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Abstract: This paper is addressing a new class of on-demand transport problems oriented toward
customers. A mixed-integer linear programming model is proposed with new effective constraints
that contribute to enhancing the quality of service. An exact resolution has been achieved, leading to
lower bounds of the solution space of real cases of on-demand transport problems. To overcome the
exponential computational time of the exact resolution, an evolutionary descent method is developed.
It relies on a new operator for perturbing the search. The comparative results between the new
method and the branch and bound show low gaps for almost all the instances tested with lower
execution times. The results of the evolutionary descent method are also compared with the results of
two different heuristics, namely a Tabu Search and an Evolutionary Local Search. Our evolutionary
method demonstrates its effectiveness through competitive and promising results.

Keywords: mobility-on-demand problem; quality of service; dial-a-ride problem; customer service
design; metaheuristics; exact optimization

1. Introduction

This paper aims at addressing a sustainable mobility-on-demand problem for enabling
fair access to employment, social life, markets, and services to people. It is in line with the
11th Sustainable Development Goal (SDG) of the United Nations for “Making Cities and
Human Settlements Inclusive, Safe, Resilient and Sustainable”. The sustainable transport
agenda for 2030 aims at enhancing mobility, including urban mobility ensuring access
to safe, accessible, and sustainable transportation systems for all at an affordable cost.
Therefore, on-demand mobility services should be designed as sustainable transport options
for enhancing accessibility to transport, meeting various needs of people in their personal
and economic lives. Such systems are part of a growing sector named Mobility as a Service
(MaaS) which advocates accessibility to means of transport and personalization of services.

In this study, we focus on a Dial-A-Ride Problem (DARP) which was originally pro-
posed by the authors of [1]. The DARP is also known as an on-demand transportation
problem in the work of [2], where a transportation demand is a request made by a customer
who wants to be transported from an origin to a destination site. A DARP is characterized
by the quality of service offered to the customers. The most common features which re-
flect this service level are both the time windows imposed at different locations and the
maximum riding time which is the time needed to fulfil a request of transport. However,
new advances are required to deal with other citizens’ needs which are more expressed
and varied according to the authors of [3]. A better customized and effective design of the
service quality is highlighted as beneficial for both the service provider and the customer,
see the work of [4].
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In this work, our contribution is twofold. On the one hand, we propose a new problem
providing more effective on-demand transport plans. In this model, the customers’ require-
ments are expressed and used to fulfil the expected demand and improve the service quality.
More precisely, a customer-oriented design of the time windows is proposed for minimizing
passengers’ waiting times. Then, the resulting mixed-integer linear programming (MILP)
model is implemented using the CPLEX optimizer tool which uses the branch and bound
(B&B) exact method. The experimentation is performed on real-life benchmark data.

On the other hand, as computation times required by CPLEX are too long when solving
complex and real-life problems (exponential with regards to the heuristic approaches),
a new evolutionary-based approach called the Evolutionary Descent Algorithm (EDA) is
developed. With the use of this new EDA, near-optimal solutions are obtained for real-life
on-demand transport problems. Two types of experiments are set. In the first part, the lower
bounds of the solution space for the studied problem are compared against near-optimal
solutions produced by our EDA. Then, a deeper comparison of the EDA algorithm with
other existing metaheuristic-based approaches from the literature is achieved.

The paper is organized as follows. Section 2 presents the relevant literature linked
with the studied problem. Section 3 defines a mathematical formulation of the problem.
Section 4 describes the EDA for the resolution of the problem. Section 5 reports numerical
results obtained by the EDA on real-life instances with a comparative study with existing
methods of the literature. Finally, a discussion on the results of the proposed methodology
is undertaken in Section 6, followed by a conclusion.

2. Relevant Literature on Dial-A-Ride Problems
2.1. The Classical Dial-A-Ride Problem

The DARP is a mobility-on-demand problem marked by the quality of service offered
to the customers. This problem was initially dedicated to the elderly or those with reduced
mobility (e.g., [5,6]). Nowadays, this problem is evolving to be applied in new fields like
integrated transport in [7,8], the healthcare domain in [9,10], and ride-sharing transport
in [11]. Many variants are provided in the work of [2] including two routing transportation
issues involving static or dynamic frameworks with single or multiple vehicles. The quality
of service is defined in [3] through several terms which are related to customer perceptions
and technical approaches. From the customer perception viewpoint, the quality of service
is linked to safety, comfort, reliability, and vehicle access. From the technical perspective,
the quality of service is defined with operational terms such as maximum ride time, total
travel time, user riding time, and waiting time. These terms are expressed in the form
of constraints as in the works of [12–14] or directly in the objective function as in the
works of [15,16]. The different expressions of quality of service come from the variety of
models which try to find a balance between the travel costs and the quality of service for
the customer.

2.2. The Dial-A-Ride Problem with a Customized Design of the Service Quality

Customers’ access to mobility has evolved rapidly due to technological advancements
and changing customer preferences. Several factors such as the price, waiting time, travel
time, convenience, and traveller experience are included when selecting the appropriate
mode of transport by the mobility service consumers as in [17]. These factors should be
well addressed to ensure the improvement of the quality of service. This quality provided
in [18] is measured through waiting time metrics and riding time according to customers’
preferences for improving both the service quality and the distances travelled by the
vehicles. As highlighted by the authors of [19], the transportation of customers should be
improved through the use of new information and communication technologies. Their
expectation was to draw new public transport services to customers.

