource constraints. We embed the pulse algorithm
into a column generation framework to solve the proposed model. The effectiveness of the model and
algorithm is verified by addressing different scales of Solomon datasets. A case study on COVID-19
illustrates the application of the proposed model and algorithm in practice. We also perform a
sensitivity analysis on the drone capacity that may affect the total distribution time. The experimental
results enrich the research related to vehicle routing problem models and algorithms under major
public health emergencies and provide optimized relief distribution solutions for decision-makers of
emergency logistics.

Keywords: major public health emergencies; drone routing problem; medical materials delivery

1. Introduction

Major public health emergencies have had a great influence on human health and
social development. Examples in recent years include Ebola in 1976, HINI in 2009, and
SARS in 2003. Coronavirus disease 2019 (COVID-19) is the most far-reaching global public
health emergency. When an infectious disease occurs, medical supplies play an essential
role in reducing dissemination risk, guaranteeing people’s lives and health. With limited
time and resources, emergency logistics decision-makers must make the best decisions
regarding the allocation of limited time, funds, and other resources.

Nonetheless, the highly infectious and harmful characteristics of the virus have made
the prevention of COVID-19 relatively difficult. Many areas adopt blockade policies to
alleviate the spread of the epidemic [1]. Early and strict lockdown measures, rapid testing,
and increased media campaigns are crucial to curb the pandemic [2]. The blockade policy
also greatly limits the distribution of medical supplies. Hence, it is necessary to achieve
timely distribution of medical supplies in the case of inaccessible transportation networks
and highly contagious viruses.

With the continuous development of high technology, new models of delivery—mainly
drones—have come into the limelight. Although the application of drones in logistics is in
its infancy, commercial practice has already begun. SF began researching drone deliveries
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as early as 2012, JD Logistics Laboratory also began drone testing in June 2016, and some
villages around Suqian achieved delivery by drone during the “618” period in 2017. The
rapid global spread of COVID-19 has resulted in interruptions to supply chains and peo-
ple’s lives [3], drones or unmanned aerial vehicles (UAVs) can contribute significantly to the
fight against the COVID-19 pandemic [4]. Drones can be adopted to distribute viral tests to
potentially infected patients [5], provide food delivery services [6], enable timely identifica-
tion of infected people on the road, detect unmasked people [7], spray disinfection on the
street, data analysis, delivery medical supplies, and make announcements [8]. Drones fly
relatively fast, which can well ensure their work efficiency. They are very flexible, and not
easily restricted by the terrain. Contactless delivery of drones can greatly reduce human
contact and reduce the risk of delivery under epidemic situations. Given the above, this
study will choose drones for medical materials delivery, which will contribute significantly
to slowing down epidemic spread and ensuring people’s health to a certain extent.

This work contributes in three ways. Firstly, this study focuses on solving the medical
materials distribution problem during major public health emergencies, which is a research
hotspot for the present. Secondly, we establish a model of drone routing problem under
major public health emergencies, where drones can achieve contactless distribution and are
less affected by the actual road network. Finally, we adopt a combination of the column
generation (CG) and pulse algorithm (PA) to solve the model to ensure the quality and
robustness of the solution.

The rest of the paper is organized as follows: Section 2 reviews the relevant literature.
Section 3 represents problem description, establishes mixed-integer programming formula-
tion, and makes modifications to the model. Section 4 gives the design of the CG and PA.
Algorithm validation and a case study are shown in Section 5. Section 6 makes conclusions
and points out future research.

2. Literature Review
2.1. Models of Medical Materials Delivery VRP under Major Public Health Emergencies

Several scholars related results on models of medical materials distribution vehicle
routing problem (VRP) under major public health emergencies are shown in Table 1. These
studies consider VRP under major public health emergencies, where the supplies to be
transported are usually emergency supplies such as masks [9], vaccines [10], and food [11].
As seen in Table 1, travel cost, travel time, and infection risk are the three most frequently
considered travel factors. With the availability of infectious disease supplies, it is important
to consider the risk of infection. For this reason, some works included safety scores. Only
a few papers focus on increasing resident satisfaction and minimizing overall violations,
which are of equal importance in humanitarian logistics.