Thus, one way to address the new demands of transport nowadays is to be able to align
with the diversified needs of the customers for transport. This is what is highlighted in [4],
fostering the modelling of mobility-on-demand problems according to a customer-oriented
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design. This issue is thoroughly studied in the survey of [20] which gathers two main fields
of research related to the quality of service levels in DARPs. In the first group of works,
the DARP is qualified as classical when it aims at minimizing the travel costs ensuring a
common design of the service quality for all the users, (e.g., [5,21–24]). In the second trend
of works, the quality of service is studied from a customer-oriented point of view. In this
second group of researches, the authors of [25] assessed the variation of different features
related to the quality of service on operational costs. The authors of [26] proposed time
windows, and a maximum riding time for each user. A maximum ride time is specified
for each customer and investigated for designing time windows in other works of [13,27].
A recent example of another customer-oriented computation of the time windows is made
using the maximum riding time and the beginning of service in the work of [14]. In the
problem of [28], a request is split into a set of groups of persons and has a revenue. Time
windows are redefined for only the delivery location using a service time, a transit time
and a maximum ride time. Based on multi-criteria models, the authors of [29] stressed that
expanding the size of the time window for a transport service is beneficial for the system
provider but not for the customers, which is also emphasized by the authors of [30].

In this paper, we consider a customer-oriented service quality in which each customer
specifies his/her own riding time. In this model, the time windows are designed to
minimize the waiting time of the users.

2.3. Resolution Methods for the Dial-A-Ride Problem

The most successful method for solving a wide range of Dial-Ride Problems is the
Tabu Search in [31]. This local-based method is extensively applied for artificial cases of
DARP (e.g., [22,32,33]). However, this method needs to be adapted to deal with real-life
applications and customized designs of DARPs. Some works (e.g., [10,34]) in the literature
address the quality of service in DARPs from a customer point of view. The authors in [34]
proposed a Tabu Search based on a neighbourhood strategy that operates a tactical move
operation. The latter consists in altering the requests schedule by allocating a random
request to its nearest predecessor in another route. An insertion heuristic relies on iterative
checks of the constraints. In order to diversify the search, the Tabu list is emptied after a
selected number of TS iterations. Real-life cases of on-demand transport are tackled and
the results for small instances are promising.

In the field of population-based approaches, few evolutionary algorithms are found in
the literature for solving mobility-on-demand problems (e.g., [35–37]). Several operators,
namely the mutation and the crossover ones, are proposed. In [35], the crossover consists
in randomly incorporating a customer in the current solution. A cluster mutation and a
route mutation are used. The artificial instances in [38] were used for the experimentation.
As it was stated by the authors of [37], a crossover aimed at generating a non-legal solution
by randomly selecting a cluster of nodes from two different parents. Then the mutation
operation consisted of a local modification in the clusters of nodes. Experiments were
performed and compared to instances in [1].

To the best of our knowledge, the only evolutionary approach devoted to solving
DARPs including the customer viewpoint is the Evolutionary Local Search (ELS) of [13].
The mutation consists in removing a transportation request from a trip to be inserted into
another. Next, transportation requests are exchanged between two trips. This action is con-
sidered the crossover operator. The crossover is applied to locally alter a mutated solution.
Each mutated solution is improved by a local search which is based on six neighbourhood
structures. These structures are dynamically managed during the hybridized algorithm
iterations. This management is provided by the mean of several probabilities. With this
regard, a local search is altered through the evolutionary computations increasing the level
of intensification of the search process.

New evolutionary algorithms should be applied on real-life cases of DARPs such as
the 96 instances of [39] considering customer expectations. For these problems, the ELS
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of [13] performed well. This is on some of these instances that the new EDA algorithm
proposed in this paper is tested (see Section 5).

3. Problem Definition and Formulation
3.1. The Customer-Oriented DARP

The customer-oriented DARP is an on-demand transport problem. It consists of
satisfying a set of prior known transportation requests using a set of homogeneous vehicles
with a maximum capacity. A request corresponds to a limited number of people who
require to be transported from one location to another. This number is the same on the
pickup and the delivery sites. Thus, the set of requests corresponds to that of the pickup
nodes. The depot is concerned by the departure and the arrival of all the vehicles and
no demand is assigned to it. In addition, a maximum total duration is fixed to limit the
total vehicle travel time. Each customer has a riding time which is the time interval from
the time of his/her pickup to that of the delivery including waiting times which occurred
during the vehicle route.

The customer-oriented DARP is different from classical DARPs in terms of the design
of the service quality which is customer oriented. Firstly, a maximum riding time is
specified for each customer considering the distance between the customer’s origin and
that of the destination. Secondly, new customized bounds are produced for time windows
at origin and destination sites separately. The redefinition of the new bounds is based
on customers’ expectations including a lower riding time (time spent aboard the vehicle),
service time (the time taken to load or discharge people from the vehicle), and a restricted
maximum riding time. The major contribution of the customized design of time windows
relies on reducing the customers’ waiting times.

A potential waiting time at a node is illustrated by Figure 1. In this figure, the time
window is defined by its lower and upper bound.

Figure 1. A time schedule at a visited node.

Inside this time window, the beginning of the service is bounded. In addition, the ar-
rival time and the departure time are defined at the node. Note that a beginning of service is
always considered as the maximum value between the arrival time and the earliest service
bound. The waiting time is the time between the vehicle’s arrival time and the beginning
of service at a node. The vehicle’s departure time is the time that starts after the end of the
service time for loading or delivering people.

In the studied problem, particular attention is given to the time windows for improving
the waiting time as well as the total duration, see the example in Figure 2.
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Figure 2. A case of a reduced waiting time at a visited node i in the tour of v.

3.2. Mathematical Formulation of the Customer-Oriented DARP

The customer-oriented DARP is defined on a complete directed graph G = (N, A),
where N is the set of vertices and A is the set of arcs. The set of nodes i ∈ N is defined
as {0 . . . 2n + 1} which includes the depot in two copies (i = 0) at the departure and
(i = 2n + 1) at the arrival, the set of pickup nodes {1 . . . n}, and the set of delivery nodes
{n + 1 . . . 2n}. The set of arcs is defined as {(i, j) with i, j ∈ N, and i 6= j}. We assume
that a fleet of homogeneous vehicles is available at the depot to satisfy a given number of
requests. A request is defined by an origin node i ∈ {1 . . . n} and a destination one (i + n)
∈ {n + 1 . . . 2n}.

3.2.1. Notations Used in the Formulation

The problem under consideration is NP-Hard, as it was proved by [40]. It can be
modelled as a mixed-integer linear program (MILP) using the following decisions variables:
The first one is a routing variable whereas the others are scheduling variables.

• xv
(i,j) is a binary variable equal to 1 if and only if the vehicle v goes from node i to node

j, equal to 0 otherwise.
• Bv

i , Arv
i , Wv

i , and Rv
i are real variables that indicate the starting time of service, the ar-

rival time, the waiting time, and the riding time at node i if the latter is visited by a
vehicle v.

The set of notations used in the problem formulation is in Table 1.

Table 1. The problem notations.

Parameters Description

n Total number of requests
m Total number of vehicles
li Number of persons to charge or discharge at node i ∈ N
ti Service time at node i ∈ N
δ Penalty term on waiting time
tr(i,j) Transit time on an arc (i, j) ∈ A
C Maximum capacity of the vehicles
mrti Maximum riding time of a request i ∈ {1 . . . n}
dr Maximum total tour duration of the vehicles
[in f _i, sup_i] Time window at node i ∈ N

The vehicle’s arrival time Arv
i at node i is the time spent from its departure to this

node. Note that this arrival is allowed before the beginning of service Bv
i but not after.

Therefore, only a positive value for the waiting time at node i is considered. It is equal to
the time between the arrival time Arv

i and the starting of the service Bv
i ∈ [in fi, supi] where

in fi and supi are the earliest and the lasted service time respectively.
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The departure time at node i is Dv
i = Bv

i + ti. In this problem the service time ti is
equal to the passengers’ loading time. Given that no demand is assigned at the depot,
the departure time at the depot is equal to the beginning of service; thus Bv

0 = Dv
0 and

Bv
2n+1 = Dv

2n+1. In addition, the arrival time at the depot is initialized as Bv
0 = Arv

0
as well as Bv

2n+1 = Av
2n+1. Last, we consider that the parameters ti = ti+n, li = li+n,

and mrti = mrti+n are the same at the origin and the destination sites of a request.

3.2.2. Mathematical Formulation of the Customer-Oriented DARP

The objective function which has to be minimized, see (1), consists of the total travel
costs generated by the visited arcs in the vehicle tours. A travel cost c(i,j) on a visited arc
(i, j) is the sum of the transit time tr(i,j) and the service time ti at node i. Besides, the total
travel cost includes the total penalties on waiting times when visiting nodes. The value of δ
is chosen between 0.05 and 0.1 as it is used in [41]. This variable increases in the event of
a waiting time otherwise it decreases. The penalty growth is defined by (δ = δ ∗ (1 + δ)).
Otherwise, the penalty term follows (δ = δ\(1 + δ) ).

Min f (S) =
v=m

∑
v=1

∑
(i,j)∈A

(c(i,j) ∗ xv
(i,j) + δ ∗Wv

i ) (1)

Subject to:
v=m

∑
v=1

i=n

∑
i=1

xv
(i,j) = 1, ∀j ∈ N (2)

∑
j∈N

xv
(i,j) − ∑

j∈N
xv
(j,i) = 0, ∀i ∈ N, ∀v ∈ {1 . . . m} (3)

∑
(i,j)∈A

xv
(i,j) − ∑

(i,j)∈A
xv
(i+n,j) = 0, ∀v ∈ {1 . . . m}, ∀i ∈ {1 . . . n} (4)

∑
j∈N\{0,2n+1}

xv
(0,j) = 1, ∀v ∈ {1 . . . m} (5)

∑
i∈N\{0,2n+1}

xv
(i,2n+1) = 1, ∀v ∈ {1 . . . m} (6)

0 ≤ ∑
i∈N

li ∗ xv
(i,j) ≤ C, ∀(i, j) ∈ A, ∀v ∈ {1 . . . m} (7)

∑
j∈N

lj ∗ xv
(i,j) ≥ ∑

i∈N
li ∗ xv

(i,j) + lj, ∀(i, j) ∈ A, ∀v ∈ {1 . . . m} (8)

Bv
2n+1 − Bv

0 ≤ dr, ∀v ∈ {1 . . . m} (9)

tr(i,i+n) ≤ Rv
i ≤ mrti, ∀i ∈ {1 . . . n}, ∀v ∈ {1 . . . m} (10)

Bv
i+n − (Bv

i + ti) = Rv
i , ∀i ∈ {1 . . . n}, ∀v ∈ {1 . . . m} (11)

Bv
j ≥ Bv

i + tr(i,j) + ti + Wv
j , ∀v ∈ {1 . . . m}, ∀(i, j) ∈ A (12)