In an emergency logistics network, emergency decision-makers need to consider spe-
cific objectives to achieve optimal distribution of medical supplies. Dawei Chen increased
residents’ satisfaction with food allocation services in a closed gated community under
COVID-19 [11]. Considering the open path vehicle routing problem in the production
and distribution of face shields, Joaquín Pacheco concentrated on minimizing the time
of the longest route [9]. Erfan Babaee Tirkolaee developed a novel mixed-integer linear
programming model for strengthening the treatment of infectious medical waste [12]. Emre
Eren targeted safety scores and total distance traveled [13]. Min-Xia Zhang worked on
minimizing the sum exposure duration of all individuals [14], and Yuzhan Wu employed
multiple autonomous ground vehicles for last-mile transportation to minimize total de-
livery costs [15]. Considering the massive fresh agri-product demand under COVID-19,
Yiping Jiang constructed an optimization model based on average response time, the
likelihood of infectious disease risk, and transportation resource utilization [16].
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Table 1. Models of medical materials delivery VRP under major public health emergencies.

Materials Objectives (Min↓/Max↑) 1 Constraints Model References

Food Residents’ satisfaction↑ Contactless distribution, Homogeneous vehicle Mathematical programming Dawei Chen [11]
Face shields Travel time↓ Open path, Homogeneous vehicle Mathematical programming Joaquín Pacheco [9]

Materials Travel time↓ Time windows, Contactless delivery,
Homogeneous vehicle Mixed-integer linear program Cheng Chen [17]

Medical waste Travel time↓, Total violation↓,
Infection risk↓

Time windows, Fuzzy demand,
Heterogeneous vehicle, Mixed-integer linear program Erfan Babaee Tirkolaee [12]

Medical waste Travel distance↓, Safety scores↑ Homogeneous vehicle Linear program Emre Eren [13]
High-risk individuals Infection risk↓ Heterogeneous vehicle Mathematical programming Min-Xia Zhang [14]

Essential materials Travel cost↓, Travel time↓ Time windows, Homogeneous vehicle Bi-objective mixed-integer
programming Yong Wang [18]

Emergency resource Travel time↓ Contactless distribution,
Heterogeneous vehicle Mixed-integer linear program WEI GAO [19]

Emergency materials Travel cost↓ Heterogeneous vehicle Mixed-integer programming YuzhanmWu [15]

Municipal solid waste Travel cost↓, Infection risk↓ Time windows, Split delivery,
Heterogeneous vehicles Mixed-integer linear program Kannan Govindan [20]

Fresh agri-product Travel cost↓, Infection risk↓,
Resource utilization↓ Split delivery Mathematical programming Yiping Jiang [16]

Vaccine Total number of infected
individuals↓, fixed cost of vehicles↓ Heterogeneous vehicles, Priority groups Mathematical programming Nafseh Shamsi Gamchi [10]

1 “Min↓/Max↑” means the minimize and maximize objectives, respectively.
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Vehicle capacity constraints, vehicle flow constraints, elimination of sub-paths, and
variable constraints are the basic constraints of the VRP model. Almost every model may
contain the above constraints [9–20]. It performed that there is little difference in the
proportion of documents considering homogeneous vehicles and heterogeneous vehicles.
For multiple types of vehicles, there are also interaction ends of different types of vehi-
cles [12,14,15,19,20]. The customers required emergency supplies to be accepted within a
specified time frame, thereby introducing time window constraints [12,17,18,20]. Multi-
item packaging and split delivery of fresh produce in the context of a large-scale epidemic
can increase the efficiency of relief delivery [16]. In most of the literature, customer demand
was known in advance, but there are also documents that obscure customer demand [12].

According to the complexity and diversity of constraints and objectives, there will
also be some differences in the established model. A range of articles [8,12,17,19,20] were
modeled in the form of a mixed-integer linear programming formulation. Additionally,
mathematical programming [9,11,14] and mixed-integer programming [15,18] were also
usually used for modeling.

From the above literature, contactless delivery can reduce the risk of infection during
the epidemic, so unmanned delivery will become a trend in the future. Especially in recent
years, the emergence of drones and unmanned vehicles has provided an opportunity for
contactless delivery. For strict traffic control, the utilization of drones for distribution will
highlight great advantages. It will also be more realistic to consider the time window for
the delivery of services. In terms of objective, minimizing the total travel time matches the
characteristics of timeliness of emergency logistics.

2.2. Algorithms of Medical Materials Delivery VRP under Major Public Health Emergencies

As can be seen from Table 2, most researchers focus on two types of algorithms:
heuristic algorithms and mathematical programming algorithms. Approximately 67%
of the work use heuristic algorithms to solve VRP. The employed solution includes tabu
search (TS) algorithm, bee colony algorithm, a two-stage hybrid heuristic algorithm, floyd
algorithm, and particle swarm optimization (PSO) algorithm, genetic algorithm, and so on.
Dawei Chen embedded the tabu search operator into an artificial bee colony algorithm to
solve problems [11]. And the proposed algorithm was found to have better performance
compared to various algorithms. WEI GAO utilized an iterative improvement algorithm to
solve random instances, which improved the speed of the solution by more than 10% [19].
Min-Xia Zhang proposed a hybrid algorithm based on water wave optimization (WWO)
metaheuristic and neighborhood search with a high solution rate [14]. Yiping Jiang de-
signed an improved genetic algorithm based on solution features (IGA-SF) to address the
integrated model with multiple decision variables [16]. Numerical results showed that
the proposed IGA-SF had great superiority in terms of CPU running time and number of
iterations for comparison with genetic algorithms. The above researchers utilize heuristic
algorithms to solve related models. Of course, some researchers use mathematical pro-
gramming methods. Erfan Babaee Tirkolaee solved sustainable multi-trip location-routing
problems with time windows (MTLRP-TW), employing a fuzzy chance-constrained pro-
gramming approach [12]. Emre Eren adopted the analytic hierarchy process (AHP) to
obtain safety scores [13]. Kannan Govindan applied a fuzzy goal programming approach
for solving the proposed bi-objective model and used data related to 13 nodes of medi-
cal waste production in western Tehran to evaluate the efficiency of the proposed model
and solution method [20]. Data cases were based on real cases, standard data sets, and
randomly generated data for algorithm performance testing. Nevertheless, due to the
different objective functions and constraints, it is impossible to directly compare the quality
of each algorithm, but the algorithm designed in the given article certainly shows good
performance in the calculation examples.
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Table 2. Algorithms of medical materials distribution VRP under major public health emergencies.

Type Algorithm Instances References

Heuristic
algorithm

Two-stage
metaheuristic

algorithm
Solomon data test Cheng Chen [17]

Iterative
improvement

algorithm
Randomly instances WEI GAO [19]

Bee colony algorithm Randomly generated Dawei Chen [11]
Floyd algorithm and

PSO algorithm Randomly generated Yuzhan Wu [15]

TS algorithm
Cartographic data for

the province of
Burgos

Joaquín Pacheco [9]

WWO
metaheuristic,

neighborhood search

Seven real-world
instances Min-Xia Zhang [14]

A two-stage hybrid
heuristic algorithm A real-world case Yong Wang [18]

An improved genetic
algorithm A real case study Yiping Jiang [16]

Mathematical
programming

algorithm

A fuzzy
chance-constrained

programming
approach

A real case study Erfan Babaee
Tirkolaee [12]

AHP A real case study Emre Eren [13]
Fuzzy goal

programming
approach

A real case study Kannan
Govindan [19]

Dynamic
programming A real case study Nafseh Shamsi

Gamchi [10]

From the existed references, the majority of works propose various heuristic algorithms
and mathematical programming to solve routing problems that arise in practice, while
few works adopt exact algorithms to solve problems. The heuristic algorithm shows good
performance in the solution time, but it cannot guarantee the optimal solution. Thus,
the paper will adopt a mixed CG and PA to solve the proposed problem. The proposed
algorithm performs well in terms of guaranteeing the quality of the solution. The CG was
proposed by Danzig in 1960 and it has been applied in recent years. Alain Chabrier solved
the elementary shortest vehicle routing problem with the CG [21]. Zhi-Long Chen proposed
a dynamic method based on the CG to solve a dynamic VRP with hard time windows [22].
Eunjeong Choia presented a tight integer programming model and successfully adopted
the CG approach to a vehicle routing problem with time windows (VRPTW) [23]. Generally,
the CG algorithm was also commonly used to address the lower bound of the branch-and-
price approach [24]. Prahalad Venkateshan developed an efficient algorithm based on the
CG for solving a pickup and delivery problem [25]. Leonardo Lozano firstly proposed
an exact solution method capable of handling constrained shortest paths of large-scale
networks in a reasonable time [26]. Then, the author extended the proposed algorithm and
proposed a novel bounding scheme in 2016 [27].

3. Problem and Mathematical Model
3.1. Problem Description

The paper concentrates on the face shields distribution drone routing problem with
time windows (DRPTW). Firstly, a homogeneous fleet of drones carrying a certain amount
of face shields are dispatched from the distribution center to provide medical materials
distribution services for many medical materials demand points. Consider a directed graph
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G = (N, E) provided in Figure 1, where N = {0, 1, 2, . . . , n, n + 1} represents the set
of all nodes and E = {(i, j) : i, j ∈ N, i 6= j} denotes the set of all available links in the
network. Set N contains three subsets: {0}, {n + 1} and C. {0} and {n + 1} represent the
starting and the ending nodes, representing the distribution center. C = {1, 2, 3, . . . , n}
is the set of community closed, below referred to as customers. Each customer i has a
known demand qi and each customer demand can be satisfied by a drone exactly once in
required time window [ai, bi]. Deliveries outside the time window will not be tolerated.
The service time of each customer i will be considered according to the actual situation.
Drones delivery services must begin and end their routes within a specified time window
[a0, b0] at the distribution center.