Bv
i+n ≥ Bv

i + tr(i,i+n) + ti + Wv
i+n, ∀v ∈ {1 . . . m}, ∀i ∈ {1 . . . n} (13)

Arv
(j) ≥ Bv

(i) + ti + tr(i,j), ∀(i, j) ∈ A, ∀v{1 . . . m} (14)

Min
(

in f(i+n) −mrti − ti, in fi

)
≤ Bv

i + M ∗ (1− var),

∀i ∈ {1 . . . n}, ∀v{1 . . . m}
(15)

Bv
i −M ∗ var ≤ Min

(
sup(i+n) − ti − Rv

i , supi

)
,

∀i{1 . . . n}, ∀v{1 . . . m}
(16)
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Min
(

in fi −mrti − ti, in f(i+n)

)
≤ Bv

(i+n) + M ∗ (1− var),

∀i{1 . . . n}, ∀v{1 . . . m}
(17)

Bv
(i+n) −M ∗ var ≤ Min

(
sup(i) − ti − Rv

i , sup(i+n)

)
,

∀i{1 . . . n}, ∀v{1 . . . m}
(18)

Wv
(i) = Bv

(i) − Arv
(i) ∀i ∈ N ∀v{1 . . . m} (19)

xv
(i,j) ∈ {0, 1}, ∀(i, j) ∈ A, ∀v ∈ {1 . . . m} (20)

Bv
(i) ≥ 0, Arv

(i) ≥ 0, Wv
(i) ≥ 0, Rv

(i) ≥ 0, ∀i ∈ N, ∀v ∈ {1 . . . m} (21)

The first constraints of the problem are common with standard DARP constraints.
Indeed, in equality (2), we express that a request is allocated to exactly one vehicle. Besides,
Equation (3) makes sure that each vehicle that visits a node also leaves it. Equation (4) ex-
presses the balance between the pickups and the deliveries in a vehicle’s tour. Equations (5)
and (6) assume the depot as the beginning and end of each tour. The constraints (7) and (8)
ensure that the vehicle’s capacity is respected while charging and discharging persons
at the pickup and delivery nodes. A positive load is supposed in the case of a pickup
and the load is negative otherwise. The total travel duration is expressed by the set of
constraints (9). Let us note that the travel time of each vehicle starting from the depot and
returning to it must respect this common bound.

Other constraints are defined for enhancing the quality of the service provided to
the customers. The riding time expressed by (11) is the time spent between the vehicle’s
departure Dv

i at the origin and the beginning of service Bv
i+n at the destination. This riding

time is limited by a customer-oriented maximum riding time mrti in (10). The precedence
constraint between the pickup and delivery stations is mentioned in (13) and that between
the nodes is defined in (12). The arrival time Arv

i is computed by (14).
The time windows are separately designed for the origin nodes and those of the

destination. Equations (15) and (16) successively present the lower and upper bounds for
the beginning of service at the origin sites. The time window at an origin is tightened
by taking the minimum value between the initial earliest service time in f(i) supposed
for a node of pickup, and the new derived one by (in f(i+n) − mrti − ti). Consequently,
the beginning of service is bounded by a new resulted earliest service time in (15).

Equations (17) and (18) define the lower and upper bounds for the beginning of
service at the destinations. The new bounds are the minimal values between the initial time
windows [in fi, supi] and

[
in f(i+n), sup(i+n)

]
and those adjusted to customers’ specifications.

These latter are the effective customer riding time Rv
i , the service time ti, and the maximum

ride time mrti which are used in this redefinition. With this time windows customization,
a new beginning of service is calculated leading to a minimization of the waiting time
expressed by (19).

To achieve the linearization of the time window constraints, we use a large constant
M and a Boolean’s variable var. This constant is generally fixed as 1000, see the work
of [1,42], which used this value successfully for the linearization of their problem constraints.
Moreover, Equation (20) ensures that the binary nature of the decision variables xv

(i,j) is
respected. Finally, inequality (21) impose the positivity of the scheduling decision variables.

Figure 2 shows two cases of a time schedule at a node i in a tour of v: before and
after the computation of the time window. In the second case, we illustrate an enhanced
lower bound in fi and upper bound supi at the node i. Thus, for the same arrival time
Arv

i computed by (14), an enhanced value of Bv
i ∈ [in fi, supi] can be obtained by the time

windows Equations (15)–(18). Note that we assumed having Bv
i = in f v

i at the node i visited
by the vehicle v.

In addition, the new beginning of service impacts the departure time at node i and the
arrival time at the next visited node j. Moreover, the total travel duration of the vehicle
is also influenced as it is expressed by (9). As a consequence, both the customer and the
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service provider may take benefit from the reduction of the waiting times as well as the
unnecessary delays during a route.

The equations of the model are further implemented and tested on real instances in
the experimental section. Indeed, although metaheuristics [43–46] and especially hybrid
ones [47,48] are effective and fast for solving complex problems such as scheduling and
transportation ones, we want here to have a comparative experimentation with an exact
resolution [49,50] to find the optimal solution of each of the customer-oriented DARP
instances foreseen. This exact resolution will be compared to the new evolutionary method
which is proposed to solve the problem.

3.3. The Relevance of the Customized Time Windows on a Real-Life Case of On-Demand Transport

This section shows how tightened time windows improve the waiting times of the
customers on a real-life example of on-demand transport. Therefore we use a problem
instance of [39]. In this example, we consider a single-vehicle tour that satisfies two
requests, one of which generates a long waiting time. This vehicle has a maximum capacity
of 8 passengers and a maximum total duration of 480. There are two persons who have to
be transported from the origin location to the destination in the first request and four for
the second request.

In order to illustrate the influence of the time windows, we present two successive
cases with and without the consideration of the new constraints. Two figures are proposed
indicating time windows and waiting times. Figure 3 shows the case of a vehicle’s tour
satisfying the two requests with the initial time windows proposed in the instance of [39]
and with a waiting time which occurs at node 2. Figure 4 shows the case of the same tour
but with the application of the time windows computed by the new Equations (15)–(18).

Figure 3. The tour without the time windows tightening.

In Table 2, we indicate the parameters related to the vehicle’s tour example of Figure 3,
especially those linking request 2 with origin node 2 and destination node 4. This request
has a maximum riding time equal to 76.

Table 2. Initial parameters of request 2.

Visited Nodes li tr(i,j) Arv
i Bv

i Dv
i

2 4 28.45 469.62 837.55 841.55
4 −4 3.2 870 870 874
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The riding time of request 2 is equal to (Rv
2 = 28.45). The only node which is concerned

by a waiting time is node (i = 2) where we have (Wv
2 = 367.94). This waiting time Wv

2
delays the arrival time at the successive visited nodes and thus impacts the total vehicle’s
tour duration equal to 470.15.

In order to reduce unnecessary waiting times, new time windows are computed
using Equations (15)–(18). Given that the time windows are correlated, the bounds on
the origin are based on those provided for the destination. Therefore, at node 4, we have
min(790-4-76; 870) = 710 as the lower bound and min(897.55-4-28.45; 930) = 865.1 as the
upper bound. Whereas for node 2, min(710-4-76; 790) = 630 is computed as the lower
bound and min(865.1-4-28.45; 897.55) = 832.65 as the upper bound. The beginning of
service Bv

2 is then calculated using Equation (11) based on the new earliest service time
Bv

4 = 710. As a result, Bv
2 = 677.55 ∈ [630, 832.66].

Given Equation (1), the new waiting time Wv
2 is reduced as (Bv

2 − Av
2 = 677.55−

469.62 = 207.93). Consequently, the arrival time Av
4 is changed by (Av

4 = 469.62 + 207.93 +
28.45), with tr(2,4) = 28.45, Wv

2 = 207.93, and A2 = 469.62. Then, we obtain (A4 = 706) and
a new lower waiting time at node 4 (Wv

4 = 4). Globally, with the time windows tightening,
the total waiting time is less than the initial one Wv

2 = 367.94 indicated in Figure 3. Indeed,
we obtain (Wv

2 + Wv
4 = 207.93 + 4 = 211.93).

The vehicle tour after the new time windows calculation is illustrated in Figure 4.

Figure 4. The case with the time window recalculation.

The minimization of unnecessary waiting times contributes to also minimizing the
total duration since the new arrival times at nodes 2, 4, and 5 (the depot) are enhanced.

4. The Evolutionary Descent Algorithm for the Customer-Oriented DARP

To produce good solutions to the problem in shorter computational times, we propose
an evolutionary descent approach (EDA). The main steps of the algorithm are as follows.

Step 1: Construct an initial solution of the EDA using the customized insertion
heuristic, see Section 4.2.

Step 2: At each iteration in the EDA, construct a population of individuals by perturb-
ing the initial solution.

Step 3: For each individual in the population, apply the crossover (see Section 4.3).
Step 4: Evaluate each solution in the population using the objective function (1) of

Section 3.2 and save the best individual.
Step 5: If the fitness of the best individual is the best encountered one in the overall

research, consider it as a new initial solution and save it as a temporary best solution in the
search space.
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Step 6: If the maximum number of iterations is not reached, then go to step 2; other-
wise, go to step 7.

Step 7: Keep the final temporary best solution as the best one in the EDA.
To start the search in the EDA, an initial solution is constructed by the mean of a

customized heuristic. Next, in order to create individuals composing the initial population,
a simple perturbation procedure is applied to the initial solution. It consists of the prohi-
bition of a random request to be assigned to a dispatched vehicle. This action allows the
allocation of the request to other vehicles and permits to produce new feasible solutions in
the population.

The population is then diversified by the use of the crossover (see Section 4.3). The pro-
duced solutions are evaluated and the best one is selected for the next iteration in the EDA.
The descent mechanism is iteratively repeated through the perturbation to generate the
population, the crossover, and the selection. The algorithm is stopped when the number
maximum of iterations is reached and the final solution is kept as the best.

4.1. Representation of a Solution

In order to represent a solution to the problem, we use an array of the allocation of the
customers to a vehicle. Each vector represents a vehicle’s tour satisfying a set of requests.
The number of tours is equal to the number of vehicles. The elements of a vector are a
succession of visited nodes from the depot to it. The depot is not represented in Figure 5,
but it is considered in the implementation of the EDA. In this example, seven requests
are served by two vehicles. Each satisfied request is represented by a pair of origin and
destination nodes such as the pair (5, 12) for request 5 in tour 1.

A solution is said to be feasible if it results in the routes satisfying all the problem con-
straints. Thus, the output variables present the time schedule for each visited node in a tour
as in Figure 1. In what follows, we explain how these variables are calculated to produce
an effective routing plan which considers the customized design of the time windows

Figure 5. An example of a solution in the customer-oriented DARP.