Figure 1. An illustration of the drone delivery routing problem.

The model makes the following assumptions: (1) the geographical location of the
distribution center and customers is known and the distance between any two nodes is
derived with Euclidean distance; (2) this paper considers medical supplies-face shields that
are in great demand under major public health emergencies, other medical materials are
not considered.

The primary decision of DRPTW studied in this paper is to arrange each drone route by
considering the drone load capacity, the maximum continuous flight distance, the customer
demand, and the service time windows. In other words, the order in which the drone
visits customers is arranged under a series of constraints. Considering the timeliness of
emergency logistics, the decision objective is to minimize the total flight time traveled by
all drones.

3.2. Model Formulation

The following defines the set, index, parameters, and decision variables for DRPTW
in Table 3.

Table 3. Notations and definitions for DRPTW.

Notations Definitions

N Set of all nodes
C Set of customers

N0 = { 0 } ∪ C Set of starting node and customers
Nn+1 = { n + 1 } ∪ C Set of ending node and customers

R Set of drones
E Set of available links
r Drone index, r = 1, 2, . . . , |R|
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Table 3. Cont.

Notations Definitions

i, j, g Node index, i, j, g ∈ N
dij Distance of link (i, j), dij ≤ dig + dgj; ∀i, j, g ∈ N
L The maximum sustainable flight distance by drone r, ∀r ∈ R
v The flight speed of drone r, ∀r ∈ R
qi Quantity of materials demanded by customer i, ∀i ∈ C
Q Load capacity of drone r, ∀r ∈ R
Sir Service start time of customer i, ∀r ∈ R, i ∈ C
ti Service duration time of the customer i, ∀i ∈ C

[ai, bi] Time windows of customer i, ∀i ∈ C
xijr 1, If drone r travels in link (i,j), 0, else, ∀(i, j) ∈ E

Qir
The amount of materials delivered by drone r to

customer i, ∀r ∈ R, i ∈ C

We present the mathematical formulation for the DRPTW as follows:

min ∑
(i,j)∈E

∑
r∈R

dijxijr

v
+ ∑

i∈C
ti (1)

Subject to:
∑

j∈N0+1

∑
r∈R

xijr = 1, ∀i ∈ C (2)

Qir ≤ qi, ∀i ∈ C, r ∈ R (3)

∑
i∈N0

∑
j∈Nn+1

Qirxijr ≤ Q, r ∈ R (4)

∑
i∈N0

∑
j∈Nn+1

dijxijr ≤ L, r ∈ R (5)

∑
j∈N0+1

x0jr = 1, ∀r ∈ R (6)

∑
i∈N0

xijr − ∑
g∈N0+1

xjgr = 0, ∀j ∈ C, r ∈ R (7)

∑
i∈N0

xin+1r = 1, ∀r ∈ R (8)

Sir + tij + ti −M(1− xijr) ≤ Sjr, ∀i ∈ N0, ∀j ∈ Nn+1, ∀r ∈ R (9)

ai ≤ sir ≤ bi, ∀i ∈ C, ∀r ∈ R (10)

xijr ∈ {0, 1}, ∀(i, j) ∈ E, ∀r ∈ R (11)

Equation (1) denotes the objective function, which minimizes the sum of the total flight
time of all drones and the total service time of all customers. Constraints (2) and (3) assure
that each customer can only be visited once by the drone. Constraint (4) guarantees that
the drone loading must not exceed the drone capacity. Constraint (5) guarantees that the
drone’s cumulative flight distance cannot exceed the maximum sustainable flight distance.
Constraint (6) denotes that drones must depart from the distribution center. Constraint (7)
indicates the continuity of the drone route. Constraint (8) means that the drone must return
to the distribution center after servicing. Constraint (9) expresses the continuity of the
drone service customer time. Constraint (10) indicates the drone service time cannot violate
the customer service time windows. Constraint (11) represents a binary constraint.
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3.3. Set Covering Model

The integer linear programming problem involves numerous variables and parameters
and confronts the problem of slow solving. The Dantzig–Wolfe decomposition (DW) can
decompose a decomposable complex linear programming model into a linear programming
model with simpler constraints and a number of smaller subprograms. Hence, we utilize
DW to reconstruct the original problem and decompose it into a path-based master problem
(MP) and a pricing subproblem (PS) based on an elementary shortest path problem with
resource constraints (ESPPRC).