4.2. The Customized Insertion Heuristic

The customized insertion heuristic builds a solution that satisfies all the requests
using a set of vehicles. Its specific feature relies on the customized design of the transport
schedule ensuring the enhancement of the quality of service. The steps of the customized
insertion heuristic are as follows.

Step 1: Initially, each tour is empty and all the vehicles are available.
Step 2: Sort the list of non-allocated requests in the increasing order of the upper

bound of their initial time window at the pickup nodes.
Step 3: Select a vehicle from the list of available ones, according to its capacity consid-

ering the load of the selected request i.
Step 4: Select a request from the ordered list of non-allocated requests.
Step 5: Before any new request’s insertion, check if there are some previous allocated

requests in the tour, then execute some deliveries to ensure that the maximum riding
time (10) is respected, and go to step 7.

• Compute the customized time windows with (17) and (18).
• Update the time schedule with the customized beginning of service.
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• Update the vehicle’s capacity and the vehicle’s total tour duration.

Step 6: Check the feasibility of the insertion of the request in the tour according to the
current time schedule, the customized time window (15) and (16) of the request, and the
total duration of the vehicle tour.

• In the case of a feasible insertion, insert the pickup node of the request in a valid
position in the tour.

• Update the vehicle’s capacity and total tour duration, delete the request from the list
of non-assigned requests and go to step 4.

• When the vehicle capacity is completed, deliver some requests in the descending order
of their maximum riding times and update the time schedule with new customized
time windows (17), (18); go to step 7.

• Go to Step 3 when the insertion is not feasible.

Step 7: Check the maximum duration of the vehicle tour and set the dispatched vehicle
as non-available in the case of a potential violation of the constraint; go to step 3.

The insertion algorithm allocates iteratively customer requests while problem con-
straints are satisfied. Thus, given a set of requests, the algorithm looks for valid positions on
each tour. When the insertion is not possible, the heuristic looks for another vehicle. In ad-
dition, the feasibility of the insertion is linked with the maximum total duration of the tour
trip. If it is a valid insertion, all the vehicles, requests and schedule parameters are managed
and updated. Moreover, to enhance the quality of the routing plan, the time windows are
customized. With this regard, new time windows are computed by reducing unnecessary
delays. Hence, the customized time windows are computed using Equations (15)–(18),
see Section 3.2. Consequently, additional requests can be accepted for insertion into a
vehicle’s tour.

4.3. The Crossover Operator for the Customer-Oriented DARP

The crossover is a classic gene-changing process by which the offspring inherit a
genetic code slightly different from the parents. The crossover operator in this work
consists in creating an asymmetry between two copies of an individual. An example of the
crossover operator is illustrated by Figure 6. In this example, we consider five requests that
are satisfied by two vehicles.

Figure 6. An overview of the crossover operator.

First, an individual is randomly selected from the current population. In step 1 of
Figure 6, a copy of this solution is created. Hence, two parents are considered for our
crossover operator. Next, from each route, a complete sub-route is chosen (with the
corresponding pickup and delivery nodes). In the example, we select the sub-route from
node 1 to node 6 from route 1, and we select as an example, the sub-route from nodes 2
to 7 from route 2. Then, in step 2, the sub-sequence from 1 to 6 is removed from parent
1, and the sub-sequence from 2 to 7 is deleted from parent 2. Next, in step 3, two new
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solutions are constructed by exchanging the selected sub-routes respecting their exchanged
positions in the tours. This exchange is guaranteed if it maintains the feasibility of the
solution. With this regard, all the constraints of the problem must be checked at this stage.
Finally, in step 4, an offspring solution is constructed by the union of the two resulting
parts of solutions.

5. Experimental Study

In this section, an experimental study is conducted in order to assess the performance
of the EDA method in terms of reliability and efficiency.

5.1. Description of the Benchmark Test Instances

The benchmark test instances which have been chosen for the study are mobility-on-
demand problems taken from the work of [39]. These instances are built upon realistic
geographical data where pickup and delivery points are located sites defined by a geo-
graphical information system. Large distances separate the locations and the networks are
of different complexities.

These instances include customer-oriented values with parameters related to the
quality of service. Indeed, maximum riding times are specified for each customer as
well as time windows which are supposed for pickup and delivery nodes. For these
requests, the time windows are of different sizes depending on the customers’ preferences.
The maximum riding times are also expressed according to the distances between the
requests of the customers. A homogeneous fleet of vehicles is available at the depot
with a maximum capacity of eight persons. A maximum total tour duration equal to
480 is considered. There are 96 instances, but only 15 examples are reported for this
experimentation. These instances were selected considering various problem sizes with
between 10 and 47 requests. From each set of problems with the same number of requests,
one instance was selected. The selected instances are those solved by the branch and bound
method embedded in the CPLEX software within a limit of four hours.

5.2. Experimental Protocol

The EDA was implemented in C++ language using the DevC++ compiler. The mixed-
integer linear formulation of the Customer-Oriented DARP was implemented in OPL
language in the commercial software CPLEX 12.6. This latter uses the branch and bound
technique for an exact resolution of the problem. The two methods were executed on an
Intel(R) Core(TM) computer (2.4 GHz) with 4 GB RAM.

Three types of experiments were conducted. In the first level, a comparison is made
between near-optimal solutions obtained with the EDA and the lower bounds of the
solution space provided by CPLEX. In order to assess the performance of the EDA, both
the execution time for finding the exact and approximate solutions are provided as well
as these solutions. In this work, we limit the calculations with CPLEX to four hours of
cpu time.