3.3.1. Master Problem

If we obtain a set of feasible paths Ω satisfying constraints (2)–(11), our problem
transforms into selecting several p ∈ Ω from the set of all feasible routes Ω to form a
feasible solution, which minimizes the objective function.

The drone routes p ∈ Ω all start from a distribution center, serve a series of customers
and then return to the distribution center. If a drone route satisfies the maximum drone
capacity constraint, the maximum sustainable flight distance, and the corresponding service
time windows, it is considered feasible. Let Cp denote the time of route p ∈ Ω. Let aip = 1
if route p visits node i and 0 otherwise. Let bijp = 1 if route p travels (i, j) ∈ E and 0
otherwise. Let xp = 1 if route p ∈ Ω is selected in the final solution and 0 otherwise. The
correlation variables are as follows:

Cp = ∑
(i,j)∈E

bijpCij, ∀p ∈ Ω (12)

aip = ∑
(i,j)∈E

bijp, ∀i ∈ C (13)

The DRPTW can be described by the following set covering model known as the MP:

min z = ∑
p∈Ω

Cpxp (14)

Subject to:
∑

p∈Ω
aipxp = 1, ∀i ∈ C (15)

xp ∈ {0, 1}, ∀p ∈ Ω (16)

The objective function (14) minimizes the total time. Constraint (15) means that each
customer is visited only once. Constraint (16) denotes a binary constraint.

3.3.2. Pricing Subproblem

Since a large number of feasible paths are contained in Ω, it is difficult to directly solve
the MP, therefore, the simplex method (SM) cannot be used to solve the current model. The
CG has better performance for solving large-scale linear programming problems, so the
CG will be adopted. The CG firstly constructs a linear relaxation of the MP, then finds a
part of the feasible initial path to form the restricted master problem (RMP) to solve the
model. The relaxation of the RMP model can be constructed as follows:

min z = ∑
p∈Ω1

Cpxp (17)

Subject to:
∑

p∈Ω1

aipxp = 1, ∀i ∈ C (18)

0 ≤ xp ≤ 1, ∀p ∈ Ω1 (19)
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Let λi(i ∈ C) be the dual variables of constraint (18), then the reduced cost for each
feasible route is:

Cp = Cp − ∑
i∈C

aipλi, where p ∈ Ω1 (20)

According to the theory of SM, adding the column (path) of the reduced cost Cp < 0 of
the linear programming problem to the RMP for iteration can optimize the current optimal
solution. The PS can be transformed into a search for the column (path) Cp < 0. The PS
model is described as follows:

min ∑
i∈N0

∑
j∈Nn+1

(
Cij − λi

)
xijr (21)

Subject to: Equations (2)–(11).
The PS can be known as an ESPPRC subproblem. The route sought by each PS must

satisfy corresponding capacity constraints and time windows constraints. Add the solution
to the RMP that solves the PS objective function value less than zero. The current result
presents the optimal solution to the RMP relaxation when there is no column (path) that
makes the PS objective function value less than zero.

4. Solution Method

In this paper, we embed the PA into a CG framework that solves the linear relaxation
of the DRPTW.

4.1. Initial Solution

An initial set of feasible solutions is required to be construed in the CG algorithm.
However, it is often impossible to list all feasible solutions. Therefore, it is necessary to
apply definite approaches to generate an initial feasible route that covers all customer nodes
and satisfies all constraints in a relatively short time period to form the initial solution space.
Heuristic algorithms are exploited to generate initial solutions in the existing literature. To
facilitate scheme design, this paper assumes that when the number of vehicles is sufficient,
a separate path is created for each customer to constitute the initial route of the distribution
center–customer–distribution center. The path obtained are as follows: Path 1: 0→ 1→ 0;
Path 2: 0→ 2→ 0; Path 3: 0→ 3→ 0......Path n: 0→ n→ 0, and set each path to P1, P2,
P3...Pn, to construct the initial RMP model.

4.2. Column Generation

The CG, a very efficient algorithm for solving large-scale linear optimization problems,
was proposed by Danzig in 1960. Essentially, the CG algorithm operates through the idea
of the SM. The overview of the CG algorithm is given in Figure 2. The algorithm first
restricts the MP to a relatively small-scale problem, that is, the RMP. Dual values λi(i ∈ C)
obtained by addressing the RMP can be utilized to resolve the PS. Faced with the problem
of minimizing the optimization, the column with the least reduced cost is added to the
primal solution. The iteration cycle then continues until no more negative reduced costs
are generated. In the case of a non-integer solution, the branch and bound procedure will
be executed again.

4.3. Pulse Algorithm

Due to the large scale of the solution, solving the PS often consumes a large amount of
time. In the past, many researchers used heuristic algorithms to solve ESPPRC. The PA can
not only enhance the quality of the result, but also speed up the resolution of the PS to a
certain limit. Therefore, it is applied to solve the DRPTW.
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Figure 2. Overview of the CG algorithm.

The PA is a depth-first search schema, was proposed by Lozano in 2013 [26] and
was subsequently extended in 2016 [27]. In terms of form, pulse propagation refers to a
recursive exploration pattern in which a partial path is stretched until it reaches a terminal
node or is discarded by a pruning strategy. The algorithm is generally divided into two
stages: (1) Bound phase. In this phase, a bound matrix is established to store the lower
bound of the remaining path cost at each point under a certain resource consumption.
(2) Iterative expansion stage: Using a depth-first search schema, the pulse is propagated
recursively until it reaches the terminal node or is pruned. Whenever a pulse reaches the
end, update the current optimal solution until all possible attempts have been made to find
the optimal solution to the problem. Three pruning strategies are followed in this process,
namely infeasible pruning, bound pruning, and rollback pruning.

4.3.1. Bound Phase

The period pertains to the preliminary processing phase of the PA, which forms a
bound matrix by determining the minimum cost to reach each node. The bound phase
focuses on relaxing other resource constraints, assuming that the path has been consumed
τ, calculating the lowest cost of the point to the endpoint, thereby forming a bound matrix
B. It is shown in Equation (22). Let T be the upper time window at the distribution center
and let ∆ be a non-negative time step. Then we split the time window by the time step ∆.

B =



c(1, 0) c(1, ∆) c(1, 2∆) · · · c(n, T)
c(2, 0) c(2, ∆) c(2, 2∆) · · · c(n, T)
c(3, 0) c(3, ∆) c(3, 2∆) · · · c(n, T)

...
c(n, 0)

...
c(n, ∆)

...
c(n, 2∆)

. . .
· · ·

...
c(n, T)


(22)

To avoid excessive pruning, the lower bound time should be less than the actual
real-time when judging a node. For example, consider a problem with the upper time
window T = 100 and the time step ∆ = 10. If the time consumption of a partial path to
reach node 7 is 75, then the corresponding lower bound should be taken as c(7, 70)



Sustainability 2022, 14, 4651 11 of 17

4.3.2. Iterative Expansion Stage

Although the PA does not generate labels like the label algorithm, each pulse transmit-
ted from the source stores local path information (i, q(p), t(p), r(p), p) from origin node 0
to the current node i. Here, i, the current node; q(p), the cumulative capacity consumption;
t(p), the cumulative time consumption; r(p), the cumulative reduced cost in the partial
path p. Each pulse from the node i is propagated to the outgoing node j, which will follow
three pruning strategies for judgment. If the optimal solution cannot be acquired, the pulse
will not continue to propagate the node j and then try the outgoing node. Three pruning
strategies are as follows:

1 Infeasible pruning

Whenever a partial path p reaches a certain node i, the algorithm checks if the node
satisfies various resources constraints (the time windows, the drone capacity). Regarding
the time window [ai, bi], if t(p) < ai, the drone must wait until ai then to serve customer
i. If t(p) > bi, the drone violates the time window constraint, we will prune the partial
path p because node i is visited after the latest time. Considering the drone capacity Q,
if q(p) > Q, the demand of the customers visiting along the partial path p exceeds the
capacity of drone, thus, partial path p is infeasible and pruned.

2. Bound pruning

The acceleration strategy at this stage depends on the bound matrix, and the lowest
reduced cost solved can play a delimiting role in the pulse search process, thus eliminating
several bad paths. The current optimal reduced cost is r under the time that the current
node i is known to consume tp. The current node i ought to remove if rp + c

(
i, tp
)
> r.

Because no matter how backward from this node i, it will not get a better path than the
current optimal solution.

3. Rollback pruning

When the pulse propagates to node j, step back and re-evaluate whether a better
solution is available if the node i reaches the current node j directly without passing
through the previous node k. It can be seen from Figure 3 that the dotted line is more
occupied than the solid line, so the dotted line is selected.

Figure 3. Dominance guidelines in rollback pruning strategy.