In the second level of experimentation, we compare our evolutionary method EDA
with another local search based metaheuristic which is a Tabu Search method dedicated
to DARPs with customer specifications, see the work of [34]. In the third level of the
experimentation, we compare our EDA method with a more complicated evolutionary
technique where the genetic schema is hybridized with a local search dynamically managed
over the search. This hybridized method is the ELS of [13].

In order to fairly compare the different methods, a parameter gap (%) is introduced.
It is calculated as (((cost2 − cost1)/cost1) ∗ 100) where cost1 is the cost of the execution
of a method1 and cost2 is the cost of a method2 compared to the first one. Let us note
that a negative value of gap expresses an improvement of the EDA as compared with the
other methods.
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5.3. Comparison of the Results Obtained with the EDA Method and CPLEX

The computational results of the first testing phase are presented in two main tables.
Table 3 reports the results obtained in less than two hours. In Table 4, the results of CPLEX
take more than two hours. In the three first columns, the instances are described with their
names, the total number of nodes, and the total number of vehicles. All the instances of the
tables have been tested with CPLEX which gave the optimal solutions and with the EDA
which provided near-optimal ones.

The comparison is expressed in terms of gaps in the value of the total costs and the
cpu times. Table 3 presents problems with up to 58 nodes with 29 requests. In Table 4,
between 68 and 94 nodes are considered and thus 34 to 47 requests have to be addressed.

Table 3. Comparison of the results obtained with CPLEX and the EDA in less than two hours
cpu time.

Instances n m
CPLEX EDA Gap

f (S) Time (mn) f (S) Time (mn) (%)

SF_RL_d75 10 2 150.01 30.12 150.05 2.15 0.02%
SF_RL_d92 17 2 320.92 22.38 323.16 2.24 0.70%
SF_RL_d93 20 2 394.5 30.22 412.35 3.22 4.53%
SF_RL_d94 23 2 317.29 40.30 325.98 2.18 2.74%
SF_RL_d55 28 4 1365.92 50.51 1396.29 2.21 2.22%
SF_RL_d52 29 4 1481.30 58.57 1527.96 3.08 3.15%

Table 4. Comparison of the results obtained with CPLEX and the EDA in up to four hours cpu time.

Instances n m
CPLEX EDA Gap

f (S) Time (mn) f (S) Time (mn) (%)

SF_RL_d10 34 4 1362.15 71.34 1401.84 3.18 2.91%
SF_RL_d39 38 6 2061.61 73.73 2073.39 2.50 0.57%
SF_RL_d70 39 6 2000.3 83.58 2012.05 5.47 0.58%
SF_RL_d82 39 6 1830.12 76.35 1920.25 3.47 4.92%
SF_RL_d08 42 7 1682.52 85.48 1832.94 2.48 8.94%
SF_RL_d36 42 6 2180.52 79.16 2197.05 5.42 0.76%
SF_RL_d43 43 6 2033.64 80.36 2097.47 12.34 3.14%
SF_RL_d01 46 7 2339.41 119.00 2477.88 13.48 5.92%
SF_RL_d11 47 6 2499.62 104.19 2500.07 13.73 0.02%

Regarding the costs obtained with the EDA, the calculated gaps are smaller than 5%
in both Tables 3 and 4, except the case of SF_RL_d08. However, for CPLEX, the problem
resolution implies longer times, especially for problems involving more than 20 requests.
For instance, the resolution of the instance SF_RL_d36 requires more than two hours for
CPLEX whereas about five minutes are consumed by the EDA. As a consequence, the EDA
can provide near-optimal solutions in a much shorter time for hard real life instances.

5.4. Comparison of the Results Obtained with the EDA Technique and Existing Methods from the
State of the Art

In this part of the study, we show the quality of the solutions produced by the EDA by
comparing them to other metaheuristic based approaches.

In the first Table 5, we compare our EDA to a local search-based method which is a
Tabu Search dedicated to DARPs addressing some customers’ expectations, see the work
of [34]. In Table 6, we observe the behaviour of our evolutionary method as compared
with the ELS of [13] which is more complicated than our method since the hybridization of
the genetic schema is managed using six parameters which trigger the diversification and
intensification operators dynamically during the run. As no computational time was given
in the reference presenting the results of Chassaing et al. and tested on the same instances,
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in this paper, the cpu times are avoided from Tables 5 and 6. Similarly to the previous
experimental part, both the tables are divided into two parts separated by a horizontal line
which separates the problems which consider more or less than 29 requests.

5.4.1. Comparison of the Results Obtained with the EDA and a Tabu Search

Table 5 presents a comparison of the results obtained with the EDA and a Tabu Search
specially dedicated to customer-oriented DARPs.

Table 5. Comparison of the results obtained with the EDA and the Tabu Search.