As shown in Figure 3, suppose that the path of the solid line is p′ and the path of the
dashed line is p. If p ⊆ p′, q(p) ≤ q(p′), r(p) ≤ r(p′), t(p) ≤ t(p′), at least one of these
four conditions is satisfied. We call the path p′ is dominated by the path p. It is usually
called the dominance guidelines.
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5. Numerical Experiments
5.1. The Performance of Proposed Algorithm Test

The algorithm was coded in JAVA, IDE used was Eclipse, and the commercial solver
used to solve the RMP problem was Cplex. All experiments were executed on the same
computer. The computer configuration parameters were set as follows: Intel Core i5-7200U,
2.5 GHz main frequency, 4 GB memory, and Windows 10 operating system.

To verify the performance of the proposed model and algorithm in this paper, we
selected 25 and 50 data nodes from the Solomon standard datasets C101, C102, and C103,
respectively, for testing. Table 4 shows the comparison results of the branch and bound
(BB), TS algorithm, and our algorithm. The “Data Sets” column indicates the data set to
be tested; The “TC/s” column presents the current optimal time cost of the data set to be
tested; The “RT/s” column presents the total program runtime.

Table 4. Comparison of test results of different algorithms.

Data Sets
BB TS CG + PA

TC/s RT/s TC/s RT/s TC/s RT/s

C101-25 10,858.05 0.922 10,881.45 0.59 10,848.75 0.906
C102-25 10,858.05 0.92 10,881.45 0.62 10,830.15 2.078
C103-25 10,858.05 0.959 10,881.45 0.618 10,830.15 16.283
C101-50 20,807.55 3.98 20,845.8 1.75 20,800.85 3.284
C102-50 20,807.55 3.42 20,845.8 1.8 20,792.25 9.31
C103-50 20,807.55 3.47 20,845.8 1.793 20,792.25 49.864

As can be seen from Table 4, the algorithm proposed in this paper obtains the lowest
time cost compared with the other two algorithms. Therefore, the algorithm proposed
in this paper can guarantee the solution quality well. The solution efficiency of the TS
algorithm is quite high, but it requires multiple solutions to obtain a satisfactory solution
and is not very robust. Our algorithm has strong robustness in solving. The solution time
of the proposed algorithm increases gradually as the case size increases, which is related
to the case size and does not affect the quality of the solution. In summary, our proposed
algorithm performs well in terms of solution quality and robustness of the solution.

5.2. Instance Verification

A distribution center providing medical face shields dispatch services to multiple
closed communities in X City under COVID-19 is selected as a simulation case. Parameter
setting primarily adopts a combination of reference actual data and simulation.

The specific calculation example is as follows: 10 closed communities need to be
dispatched within time windows, numbered 1, 2, 3,..., 10, and 0 represents the distribution
center. The quantity of requirements per community is distributed according to two face
shields per person and the actual demand data is shown in Table 5. The specific coordinates
from the distribution center to multiple closed communities are achieved through Baidu
Maps. The coordinates of specific nodes in the network are shown in Table 6, so that the
distance between any two nodes can be obtained according to the specific coordinates, in
km. The parameters related to the drone are shown in Table 7. Assuming that the drones
deliver materials at 15:00, the customer service time windows information is shown in
Table 8. Each customer service time is about 30 s.

Table 5. Demand for face shields in 10 enclosed communities.

Number 1 2 3 4 5 6 7 8 9 10

Demand/n 2750 2000 1500 750 2500 3750 750 500 1750 2500
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Table 6. Network node coordinates.

Number 0 1 2 3 4 5 6 7 8 9 10

X Coordinate 1.9 0 0.206 1.1 1.6 1.4 1.8 3.5 4.3 2 3.2
Y Coordinate 0.921 0.97 1.4 1.7 0 2.1 1.9 1.6 0.151 2.4 2.9

Table 7. Drone parameters.

Available Number Capacity/kg Flight Speed/km/h Endurance/h

Parameters 8 20 100 0.5

Table 8. Customer service time windows.

Number 0 1 2 3 4 5 6 7 8 9 10

Start
Window

15:
00

15:
21

15:
02

15:
04

15:
05

15:
15

15:
11

15:
05

15:
02

15:
05

15:
09

End
Window

15:
30

15:
27

15:
03

15:
05

15:
06

15:
21

15:
14

15:
10

15:
04

15:
07

15:
15

The continuous iterative optimization process of linear relaxation of MP and PS is
shown in Figure 4. The optimal value of the objective function is 1051.14 s after 16 iterations.
In the first and the second iteration, the value of the objective function has changed
considerably. This is mainly attributable to the fact that the original routes are set to be
assigned as separate routes for each customer node. After one iteration, the optimization
of the objective function value is remarkable. The objective function value of the PS is
continuously iterated and the path with the minimum objective function value of the PS is
taken to add the MP to continuously optimize the objective function value of the MP. Total
time for the entire simulation case run results in 0.262 s.

Figure 4. Iterative optimization process.

The specific delivery routes are shown in Figure 5. Each delivery route satisfies the
drone endurance constraints and time window constraints. During the entire distribution
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process, a total of 5 drones are used to deliver medical supplies. The drone delivery
routes are as follows: route 1: 0 → 8 → 7 → 10 → 0; route 2: 0 → 2 → 1 → 0; route 3:
0→ 9→ 5→ 0; route 4: 0→ 4→ 6→ 0; route 5: 0→ 3→ 0. The distribution route map
allows drones to be assigned to emergency logistics decision-makers for medical supply
distribution in the shortest possible time.

Figure 5. Route map of medical supplies delivery by drones in X city.

5.3. Comparison among Multiple Drones

The previous sections of this paper have concentrated on DRPTW, which indeed
captures practical considerations under major public health emergencies. In this section,
we perform a comparison of multiple drones materials delivery routes and time costs for
a capacity of 20, 30, 40, and 50 kg, respectively. The analysis is performed based on a
randomly generated data set.

A comparison of the test results of multiple drones is shown in Table 9. It is obvious
that the drone with a capacity of 20 has the highest delivery time cost. With increased load
capacity, drones delivery time costs are reduced by 16.7%. Likewise, the overall program
runtime is significantly reduced. We can identify the iterative process of optimizing the
time cost of different types of drones for materials delivery in Figure 6. It can be seen that
the capacity of the drone has a significant impact on the delivery time cost of the drone.

Table 9. Comparison of test results of multiple drones.

Capacity N-Path Route MP LR/s RT/s

20 8

0→ 3→ 13→ 18→ 0; 0→ 8→ 10→ 0;
0→ 19→ 15→ 12→ 0; 0→ 4→ 1→ 0;
0→ 16→ 17→ 6→ 0; 0→ 11→ 2→ 0;
0→ 14→ 20→ 0; 0→ 9→ 5→ 7→ 0;

10341.24 0.85

30 6

0→ 9→ 3→ 13→ 18→ 0;
0→ 19→ 5→ 8→ 2→ 0;

0→ 14→ 20→ 0; 0→ 7→ 4→ 1→ 0;
0→ 16→ 15→ 12→ 0;

0→ 11→ 17→ 6→ 10→ 0;

9030.84 0.703
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Table 9. Cont.

Capacity N-Path Route MP LR/s RT/s

40 5

0→ 11→ 17→ 6→ 0; 0→ 9→ 15→ 12→ 0;
0→ 14→ 20→ 3→ 13→ 18→ 0;

0→ 19→ 5→ 8→ 2→ 10→ 0;
0→ 16→ 7→ 4→ 1→ 0;

8662.56 0.689

50 5

0→ 19→ 0; 0→ 11→ 17→ 6→ 0;
0→ 14→ 20→ 3→ 13→ 18→ 0;

0→ 16→ 5→ 4→ 7→ 1→ 0;
0→ 9→ 12→ 15→ 8→ 2→ 10→ 0;

8606.04 0.657

Figure 6. Comparison of the iterative optimization process of different types of drones.

Therefore, considering the actual materials distribution process, choosing drones with
the right load capacity will not only effectively reduce time costs, but also reduce the
number of drones dispatches.

6. Conclusions

In this paper, the following conclusions can be drawn through the discussion of the
medical materials distribution drone routing problem under major public health emergencies.

To minimize the total delivery time, an optimization model that integrates road block-
age policy, contactless delivery, customers’ service time windows, and drone endurance is
developed to reflect the actual supplies distribution under major public health emergencies.
The resulting drones scheduling optimization solutions can effectively decrease the total
delivery time for medical materials distribution. Embedding the PA into a CG framework
can ensure the quality and robustness of the solutions in resolving. The established DRPTW
model can effectively solve the single-depot homogeneous drone routing problem for traffic
blockades and reduce the risk of personnel exposure under epidemic materials distribution.
Depending on the actual volume of customer demand, drones of different capacities can be
selected for delivery, which will improve the efficiency of delivery to a certain extent. This
is an enrichment of the DRPTW study.

The research not only enriches the existing research related to vehicle routing problem
models and algorithms under major public health emergencies, but also provides feasible
optimized distribution solutions for emergency logistics decision-makers. Due to the
limited flight range of drones, there are limitations in the range of delivery. In the future,
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we should consider the joint distribution of multiple types of vehicles to achieve a more
efficient distribution of supplies and pursuit more high-quality solutions.
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