Instances n m
Tabu Search EDA Gap (%)

f (S) f (S)

SF_RL_d75 10 2 150.22 150.05 −0.11%
SF_RL_d92 17 2 324.01 323.16 −0.26%
SF_RL_d93 20 2 430.01 412.35 −4.11%
SF_RL_d94 23 2 345.82 325.98 −5.73%
SF_RL_d55 28 4 1469.28 1396.29 −4.97%
SF_RL_d52 29 4 1528.45 1527.96 −0.03%

SF_RL_d10 34 4 1375.86 1401.84 1.89%
SF_RL_d39 38 6 2091.61 2073.39 −0.90%
SF_RL_d70 39 6 2148.97 2012.05 −6.37%
SF_RL_d82 39 6 1918.25 1920.25 0.10%
SF_RL_d08 42 7 1992.69 1832.94 −8.02%
SF_RL_d36 42 6 2198.22 2197.05 −0.05%
SF_RL_d43 43 6 1995.23 2097.47 5.12%
SF_RL_d01 46 7 2506.84 2477.88 −1.15%
SF_RL_d11 47 6 2661.76 2500.07 −6.07%

The upper part of the Table 5 shows that there are better results with the EDA than
with the TS. This is reflected by the negative values of the gaps. Additional negative gaps
appear in the second part of the table. As an example, on the instances SF_RL_d08 and
SF_RL_d01, the negative deviations −8.02% and −1.15% are obtained. Therefore, one
can observe a positive impact of the descent technique in the EDA. Results obtained with
the EDA are better thanks to a faster archival of the best population along the run in the
descent process. Globally, the EDA has more improved results for problems with more
than 29 requests.

5.4.2. Comparison of the Results Obtained with the EDA and the ELS Methods

The second study is performed on the same realistic instances to highlight the efficacy
of our algorithm as compared with the hybridized ELS which counts six neighbourhoods
in the local search.

In Table 6, one can observe that the behaviour of the EDA is aligned with that of
the ELS when the size of the problems grows. Moreover, for instances with less than
58 nodes (29 requests), all the results obtained with the EDA are better than those of
the ELS. For problems with more than 68 nodes, the quality of the solutions is relatively
good, as was also observed in Table 5. However, there are only two instances where an
improvement of the solution is obtained. It is for the instances SF_RL_d08 and SF_RL_d11
where the negative gaps −1.31% and −1.50% are produced respectively.

Moreover, for the same size of the network as the one with 42 requests, the costs
obtained can be different. Two different gaps, one negative −1.31% and the other positive
2.69% are found on the instances SF_RL_d08 and SF_RL_d36. This fluctuation of the costs
can be explained by the complexity of the on-demand transportation network.

Furthermore, even if the results seem to be less effective for large instances with more
than 29 requests, the EDA is simpler and faster than the ELS since it uses only one search
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space perturbation operator. Besides, the positive gaps never exceed 5% in experiments
carried out on problems with a high complexity.

Table 6. Comparison of the results obtained with the EDA and the ELS of [13].

Instances n m
ELS EDA Gap

f (S) f (S) (%)

SF_RL_d75 10 2 150.91 150.05 −0.57%
SF_RL_d92 17 2 347.01 323.16 −6.88%
SF_RL_d93 20 2 418.76 412.35 −1.53%
SF_RL_d94 23 2 352.25 325.98 −7.46%
SF_RL_d55 28 4 1516.71 1396.29 −7.94%
SF_RL_d52 29 4 1607.74 1527.96 −4.96%

SF_RL_d10 34 4 1341.02 1401.84 4.53%
SF_RL_d39 38 6 2030.44 2073.39 2.12%
SF_RL_d70 39 6 2006.05 2212.05 0.30%
SF_RL_d82 39 6 1842.84 1920.25 4.20%
SF_RL_d08 42 7 1857.35 1832.94 −1.31%
SF_RL_d36 42 6 2139.52 2197.05 2.69%
SF_RL_d43 43 6 2002.15 2097.47 4.76%
SF_RL_d01 46 7 2396.55 2477.88 3.39%
SF_RL_d11 47 6 2538.18 2500.07 −1.50%

6. Discussion

In this paper, a customer-oriented DARP has been tackled by a new evolutionary
descent approach. In this approach, a descent technique aims at optimizing the quality
of the population which evolves during the search. The exploration of the search space is
ensured using new evolutionary operators.

The comparative results between the EDA and CPLEX show low gaps for almost all
the instances tested ensuring lower execution times for a high quality of the solutions.
Despite the use of a single evolutionary operator, the EDA method outperforms results
obtained with other metaheuristics of the literature, namely the ELS and the TS. When
compared with the TS, twelve out of the fifteen instances tested have been improved by
our method. As compared with the hybrid evolutionary local search, the results are also
promising with gaps reduced to 5% on instances of considerable size and complexity.

Indeed, for small instances, EDA outperforms ELS. For larger instances with more
than 29 requests, the results are competitive. Let us note that the EDA is however faster and
simpler to implement whereas the ELS uses six operators to manage the search for good
solutions. Thus, an enhanced hybridized evolutionary algorithm with more elaborated
operators is a promising direction for future works to cope with the specificity of the
customers designed according to their preferences and the new requirements of current
transport on demands. In addition, the proposal of the new time windows constraints
makes the problem more difficult to address, especially when it is applied to real transport
cases as presented in this study.

7. Conclusions

This paper describes a customer-oriented Dial-A-Ride Problem with specific customer-
oriented constraints. A modelization of the problem is proposed using a mixed-integer
linear program. For this model, a computation of lower bounds of the solution space
is provided by the branch and bound method of CPLEX. To cope with the exponential
cpu times, an evolutionary descent algorithm is developed relying on a new evolutionary
operator. The comparison between the two methods indicates low deviations. When
our EDA method is compared to other metaheuristics such as the Tabu Search method
or another hybrid evolutionary one, promising results are obtained. For more complex
transport problems, the results are less spectacular, while they can be obtained in a faster
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time since it depends on only one operator for the crossover phase. This saved time can be
used to test additional evolutionary operators. Moreover, as the Tabu Search is known to
address efficiently DARPs, another hybridization of the evolutionary schema with a Tabu
Search can be envisaged to tackle a wider range of mobility-on-demand problems.
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